ERRATA: HYPERGEOMETRIC DECOMPOSITION OF SYMMETRIC K3 QUARTIC PENCILS

CHARLES F. DORAN, TYLER L. KELLY, ADRIANA SALERNO, STEVEN SPERBER, JOHN VOIGHT, AND URSULA WHITCHER

This note gives errata for the article Hypergeometric decomposition of symmetric K3 quartic pencils [1]. Thanks to Thais Gomes Ribeiro.

Errata

- (1) Remark 3.1.2: last sentence should be replaced by "Accordingly, we will analyze below how our definition of finite field hypergeometric functions depends on these choices."
- (2) Before Definition 3.1.10: unless the field of definition is $K_{\alpha,\beta} = \mathbb{Q}$, there is a dependence on the choice of ω . So it is only independent of the choice of character Θ in general.
- (3) After Definition 3.1.10, replace paragraph with "Suppose that $\boldsymbol{\alpha}, \boldsymbol{\beta}$ is defined over \mathbb{Q} , i.e., $K_{\boldsymbol{\alpha},\boldsymbol{\beta}} = \mathbb{Q}$. Then $H_q(\boldsymbol{\alpha},\boldsymbol{\beta} \mid t)$ is independent of the choice of character ω again applying Remark 3.1.2 (more generally, see below)."
- (4) Proposition 3.2.8(a): add "if $K_{\boldsymbol{\alpha},\boldsymbol{\beta}} = \mathbb{Q}$ ".
- (5) Before Lemma 3.2.10: $\zeta(q^{\times})$ should be $\zeta_{q^{\times}}$.
- (6) Proof of Lemma 3.2.10(a): note this this argument more generally shows what happens if we replace ω by ω^k .
- (7) After (3.3.1): μ_q^{\times} should be $\mu_{q^{\times}}$.
- (8) After (3.3.1) and Proof of Theorem 3.3.3: $\mu(q^{\times})^r$ should be $(\mu_{q^{\times}})^r$.
- (9) In the reference [FG51], the last name is "Furtado Gomide".
- (10) Lemma 4.1.9(a): note that $L_p(H(\boldsymbol{\alpha};\boldsymbol{\beta} \mid t), M, T)$ is also independent of the choice of multiplicative character (using the proof of Lemma 3.2.10).

References

 Charles F. Doran, Tyler L. Kelly, Adriana Salerno, Steven Sperber, John Voight, and Ursula Whitcher, Hypergeometric decomposition of symmetric K3 quartic pencils, Res. Math. Sci. 7:7 (2020), 81 pages.

Date: March 10, 2024.