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Abstract. We exhibit an explicit, deterministic algorithm for finding a canon-

ical form for a positive definite matrix under unimodular integral transforma-
tions. We use characteristic sets of short vectors and partition-backtracking

graph software. The algorithm runs in a number of arithmetic operations that

is exponential in the dimension n, but it is practical and more efficient than
canonical forms based on Minkowski reduction.

1. Introduction

1.1. Motivation. For n a positive integer, let Sn denote the R-vector space of
symmetric real n × n-matrices and Sn>0 ⊂ Sn denote the cone of positive definite

symmetric n × n-matrices. For A ∈ Sn>0, the map x 7→ xTAx (where T denotes
transpose) defines a positive definite quadratic form, with A its Gram matrix in
the standard basis; for brevity, we refer to A ∈ Sn>0 as a form. The group GLn(Z)

of unimodular matrices acts on Sn>0 by the action (U,A) 7→ UTAU ; the stabilizer
of a form A under this action is the finite group

(1.1.1) Stab(A) := {U ∈ GLn(Z) : UTAU = A}.
Two forms A,B ∈ Sn>0 are said to be (arithmetically) equivalent if there exists a
unimodular matrix U ∈ GLn(Z) such that

(1.1.2) A = UTBU.

In the Geometry of Numbers [39], forms arise naturally as Gram matrices of Eu-
clidean lattices under a choice of basis; in this context, two forms are arithmetically
equivalent if and only if they correspond to isometric lattices.

Plesken–Souvignier [35] exhibited algorithms to compute stabilizers and test for
arithmetic equivalence among forms, and these have been used widely in practice [2,
21, 10, 8, 37]. In a more theoretical direction, Haviv–Regev [13] proposed algorithms
based on the Shortest Vector Problem and an isolation lemma for these purposes
as well, with a time complexity of nO(n).

While these algorithms have been sufficient for many tasks, they suffer from an
unfortunate deficiency. Suppose we have many forms A1, . . . , Am ∈ Sn>0 and we
wish to identify them up to equivalence. A naive application of an equivalence
algorithm requires O(m2) equivalence tests (in the worst case). The number of
tests can be somewhat mitigated if useful invariants are available, which may or
may not be the case.

Our approach in this article is to compute a canonical form CanGLn(Z)(A) for
A ∈ Sn>0. This canonical form should satisfy the following two basic requirements:

(i) For every A ∈ Sn>0, CanGLn(Z)(A) is equivalent to A; and

(ii) For every A ∈ Sn>0 and U ∈ GLn(Z), CanGLn(Z)(U
TAU) = CanGLn(Z)(A).
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(The equivalence in (i) is unique up to Stab(A).) Combining a canonical form with
a hash table, the identification of equivalence classes in a list of m forms takes
only m canonical form computations (and m hash table lookups) and so has the
potential to be much faster.

1.2. Minkowski reduction and characteristic sets. The theory of Minkowski
reduction provides one possible approach to obtain a canonical form. The Minkowski
reduction domain [31] is a polyhedral domain Pn ⊂ Sn>0 with the property that there
exists an algorithm for Minkowski reduction, taking as input a form A and returning
as output an equivalent form in Pn. For example, for n = 2 we recover the familiar
Gaussian reduction of binary quadratic forms. An implementation of Minkowski
reduction is available [34]; however, this reduction is quite slow in practice, and it
is unsuitable for forms of large dimension n (say, n ≥ 12).

For those forms whose Minkowski reduction lies in the interior of the domain Pn,
the Minkowski reduction is unique [7, p. 203], thereby providing a canonical form.
Otherwise, when the reduction lies on the boundary of Pn, there are finitely many
possible Minkowski reduced forms; one can then order the facets of the polyhedral
domain Pn to choose a canonical form among them. This approach was carried out
explicitly by Seeber (in 1831) for n = 3; and, citing an unpublished manuscript,
Donaldson claimed “Recently, Hans J. Zassenhaus has suggested that Minkowski
reduction can be applied to the problem of row reduction of matrices of integers”
[7, p. 201]. An extension to n = 5, 6, 7 is possible at least in principle, since Pn is
known in these cases [39]. However, the problem of determining the facets of the
Minkowski reduction domain is hard in itself and so this strategy seems unrealistic
in higher dimensions. Other reduction theories [24, 11] suffer from the same problem
of combinatorial explosion on the boundary.

In contrast, the approach taken by Plesken–Souvignier [35] for computing the
stabilizer and checking for equivalence of a form A uses the following notion.

Definition 1.2.1. A characteristic vector set function is a map that assigns to every
n ≥ 1 and form A ∈ Sn>0 a finite subset of vectors V(A) ⊆ Zn such that:

(i) V(A) generates Zn (as a Z-module); and
(ii) For all U ∈ GLn(Z), we have U−1V(A) = V(UTAU).

The basic idea is then given a form A to define an edge-weighted graph from a
characteristic vector set V(A); using this graph, equivalence and automorphisms of
forms becomes a problem about isomorphism and automorphisms of graphs (see
Lemma 3.1.1). The graph isomorphism problem has recently been proved to be
solvable in quasi-polynomial time by Babai (see the exposition by Helfgott [15]);
however, the current approaches to computing characteristic vector sets (including
ours) use algorithms to solve the Shortest Vector Problem which is known to be
NP-hard [29], so it is difficult to take advantage of this complexity result in the
general case. Nevertheless, we may hope to leverage some practical advantage from
this approach.

1.3. Our approach. In this article, we adopt the approach of characteristic vector
sets, using very efficient programs [28, 17] that compute a canonical form of a graph
using partition backtrack. A subfield F of R is computable if it comes equipped
with a way of encoding elements in bits along with deterministic, polynomial-time
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algorithms to test equality, to perform field operations, and to compute (binary) ex-
pansions to arbitrary precision (for generalities, see e.g. Stoltenberg-Hansen–Tucker
[40]). For example, a number field with a designated real embedding is computable
using standard algorithms.

Theorem 1.3.1. There exists an explicit, deterministic algorithm that, on input
a (positive definite) form A ∈ Sn>0 with entries in a computable subfield F ⊂ R,
computes a canonical form for A. For fixed n ≥ 1, this algorithm runs in a bounded
number of arithmetic operations in F and in a polynomial number of bit operations
when F = Q.

This theorem is proven by combining Proposition 3.4.2 for the first statement
and Corollary 4.1.2 for the running time analysis. The running time in Theorem
1.3.1 is exponential in n, as we rely on short vector computations; we are not aware
of general complexity results, such as NP-hardness, for this problem. In light of the
comments about Minkowski reduction in the previous section, the real content of
Theorem 1.3.1 is in the word explicit. We also find this algorithm performs fairly
well in practice (see section 4.2)—an implementation is available online [1].

1.4. Contents. In section 2 we present the construction of some characteristic
vector set functions. In section 3, we present how to construct a canonical form
from a given characteristic set function. In section 4 we consider the time complexity
of our algorithm; we conclude in section 5 with extensions and applications.

1.5. Acknowledgments. This work was advanced during the conference Compu-
tational Challenges in the Theory of Lattices at the Institute for Computational and
Experimental Research in Mathematics (ICERM) and further advances were made
during a visit to the Simons Institute for the Theory of Computing The authors
would like to thank ICERM and Simons for their hospitality and support. Voight
was supported by a Simons Collaboration grant (550029) and Van Woerden was
supported by the ERC Advanced Grant 740972 (ALGSTRONGCRYPTO). We also
thank Achill Schürmann and Rainer Schulze-Pillot for help on Minkowski reduction
theory and the anonymous referees for their detailed feedback.

2. Construction of characteristic vector sets

In this section we build two characteristic vector set functions that can be used
for the computation of the stabilizer, canonical form, and equivalence of forms.

2.1. Vector sets. The sets of vectors that we use throughout this work are based
on short or shortest vectors. Given a set of vectors V ⊆ Zn, let span(V) be the (not
necessarily full) lattice spanned over Z by V. For A ∈ Sn and x ∈ Rn, we write

(2.1.1) A[x] := xTAx ∈ R.

For a form A ∈ Sn>0 we define the minimum

(2.1.2) min(A) := min
x∈Znr{0}

A[x],

the set of shortest (or minimal) vectors and its span

(2.1.3)
Min(A) := {v ∈ Zn : A[v] = min(A)}
Lmin(A) := span(Min(A)).
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The set of shortest vectors satisfies the desirable transformation property

(2.1.4) Min(UTAU) = U−1 Min(A)

for all U ∈ GLn(Z). If Min(A) is full-dimensional, then A is called well-rounded.
Two obstacles remain for using Min(A) as a characteristic vector set:

PB1. If n ≥ 2, then span(Min(A)) may not have rank n.
PB2. If n ≥ 5, then span(Min(A)) may have rank n but may not equal Zn.

Thus we have to consider other vector sets. For λ > 0, let

(2.1.5) MinA(λ) := {v ∈ Zn r {0} : A[v] ≤ λ} .
The vector set used for computing the stabilizer and automorphisms in the

AUTO/ISOM programs of Plesken–Souvignier [35] is:

(2.1.6) VPS(A) := MinA(maxdiag(A)),

where maxdiag(A) := max{Aii : 1 ≤ i ≤ n} is the maximum of the diagonal ele-
ments of A. The vector set VPS(A) contains the standard basis as a subset and as a
result is adequate for computing the stabilizer. Typically LLL-reduction [25] is used,
leading to a decrease in maxdiag(A), to prevent large sets. However, when comput-
ing equivalence we have a potential problem since two forms A and B can be equiv-
alent but satisfy maxdiag(A) 6= maxdiag(B). This is a limitation of ISOM, which for
equivalence can be resolved by taking the bound max{maxdiag(A),maxdiag(B)}
(something we cannot do for our canonical form).

To prevent this problem we can use a more reliable vector set that consists of
those vectors whose length is at most the minimal spanning length:

(2.1.7)
Vms(A) := MinA(λmin), where

λmin := min{λ > 0 : span(MinA(λ)) = Zn}.
This vector set Vms(A) is a characteristic vector set. However, Vms(A) can still be
very large, making it impractical to use.

Example 2.1.8. For example, the matrix Aλ =

(
1 0
0 λ

)
for λ ≥ 1 gives

Vms(Aλ) = {±e2} ∪ {±e1,±2e1, . . . ,±b
√
λce1}.

while {±e1,±e2} would be adequate. This problem is related to PB1.

2.2. An inductive characteristic vector set, using closest vectors. Building
on the observations made in the previous section, we now present a construction
that deals with PB1 and allows us to build a suitable characteristic vector set.

For a set of vectors V ⊆ Zn, the saturated sublattice (of Zn) spanned by V is

(2.2.1) satspan(V) := QV ∩ Zn.
Beyond shortest vectors, we use the closest vector distance: for v ∈ Qn, we define

(2.2.2) cvd(A, v) := min
x∈Zn

A[x− v]

as the minimum distance from Zn to the vector v and

(2.2.3) CV(A, v) := {x ∈ Zn : A[x− v] = cvd(A, v)}
the set of closest vectors achieving this minimum.

Characteristic and closest vector sets behave well under restriction to a sublat-
tice. The following lemma describes this explicitly, in terms of bases.
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Lemma 2.2.4. Let V be a characteristic vector set function, A ∈ Sn>0 a form, and
L ⊂ Rn a lattice of rank r. Let B ∈ Mn,r(R) be such that the columns are a Z-basis
of L; let c be in the real span of L and let cB := B−1c ∈ Rr be the unique vector
such that BcB = c. Then the sets

BV(BTAB) and B CV(BTAB, cB)

are independent of B (depending only on L, c).

Proof. The form A|B := BTAB ∈ Sr>0 is the restriction of A to L in the basis B,
so BV(A|B) is the characteristic vector set of this restricted form, as elements of
L ⊂ Rn. Similarly, B CV(A|B , cB) is the set of vectors in L ⊂ Rn, which are closest
to c. Both sets only depend on L and are independent of the chosen basis. �

Suppose that A is well-rounded. Let v1, . . . , vn be a Z-basis of the full rank
lattice Lmin(A) spanned by Min(A) and let B ∈ Mn×n(Z) be the matrix with
columns v1, . . . , vn. We then define

(2.2.5) Vwr-cv(A) := Min(A) ∪
⋃

c∈Zn/Lmin(A)

(
c−B CV(BTAB,B−1c)

)
.

(It is possible to reduce the size of this set, e.g., by removing 0 or filtering by
length.) The set Vwr-cv(A) consists of the union of the shortest vectors together
with the set of points in each coset closest to the origin. By Lemma 2.2.4, the set
Vwr-cv(A) is well-defined, independent of the choice of basis. Furthermore it satisfies
the necessary transformation property and spans Zn (as a Z-module) because it
contains at least one point from each coset in Zn/Lmin(A).

For a general form A, in geometrical terms we follow the filtration defined from
the minimum [4]. We define a set of vectors Vcv(A) inductively (described in an
algorithmic fashion), as follows:

1. Compute the set Min(A) of vectors of minimal length and compute the
saturated sublattice L1 := satspan(Min(A)) spanned by these vectors.

2. Compute a Z-basis v1, . . . , vr of L1, where r is its rank. Let B1 ∈ Mn,r(R)
be the matrix with columns v1, . . . , vr, and let A1 := BT

1AB1 ∈ Sr>0. Note
that A1 is well-rounded by construction.

3. Let proj : Zn → Rn be the orthogonal projection on L⊥1 with respect to the
scalar product defined by A.

4. Compute a basis w1, . . . , wn−r of L2 := proj(Zn) and let B2 ∈ Mn,(n−r)(R)

the matrix with columns w1, . . . , wn−r. Let A2 := BT
2AB2. Compute

u1, . . . , un−r ∈ Zn such that proj(ui) = wi for all i = 1, . . . , n − r, and
let P2 ∈ Mn,(n−r)(R) be the matrix with columns u1, . . . , un−r.

5. If r = n, let Vcv(A2) := ∅; otherwise, compute Vcv(A2) recursively and let

(2.2.6) Vcv(A) := B1Vwr-cv(A1) ∪
⋃

v∈P2Vcv(A2)

(v −B1 CV(A1, B
−1
1 (v − proj(v))))

where B−1
1 = (BT

1B1)−1BT
1 is the pseudo-inverse, a right inverse to B1.

We take all vectors in the cosets ui + L1 with minimal distance to L1, so this is
well-defined independent of the choice of lifts ui.

In a nutshell, Vcv(A) is the union of the well-rounded characteristic vector set
for the lattice satspanned by minimal vectors together with minimal lifts of the
characteristic vector set for the orthogonal projection, inductively defined.
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Theorem 2.2.7. The following statements hold.

(a) The set Vcv(A) is well-defined (independent of the choices of bases).
(b) The association A 7→ Vcv(A) is a characteristic vector set function.
(c) We have #Vcv(A) = nO(n).
(d) There is an explicit, deterministic algorithm that on input A computes the

set Vcv(A) in nO(n) arithmetic operations over F . For F = Q it has bit
complexity nO(n)sO(1) with s the input size of A.

Proof. We prove (a) by induction in the dimension n. The base case n = 0 is
trivial. For n > 0, note that A1 is well rounded and A2 has dimension at most
n− 1 and thus B1Vwr-cv(A1) and B2Vcv(A2) are independent of the choice of basis
by induction and Lemma 2.2.4. The lattice L2 is uniquely defined by the projection.
We already observed that the closest vectors are independent of the choice of lifts
ui.

We now prove (b), checking the conditions (i) and (ii). For part (i), by construc-
tion B1Vwr-cv(A1) spans L1 = ker proj |L and by induction we have that Vcv(A2)
spans L2 so that span(Vcv(A2)) ⊆ L projects onto L2 via proj, so together they
span L. Next we show that (ii) holds. First, the lattice L1 spanned by minimal
vectors is well-defined, independent of U ∈ GLn(Z), and Vwr-cv(A1) is a character-
istic vector set. Hence too the projection L2 is independent of U ; by induction on
the dimension, we know that Vcv(A2) is a characteristic vector set, and for each
vector, the set of minimal vectors in each coset satisfies the necessary transforma-
tion transformation property as in the case of Vwr-cv. So altogether, these form a
characteristic vector set.

We also write this out in terms of (convenient) bases. Running the algorithm
for A and A′ = UTAU with U ∈ GLn(Z), we may suppose that v′i = U−1vi and
w′i = U−1wi by using the transformation property of Min(A). Then A′i = Ai and
B′i = U−1Bi for i = 1, 2, and so we may further suppose that u′i = U−1ui so P ′2 =
U−1P2. We conclude by noting that CV also has the compatible transformation
property: for all v′ ∈ P ′2Vcv(A′2), we have

v′ −B′1 CV(A′1, (B
′
1)−1(v′ − proj′(v′)))

= U−1v − U−1B1 CV(A1, B
−1
1 U(U−1v − U−1 proj(v)))

= U−1v − U−1B1 CV(A1, B
−1
1 (v − proj(v))).

For (c), By Keller–Martinet–Schürmann [20, Proposition 2.1] for a well-rounded
lattice the index of the sublattice determined by the shortest vectors is at most

bγn/2n c with γn the Hermite constant satisfying γ
n/2
n ≤ (2/π)n/2 ·Γ(2+n/2) = nO(n).

The bound on Vcv follows by combining this with exponential upper bounds on the
kissing number [18] and the upper bound 2n on # CV(A, v) [6, Proposition 13.2.8].

The running time estimate (d) for arithmetic operations follows by combining
single exponential upper estimates for algorithms to solve the CVP and SVP (see
e.g. Micciancio–Voulgaris [30]). We conclude with the bit complexity analysis for
F = Q. The bit complexity of SVP and CVP algorithms is indeed polynomial time
in the input size [16, 36]. (We lack a reference for more general fields, and although
we do not see major obstacles doing such an analysis, it would be out of the scope
of this work). For the computed projection, the Gram–Schmidt orthogonalization
process also has a polynomial bit complexity in the input size (in bounded dimen-
sion, by induction). The remaining steps in computing Vcv(A), including computing
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a basis out of a spanning set, computing a basis for the saturated sublattice, and
computing representatives of the cosets Zn/Lmin(A), are standard applications of
the computation of a Hermite Normal Form (HNF)—see also section 3.4. A careful
HNF computation can be achieved in polynomial time in the input size [19]. In
particular, the obtained basis vectors and coset representatives also have a bit size
that is polynomially bounded in the input size. Thus for F = Q all arithmetic op-
erations while computing Vcv(A) have a bit complexity polynomial in s. We note
for completeness that efficient versions of SVP, CVP, and HNF algorithms depend
heavily on the famous LLL-algorithm. �

Although the cost of computing many closest vector problems may make it quite
expensive to compute Vcv(A) in the worst case, we find in many cases that it gives
a substantial improvement in comparison to other characteristic vector sets.

Example 2.2.8. Returning to Example 2.1.8, we find that Vcv(Aλ) = {±e1,±e2}.

The construction of Vcv addresses PB1, but PB2 remains—even for well-rounded
lattices #(Zn/Lmin(A)) can possibly be very large.

Example 2.2.9. The self-dual Niemeier lattice N23 [5, Chapter 18], whose root
diagram is 24A1 is well-rounded: it has minimum 2 with 48 shortest vectors, and
#Vms(N23) = 194352. Since the index of the lattice spanned by the shortest vectors
in N23 is 224, the size of Vcv(N23) is at least 48 + 224.

Remark 2.2.10. It may be possible to deal with some cases (but still not Example
2.2.9) by working with characteristic vector sets on forms attached in a canonical
way to A: for example, one could work with the dual form attached to A, for
sometimes the dual has few minimal vectors (even if A has many).

2.3. A characteristic vector set, using Voronoi-relevant vectors. A well-
known geometric shape associated to lattices is the Voronoi cell. The Voronoi cell
is the set of all points closer to 0 with respect to A than to any other integer point.
For a form A, the (open) Voronoi cell is the intersection of half-spaces

(2.3.1) Vor(A) :=
⋂

x∈Zn\{0}

HA,x,

with HA,x := {y ∈ Rn : A[y] < A[y − x]}. However, almost all vectors in this
intersection are superfluous, and we only consider the set of Voronoi-relevant vectors
Vvor(A), i.e. the (unique) minimal set of vectors such that

(2.3.2) Vor(A) =
⋂

x∈Vvor(A)

HA,x.

Lemma 2.3.3. The following statements hold

(a) The association A 7→ Vvor(A) is a characteristic vector set function.
(b) We have #Vvor(A) ≤ 2 · (2n − 1).
(c) There is an explicit, deterministic algorithm that on input A computes the

set Vvor(A) in 22n+o(n) arithmetic operations over F . For F = Q it has bit
complexity 22n+o(n)sO(1) with s the input size of A.

Proof. Property (ii) of a characteristic vector set for Vvor follows from the geometric
definition, fully independent of the basis. For property (i), note that for any nonzero
x ∈ Zn, we have x 6∈ Vor(A), and thus there is a vector v ∈ Vvor(A) such that
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x − v lies strictly closer to 0 with respect to A. Repeating this (a finite amount
of time by a packing argument) we eventually end up at 0 and thus x is the sum
of Voronoi-relevant vectors. The remaining statements follow from Micciancio–
Voulgaris [30]. �

Although this characteristic vector set has great theoretical bounds, we refrain
from using it in practice: most lattices actually attain the 2·(2n−1) Voronoi bound,
whereas constructions based on short and close vectors often beat the theoretical
worst-case bounds and give much smaller vector sets in practice.

3. Construction of a canonical form

Suppose now that we have chosen a characteristic vector set function V, as in
section 2.2 or 2.3. From this, we will construct a canonical form, depending on V.

3.1. Graph construction. Given a form A, let V(A) = {v1, . . . , vp}. We define
GA to be the edge- and vertex-weighted complete (undirected) graph on p vertices
1, . . . , p such that vertex i has weight wi,i = A[vi] and the edge between i and j has
weight wi,j = vT

iAvj = wj,i. In other words, GA is the weighted complete graph
whose adjacency matrix is BTAB, where B ∈ Mn,p(R) is the matrix whose columns
are vi. (The graph GA depends on V, but we do not include it in the notation as
we consider V fixed in this section.)

Lemma 3.1.1. For a form A ∈ Sn>0 and the graph GA constructed from a charac-
teristic vector set V(A) we have a group isomorphism

(3.1.2) Stab(A) ' Stab(GA) := {σ ∈ Sp : wi,j = wσ(i),σ(j) for all 1 ≤ i, j ≤ p}.

Proof. We first define the map Stab(A) → Stab(GA). Let U ∈ Stab(A). Then by
property (ii) of a characteristic vector set, we have UV(A) = V(U−TAU−1) = V(A);
therefore, U permutes the set V(A), giving a permutation σU ∈ Sp characterized
by σU (i) = j if and only if Uvi = vj . Accordingly, we have

(3.1.3) wi,j = vT
iAvj = vT

i U
TAUvj = vσU (i)AvσU (j)

so moreover σU ∈ Stab(GA). It is then straightforward to see that this map defines
a group homomorphism. To show this map is an isomorphism, we use property (i)
that V(A) spans Zn. Indeed, the map is injective because if σU is the identity, then
Uvi = vi for all i so U is the identity. Similarly, it is surjective: any σ ∈ Stab(GA)
fixes pairwise inner products with respect to A, so we obtain a unique Q-stabilizer
U ∈ GLn(Q) such that UTAU = A; however, because V(A) spans Zn, we obtain
UZn = Zn so U ∈ Stab(A). �

3.2. Graph transformations. The software nauty [28] and bliss [17] allow to
test equivalence and find the automorphism group and a canonical vertex ordering
of vertex weighted graphs. Thus, we need graph transformations that allow to
translate our vertex and edge weighted complete graphs into vertex weighted graphs
(see also the nauty manual [28]).

Let G be a complete (undirected) graph on p vertices with vertex weights wi,i
and edge weights wi,j . We construct a complete (undirected) graph T1(G) on p+ 2
vertices which is only edge weighted, as follows. Let a := 1 + maxi,j wi,j and
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b := a + 1 be two distinct weights that do not occur as wi,j . We define the new
edge weight w′i,j for i < j to be

(3.2.1) w′i,j :=


wi,j , if i < j ≤ p;
wi,i, if i ≤ p and j = p+ 1;

a, if i ≤ p and j = p+ 2;

b, if i = p+ 1 and j = p+ 2

We have a natural bijection Isom(G,G′)
∼−→ Isom(T1(G), T1(G′)) of morphisms in

the categories of edge-and-vertex-weighted and edge-weighted graphs, hence taking
G′ = G, we have Aut(G) ' Aut(T1(G)).

The next transformation takes a complete graph G with edge weights wi,j and
returns a vertex weighted graph T2(G). Let S be the list of possible edge weights,
ordered from the smallest to the largest, and let w be the smallest integer such
that #S ≤ 2w. For an edge weight s ∈ S, denote lk(s) the k-th value in the binary
expansion of the position of s in S. If G has p vertices then T2(G) will have pw
vertices of the form (i, k) with 1 ≤ i ≤ p and 0 ≤ k ≤ w − 1. The weight of the
vertex (i, k) is k. Two vertices (i, k) and (i′, k′) are adjacent in the following cases:

(1) i = i′, or
(2) k = k′ and lk(wi,i′) = 1.

Condition (i) implies that vertices of G correspond to cliques in T2(G). Condition
(ii) means that each digit k corresponds to a subgraph of T2(G). We have again

have a natural bijection Isom(G,G′)
∼−→ Isom(T2(G), T2(G′)).

Combining this we can lift an isomorphism between T2(T1(GA)) and T2(T1(GB))
to an isomorphism between GA and GB and thus to an isomorphism between A
and B by solving an overdetermined linear system. Similarly, we can compute the
group Aut(A) from Aut(T2(T1(GA))).

3.3. Canonical orderings of characteristic vector sets. The canonical vertex
ordering functionality of nauty and bliss gives an ordering of the vertices of vertex
weighted graphs. It is canonical in the sense that two isomorphic graphs will after
this reordering be identical. We do not know a priori what this ordering is as it
depends on the software, its version and the chosen running options. We still call
it canonical, following standard terminology.

We need to lift the ordering of the vertex set of T2(T1(GA)) into an ordering
of the vertex set of GA and so the characteristic vector set. Every vertex i of G
corresponds to a set Si of w vertices in T2(G) with Si ∩ Sj = ∅ for i 6= j. For
two vertices i, j of G we set i < j if and only if minSi < minSj in the canonical
vertex ordering of T2(G). Similarly every vertex i of G maps to one vertex φ(i) of
T1(G) with φ(i) 6= φ(j) if i 6= j. Thus we set i < j if and only if φ(i) < φ(j) in the
canonical ordering.

Combining the above we obtain a canonical ordering of the vertex set of GA and
thus of the characteristic vector set of the matrix A.

3.4. Canonical form. We have a canonical ordering of the characteristic vector set
V(A), which we write as v1, . . . , vp. This ordering is only canonical up to Stab(A):
for another canonical ordering, there is an element S ∈ Stab(A) such that wi = Svi
for i = 1, . . . , p, and conversely. We will now derive a canonical form from the
vectors vi.



10 DUTOUR SIKIRIĆ, HAENSCH, VOIGHT, AND VAN WOERDEN

The Hermite Normal Form (HNF) of a matrix Q ∈ Mm,n(Z) is the unique matrix
H = (hij)i,j ∈ Mm,n(Z) for which there exists U ∈ GLm(Z) such that Q = UH
and moreover:

(i) The first r rows of H are nonzero and the remaining rows are zero.
(ii) For 1 ≤ i ≤ r, if hi,ji is the first nonzero entry in row i, then j1 < . . . < jr.
(iii) hi,ji > 0 for 1 ≤ i ≤ r.
(iv) If 1 ≤ k < i ≤ r, then 0 ≤ hk,ji < hi,ji .

In the cases that interest us, the matrix QA with columns v1, . . . , vp defined
by the characteristic vector set V(A) is of full rank and so the matrix U , ob-
tained from the Hermite normal form QA = UH, is uniquely defined as well.
Note that any other ordering Sv1, . . . , Svp would lead to the matrix SU for some
S ∈ Stab(A). We denote the matrix U by UV(A) and note that its coset represen-
tative in Stab(A)\GLn(Z) is well-defined (determined by V(A)).

We now define

(3.4.1) CanGLn(Z)(A) := UT
V(A)AUV(A) ∈ Sn>0.

Then CanGLn(Z)(A) depends only on V(A) and A. Proposition 3.4.2 proves the
first statement of our main result, Theorem 1.3.1 (for any characteristic vector set
function V).

Proposition 3.4.2. The matrix CanGLn(Z)(A) is a canonical form for A.

Proof. Property (i) is clear by definition. For (ii), given P ∈ GLn(Z), we have

(3.4.3) UV(PTAP ) ≡ UP−1V(A) ≡ P−1UV(A) ∈ Stab(PTAP )\GLn(Z).

Thus CanGLn(Z)(P
TAP ) = CanGLn(Z)(A), as desired. �

Remark 3.4.4. An alternative to computing the canonical form would be to keep
the canonicalized version of the graph GA. However, this graph can be quite large,
and the positive definite form allows a more compact representation even taking
into account coefficient explosion that might occur with the Hermite normal form.

4. Analysis

4.1. Theoretical time complexity. We now analyze the algorithmic complexity
of computing a canonical form using the characteristic vector set in section 2.3.

Theorem 4.1.1. Given as input a positive definite symmetric matrix A ∈ Sn>0

with entries in a computable subfield F ⊂ R, and a characteristic vector set V(A),
we can compute a canonical form for A in time exp (O(log(N)c) + sO(1) where
N := #V(A), s is the input size of (A,V(A)), and c > 1 is a constant.

Proof. Given the characteristic vector set V(A) the corresponding graph can be
computed in time polynomial in the input size of A and V(A) as this part is mostly
dominated by the computation of vTAw for v, w ∈ V(A). Computing a Hermite
normal form can be done in time polynomial in the matrix input size which is the
same as V(A) [19]. Because the initial graph has at most O(N2) distinct weights
the final constructed vertex-weighted graph T2(T1(GA)) is of polynomial size in N .
We can conclude if we have a quasi-polynomial algorithm to find a canonical form
of a graph. For this we refer to a recent report by Babai [14]. �
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Time (s) #Vms

Type Samples n min avg max min avg max

Perfect
10 963 2–8 0.00041 0.0032 0.086 6 73.74 240
524 288 9 0.0039 0.00594 0.11 90 94.04 272

Random

100 10 0.0015 0.08 2.03 20 100.36 988
100 20 0.016 0.17 4.18 40 114.34 812
100 30 2.43 23.41 511.42 60 93.46 310
100 40 5.18 24.91 251.51 82 107.7 240

Catalogue 107 2-16 0.00018 2.12 36.71 4 630.47 4320
Table 1. Timings of our implementation [1].

Corollary 4.1.2. For all n ≥ 1 and A ∈ Sn>0 with entries in a computable subfield

F ⊂ R, we can compute a canonical form in at most 2O(nc) arithmetic operations
in F for some constant c > 1. If F = Q, the bit complexity is at most 2O(nc) +
sO(1)2O(n) with s the input size of A.

Proof. By Lemma 2.3.3 we have an characteristic vector set function Vvor such that
Vvor(A) has cardinality at most 2(2n − 1) and can be computed in at most 2O(n)

arithmetic operations. For the rational case, the bit complexity (and output size) is
at most sO(1)2O(n), with s the input size of A. We conclude by Theorem 4.1.1. �

4.2. Practical time complexity. We give a short experimental review of the
practial time complexity of our implementation [1]. We selected a diverse set of
test cases to benchmark our implementation: random forms, more than 500 000
perfect forms [8] and more than 100 special forms from the Catalogue of Lattices
[32]. For the random n-dimensional forms a basis matrix B is constructed with en-
tries uniform from {−n, . . . , n}, which, if full rank, is turned into a form A = BTB.
The set of perfect forms contains all 10 963 perfect forms of dimension 2 up to 8
and in addition 524 288 perfect forms of dimension 9. The set of special forms
consists of a diverse subset from the Catalogue up to dimension 16, including all
laminated lattices. Up to dimension 20 we used 32-bit integers and above that
(much slower) arbitrary precision integers to prevent overflow. The implementa-
tion currently supports the characteristic vector set function Vms and has not been
highly optimized. The main bottleneck seemed to be constructing the characteristic
vector sets and the computation of all pairwise inner products (in arbitrary pre-
cision) for the graph. Perhaps surprisingly, determining the canonical graph itself
took negligible time in most cases. In low dimensions where we can still use basic
integer types, computing a canonical form takes a few milliseconds up to a few sec-
onds. For random lattices we can expect relatively small characteristic sets even in
large dimensions, therefore enumerating the minimal vectors quickly becomes the
bottleneck in high dimensions. For special forms in higher dimensions such as the
Leech lattice with 196 560 minimal vectors one can expect that the main bottleneck
is related to the huge graph. Both storing the graph and computing a canonical
representative might barely be in the feasible regime.

5. Extensions and applications

We conclude with an extension and a description of some applications.
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5.1. Extension to symplectic groups. Let Jn :=

(
0 In
−In 0

)
represent the

standard alternating pairing and

(5.1.1) Sp2n(Z) :=
{
Q ∈ GL2n(Z) : QTJnQ = Jn

}
.

The group Sp2n(Z) acts on S2n
>0 and we seek a canonical form for this action [27].

Theorem 5.1.2. Given a ordered set of vectors V = (v1, . . . , vm) that generates
Z2n as a lattice, there exists an effectively computable symplectic basis SympBas(V)
of Z2n such that for every P ∈ Sp2n(Z) we have SympBas(VP ) = SympBas(V)P .

Proof. Let w1 be the first non-zero vector in V divided by the gcd of its coefficients.
Since the family of vectors spans Zn, the gcd of the symplectic products ω(w1, vj)
is 1. Thus we can find in a deterministic manner integers αi such that w2n =∑m
i=1 αivi satisfies ω(w1, w2n) = 1. We can then replace the vectors vi of the

vector family by v′i = vi − ω(vi, w2n)w1 + ω(vi, w1)w2n. They satisfy ω(v′i, w1) =
ω(v′i, w2n) = 0. Thus we apply the same construction inductively on them and get
our basis. The invariance property follows from the fact that we never use specific
coordinate systems. �

A canonical representative for a form A ∈ S2n
>0 under the action of Sp2n(Z) can

also be computed using our canonical form, as follows:

1. Compute a characteristic vector family using e.g. Vcv.
2. Compute a graph on this characteristic set of vector by assigning to two

vectors v, v′ the weight (vAv′, vJnv
′).

3. Apply the canonicalization procedure and get a canonical ordering of Vcv.
4. Use Theorem 5.1.2 in order to get a symplectic basis which then gives a

reduction matrix.

5.2. Lattice databases. Several efforts have sought to enumerate lattice genera of
either bounded discriminant or satisfying some arithmetic conditions such as small
(spinor) class number. For example, the Brandt–Intrau tables [9] of reduced ternary
forms with discriminant up to 1000, Nipp’s tables [33] of positive definite primitive
quaternary quadratic forms with discriminant up to 1732, and more recently the
complete table of lattices with class number one due to Kirschmer–Lorch [22], to
name a few. A current project of interest in number theory is an extension of the
L-functions and Modular Forms DataBase (LMFDB) [26] to include lattices.

The general strategy for generating these tables can take several forms. For ex-
ample, a list of isometry class candidates can be generated by extending lattices of
lower rank in some systematic way [9, 33]. Classes can also be generated by Kneser’s
method of neighboring lattices [38] (see section 5.4 below). Although the complete-
ness of the list of genus representatives can be verified using the Minkowski–Siegel
mass formula, one critical bottleneck in most of these schemes is eliminating re-
dundancy in the lists generated, especially for lattices with high rank and class
number—it is here where we profit significantly from a canonical form.

Another current shortcoming of the database has been the lack of a deterministic
naming scheme for lattices. Although lattices up to equivalence can be classified by
dimension, determinant, level, and class number, beyond that point many genera
of such lattices can exist, and each genus can potentially contain multiple classes.
Finding a canonical form for lattices provides a way to establish a deterministic
labeling. This has long been known to be a challenge: for example, it is exactly the
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problem of the boundary of a fundamental domain in Minkowski reduction (men-
tioned in the introduction) that is at issue. Ad hoc enumeration and labeling suffers
from the deficiency that a computer failure or other issues in the database could
result in new and different enumeration. A canonical form provides a mechanism
for a canonical label for lattices. Such a scheme would still depend on the graph
canonical form being called in the algorithm; but in the event of a switch a bijective
dictionary could easily be stored between the new naming and the old, giving still
a nearly permanent deterministic naming of lattices.

5.3. Application to enumeration of perfect forms. A canonical form really
shows its strength compared to pairwise equivalence checks when the number of
forms to be classified becomes very large. This is certainly the case during the
enumeration of perfect forms using Voronoi’s algorithm in dimension 9 or higher.
In dimension 9 already more than 20 million (inequivalent) perfect forms are found
and the total number could be on the order of half a billion [42]. Even though there
are some useful invariants such as the number of miminal vectors, the determinant
and the size of the automorphism group, the number of remaining candidates for
equivalence for each found perfect form can become quite large. Removing equiva-
lent forms is a large part of the computational cost during the enumeration.

Therefore, efficiently finding a canonical form seems to be a necessity in com-
pleting the full enumeration in dimensions 9 or higher. Luckily by the definition
of a perfect form we always have that Min(A) is full dimensional. Furthermore for
all perfect forms found so far Min(A) also spans Zn and therefore the function Vms

seems to be an efficient way to obtain a small characteristic vector set. In Section
4.2 we saw that computing a canonical perfect form in dimension 9 takes just a few
milliseconds.

5.4. Application to algebraic modular forms. Finally, we present an applica-
tion to speed up computations of orthogonal modular forms, a special case of the
theory of algebraic modular forms as defined by Gross [12]. We shift our perspective
slightly, varying lattices in a (fixed) quadratic space.

Let L ⊂ V be a (full) lattice, the Z-span of a Q-basis for V . We say L is integral
if xTAy ∈ Z for all x, y ∈ L, and suppose that L is integral. We represent L in bits
by a basis {v1, . . . , vn}; letting UL be the change of basis matrix, we obtain a form

(5.4.1) AL := (vT
iAvj)1≤i,j≤n = UT

LAUL.

(It is not necessarily the case that AL is arithmetically equivalent to A—the change
of basis need only belong to GLn(Q).)

In order to organize these lattices, we define the orthogonal group

(5.4.2) O(V ) := {P ∈ GLn(Q) : PTAP = A}.
Integral lattices L,L′ ⊂ V are isometric, written L ' L′, if there exists P ∈ O(V )
such that P (L) = L′. Choosing bases for L,L′, we see that L ' L′ if and only if
AL and AL′ are arithmetically equivalent.

We repeat these definitions replacing Q (and Z) by Qp (and Zp) for a prime p,
abbreviating Lp := L⊗Z Zp. Then the genus of L is

(5.4.3) Gen(L) := {L′ ⊂ V : Lp ' L′p for all primes p}.

Finally, we define the class set Cls(L) as the set of isometry classes in Gen(L). By
the geometry of numbers, we have # Cls(L) <∞.
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The theory of p-neighbors, due originally to Kneser [23], gives an effective method
to compute representatives of the class set Cls(L), as follows. Let p be prime
(allowing p = 2) not dividing det(AL). We say that a lattice L′ < V is a p-neighbor
of L, and write L′ ∼p L, if L′ is integral and

(5.4.4) [L : L ∩ L′] = [L′ : L ∩ L′] = p

(index as abelian groups). If L ∼p L′, then disc(L) = disc(L′) and L′ ∈ Gen(L) [10,
Lemma 5.7]. The set of p-neighbors can be computed in time O(pm+εHn(s)), where
s is the input size and Hn is a polynomial depending on n. Moreover, by strong
approximation [10, Theorem 5.8], there is an effectively computable finite set S of
primes such that every [L′] ∈ Cls(L) is an iterated S-neighbor L ∼p1 · · · ∼pr Lr ' L′
with pi ∈ S. Typically, we may take S = {p} for any p - disc(L). In this way, we
may compute a set of representatives for Cls(L) from iterated S-neighbors.

The space of orthogonal modular forms for L (with trivial weight) is

(5.4.5) M(O(L)) := Map(Cls(L),C).

In the basis of characteristic functions δ[L′] for [L′] ∈ Cls(L) we have M(O(L)) ' Ch
where h := # Cls(L). For p - disc(L), define the Hecke operator

(5.4.6)

Tp : M(O(L))→M(O(L))

Tp(f)([L′]) =
∑

M ′∼p L′

f([M ′]).

The operators Tp commute and are self-adjoint (with respect to a natural inner
product); accordingly, there exists a basis of simultaneous eigenvectors for the Hecke
operators, called eigenforms.

In this way, to compute the matrix representing the Hecke operator Tp, for
each [L′] ∈ Cls(L), we need to identify the isometry classes of the p-neighbors of
L′. Here is where our canonical form algorithm applies, returning to our original
motivation: after computing canonical forms for Cls(L), for each p-neighbor, we
compute their canonical forms and then a hash table look up on Cls(L). This
reduces our computation from O(h2) isometry tests to O(h) hash table lookups.
For medium-sized values of n, we hope that the use of canonical forms will allow
us to peer more deeply into the world of automorphic forms on orthogonal groups.
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