ERRATA:

A CANONICAL FORM FOR POSITIVE DEFINITE MATRICES

MATHIEU DUTOUR SIKIRIĆ, ANNA HAENSCH, JOHN VOIGHT, AND WESSEL P.J. VAN WOERDEN

This note gives errata for the article A canonical form for positive definite matrices [1].

1. Errata

(1) In (2.2.6), the characteristic vector set of L_{2} (having Gram matrix A_{2}) should be lifted to L using closest vectors with respect to L_{1} instead. This is what was implemented in the code.

More precisely, Then (2.2.6) should read

$$
\begin{equation*}
\mathcal{V}_{\mathrm{cv}}(A):=B_{1} \mathcal{V}_{\mathrm{wr}-\mathrm{cv}}\left(A_{1}\right) \cup \bigcup_{v \in P_{2} \mathcal{V}_{\mathrm{cv}}\left(A_{2}\right)}\left(v-B_{1} \mathrm{CV}\left(A_{1}, B_{1}^{-1}(v-\operatorname{proj}(v))\right)\right) \tag{2.2.6}
\end{equation*}
$$

where $B_{1}^{-1}=\left(B_{1}^{\top} B_{1}\right)^{-1} B_{1}^{\top}$ is the pseudo-inverse, a right inverse to B_{1}. This is the union of the well-rounded characteristic vector set for L_{1} together with all vectors in the cosets $u_{i}+L_{1}$ with minimal distance to L_{1}, so is well-defined independent of the choice of lifts u_{i}.

To prove that this is a characteristic vector set, the argument in Theorem 2.2.7(b) should be replaced with the following.

We now prove (b), checking the conditions (i) and (ii). For part (i), by construction $B_{1} \mathcal{V}_{\text {wr-cv }}\left(A_{1}\right)$ spans $L_{1}=$ ker proj $\left.\right|_{L}$ and by induction we have that $\mathcal{V}_{\mathrm{cv}}\left(A_{2}\right)$ spans L_{2} so that $\operatorname{span}\left(\mathcal{V}_{\mathrm{cv}}\left(A_{2}\right)\right) \subseteq$ L projects onto L_{2} via proj, so together they span L. Next we show that (ii) holds. First, the lattice L_{1} spanned by minimal vectors is well-defined, independent of $U \in \mathrm{GL}_{n}(\mathbb{Z})$, and $\mathcal{V}_{\text {wr-cv }}\left(A_{1}\right)$ is a characteristic vector set. Hence too the projection L_{2} is independent of U; by induction on the dimension, we know that $\mathcal{V}_{\mathrm{cv}}\left(A_{2}\right)$ is a characteristic vector set, and for each vector, the set of minimal vectors in each coset satisfies the necessary transformation transformation property as in the case of $\mathcal{V}_{\text {wr-cv }}$. So altogether, these form a characteristic vector set.
We also write this out in terms of (convenient) bases. Running the algorithm for A and $A^{\prime}=U^{\top} A U$ with $U \in \mathrm{GL}_{n}(\mathbb{Z})$, we may suppose that $v_{i}^{\prime}=U^{-1} v_{i}$ and $w_{i}^{\prime}=U^{-1} w_{i}$ by using the transformation property of $\operatorname{Min}(A)$. Then $A_{i}^{\prime}=A_{i}$ and $B_{i}^{\prime}=U^{-1} B_{i}$ for $i=1,2$, and so we may further suppose that $u_{i}^{\prime}=U^{-1} u_{i}$ so $P_{2}^{\prime}=U^{-1} P_{2}$. We conclude by noting that CV also has the compatible transformation property: for all $v^{\prime} \in P_{2}^{\prime} \mathcal{V}_{\mathrm{cv}}\left(A_{2}^{\prime}\right)$, we

$$
\begin{aligned}
& \text { have } \\
& \qquad \begin{array}{l}
v^{\prime}-B_{1}^{\prime} \mathrm{CV}\left(A_{1}^{\prime},\left(B_{1}^{\prime}\right)^{-1}\left(v^{\prime}-\operatorname{proj}^{\prime}\left(v^{\prime}\right)\right)\right) \\
=U^{-1} v-U^{-1} B_{1} \mathrm{CV}\left(A_{1}, B_{1}^{-1} U\left(U^{-1} v-U^{-1} \operatorname{proj}(v)\right)\right) \\
=U^{-1} v-U^{-1} B_{1} \mathrm{CV}\left(A_{1}, B_{1}^{-1}(v-\operatorname{proj}(v))\right) \\
\text { REFERENCES }
\end{array}
\end{aligned}
$$

[1] Mathieu Dutour Sikirić, Anna Haensch, John Voight, and Wessel P.J. van Woerden, A canonical form for positive definite matrices, Proceedings of the Fourteenth Algorithmic Number Theory Symposium (ANTS-XIV), ed. Steven Galbraith, Open Book Series 4, Mathematical Sciences Publishers, Berkeley, 2020, 179-195.

Mathieu Dutour Sikirić, Rudjer Bosković Institute, Bijenicka 54, 10000 Zagreb, Croatia

Email address: mathieu.dutour@gmail.com
Anna Haensch, Duquesne University, Department of Mathematics and Computer Science, Pittsburgh, Pennsylvania, USA

Email address: annahaensch@gmail.com
John Voight, Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, NH 03755, USA

Email address: jvoight@gmail.com
Wessel van Woerden, Centrum Wiskunde \& Informatica, Science Park 123, 1098 XG Amsterdam, Netherlands

Email address: wvw@cwi.nl

