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Abstract. We use a numerical method to compute a database of three-point
branched covers of the complex projective line of small degree. We report on
some interesting features of this data set, including issues of descent.

1. Introduction

1.1. Motivation. Let X be a smooth, projective curve over C. A Belyi map on
X is a nonconstant map φ : X → P1 that is unramified away from {0, 1,∞}. By
a theorem of Belyi [2] and Weil’s descent theory [18], X can be defined over the
algebraic closure Qal of Q if and only if X admits a Belyi map. This remarkable
observation has led to a spurt of activity, with many deep questions still open after
forty years. In his study of covers of the projective line minus three points [9],
Deligne writes pessimistically:

A. Grothendieck and his students developed a combinatorial de-
scription (“maps”) of finite coverings... It has not aided in under-
standing the Galois action. We have only a few examples of non-
solvable coverings whose Galois conjugates have been computed.

Indeed, although significant mathematical effort has been expended in computing
Belyi maps [17], there have been few systematic computations undertaken.

1.2. Main result. In this article we seek to remedy this state of affairs. We
address Deligne’s second objection by describing the uniform computation of a
large catalogue of Belyi maps of small degree. We utilize the numerical method
of Klug–Musty–Schiavone–Voight [12] and follow the combinatorial description of
Grothendieck. We make some preliminary observations about our data, but leave
to future work a more detailed analysis of the Galois action on the maps in our
catalogue.

A passport is the data (g,G, λ) consisting of a nonnegative integer g ∈ Z≥0, a
transitive permutation group G ≤ Sd, and three partitions λ = (λ0, λ1, λ∞) of d.
The passport of a Belyi map is given by its genus, its monodromy group, and the
ramification degrees of the points above 0, 1,∞. There is a natural permutation
action of S3 on passports, so (without loss of generality) we choose exactly one
passport up to this S3-action. (For more on passports, see section 2.)

A summary of the scope of our computation so far is given in (1.3.1): we list
the number of passports of Belyi maps for each degree d and genus g as well as the
number of them that we have computed (green number). Our data is available at
https://github.com/michaelmusty/BelyiDB and will hopefully also be available
at lmfdb.org in the near future.
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1.3. Comparison. Our database compares to the existing catalogues of Belyi maps
that are currently available as follows.

• Birch [4] computed a sampling of Belyi maps of low degree and genus, for
a total of 50 passports.

• A Shabat polynomial is a Belyi map of genus 0 that is totally ramified at∞.
Bétréma–Péré–Zvonkin [3] computed all Shabat polynomials up to degree
8: there are 78 such passports.

• A Belyi map is clean if every point above 1 has ramification index 2. (A
clean Belyi map has even degree, and if φ is an arbitrary Belyi map of degree
d then 4φ(1 − φ) is a clean Belyi map of degree 2d.) Adrianov et al. [1]
computed all clean Belyi maps up to degree 8: there are 67 such passports.

• Malle [13] computed fields of definition of some genus 0 passports whose
permutation group is primitive, subject to some other restrictions, up to
degree 13: there are hundreds of passports.

• Bose–Gundry–He [5] describe a partial catalogue of Belyi maps, inspired by
considerations from gauge theory in physics. This database contains many
genus 0 maps up to degree 7 and some maps in genus 1 and 2.

• Arsen Elkin also has a database of Belyi maps [10].
There are many other papers that compute certain classes of Belyi maps: for further
reference, see Sijsling–Voight [17].

(1.3.1)

d
g

0 1 2 3 ≥ 4 total

1 1/1 0 0 0 0 1/1
2 1/1 0 0 0 0 1/1
3 2/2 1/1 0 0 0 3/3
4 6/6 2/2 0 0 0 8/8
5 12/12 6/6 2/2 0 0 20/20
6 38/38 29/29 7/7 0 0 74/74
7 89/89 50/50 7/13 2/3 0 148/155
8 243/261 83/217 0/84 0/11 0 326/573
9 410/583 33/427 0/163 0/28 0/6 443/1207

total 802/993 204/732 16/269 2/42 0/6 1024/2042

1.4. Outline. The paper is organized as follows. We begin in section 2 by defining
passports and exhibiting an algorithm to enumerate their representative permu-
tation triples up to simultaneous conjugation. In section 3, we briefly recall the
numerical method employed. In section 4, we treat the descent issues that arise.
In sections 5–6, we detail steps that are specific to elliptic and hyperelliptic curves,
and provide examples of these computations. We conclude in section 7 with a
description of the database, some statistics, and some final observations.

1.5. Acknowledgements. The authors would like to thank Hartmut Monien and
Greg Warrington for useful conversations; Mauricio Esquivel Rogel for his im-
plementation of some numerical linear algebra routines, supported by a James
O. Freedman Presidential Scholarship; and Joshua Perlmutter for help in verifi-
cation. Thanks also to Maarten Derickx, Noam Elkies, and David P. Roberts for
comments. Our calculations are performed in the computer algebra system Magma
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Simons Collaboration Grant (550029).

2. Passports

We begin by explaining the combinatorial (or topological) description of Belyi
maps and exhibit an efficient method for their enumeration. For general background
reading, see Sijsling–Voight [17, §1] and the references therein.

2.1. Preliminaries. Throughout, let K ⊆ C be a field. A (nice) curve over K is a
smooth, projective, geometrically connected (irreducible) scheme of finite type over
K that is pure of dimension 1. After extension to C, a curve may be thought of as
a compact, connected Riemann surface. A Belyi map over K is a finite morphism
φ : X → P1 over K that is unramified outside {0, 1,∞}; we will sometimes write
(X,φ) when we want to pay special attention to the source curve X. Two Belyi
maps φ, φ′ are isomorphic if there is an isomorphism ι : X

∼−→ X ′ of curves such that
φ′ι = φ.

Let φ : X → P1 be a Belyi map overQal of degree d ∈ Z≥1. Themonodromy group
of φ is the Galois group Mon(φ) := Gal(C(X) |C(P1)) ≤ Sd of the corresponding
extension of function fields (understood as the action of the automorphism group
of the normal closure); the group Mon(φ) may also be obtained by lifting paths
around 0, 1,∞ to X.

A permutation triple of degree d ∈ Z≥1 is a tuple σ = (σ0, σ1, σ∞) ∈ S3
d such that

σ∞σ1σ0 = 1. A permutation triple is transitive if the subgroup 〈σ〉 ≤ Sd generated
by σ is transitive. We say that two permutation triples σ, σ′ are simultaneously
conjugate if there exists τ ∈ Sd such that

(2.1.1) στ := (τ−1σ0τ, τ
−1σ1τ, τ

−1σ∞τ) = (σ′0, σ
′
1, σ
′
∞) = σ′.

An automorphism of a permutation triple σ is an element of Sd that simultaneously
conjugates σ to itself, i.e., Aut(σ) = ZSd

(〈σ〉), the centralizer inside Sd.

Lemma 2.1.2. The set of transitive permutation triples of degree d up to simul-
taneous conjugation is in bijection with the set of Belyi maps of degree d up to
isomorphism.

Proof. The correspondence is via monodromy [12, Lemma 1.1]; in particular, the
monodromy group of a Belyi map is (conjugate in Sd to) the group generated
by σ. �

The group Gal(Qal |Q) acts on Belyi maps by acting on the coefficients of a set
of defining equations; under the bijection of Lemma 2.1.2, it thereby acts on the
set of transitive permutation triples, but this action is rather mysterious.

We can cut this action down to size by identifying some basic invariants, as
follows. A passport consists of the data P = (g,G, λ) where g ≥ 0 is an integer,
G ≤ Sd is a transitive subgroup, and λ = (λ0, λ1, λ∞) is a tuple of partitions λs of
d for s = 0, 1,∞. These partitions will be also be thought of as a tuple of conjugacy
classes C = (C0, C1, C∞) by cycle type, so we will also write passports as (g,G,C).
The passport of a Belyi map φ : X → P1 is (g(X),Mon(φ), (λ0, λ1, λ∞)), where
g(X) is the genus of X and λs is the partition of d obtained by the ramification
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degrees above s = 0, 1,∞, respectively. Accordingly, the passport of a transitive
permutation triple σ is (g(σ), 〈σ〉, λ(σ)), where (by Riemann–Hurwitz)

(2.1.3) g(σ) := 1− d+ (e(σ0) + e(σ1) + e(σ∞))/2

and e is the index of a permutation (d minus the number of orbits), and λ(σ) is
the cycle type of σs for s = 0, 1,∞. The size of a passport P is the number of
simultaneous conjugacy classes (as in 2.1.1) of (necessarily transitive) permutation
triples σ with passport P.

The action of Gal(Qal |Q) on Belyi maps preserves passports. Therefore, after
computing equations for all Belyi maps with a given passport, we can try to identify
the Galois orbits of this action. We say a passport is irreducible if it has one
Gal(Qal |Q)-orbit and reducible otherwise.

2.2. Passport lemma. To enumerate passports, we will use the following lemma.

Lemma 2.2.1. Let S be a group, let G ≤ S be a subgroup, let N := NS(G) be
the normalizer of G in S, and let C0, C1 be conjugacy classes in N represented by
τ0, τ1 ∈ G. Let ZN (g) denote the centralizer of g in N . Let

(2.2.2) U := {(σ0, σ1) ∈ C0 × C1 : 〈σ0, σ1〉 ⊆ G}/∼

where ∼ indicates simultaneous conjugation by elements in S. Then the map

(2.2.3)
u : ZN (τ0)\N/ZN (τ1)→ U

ZN (τ0)νZN (τ1) 7→ [(τ0, ντ1ν
−1)]

is surjective, and for all [(σ0, σ1)] ∈ U such that 〈σ0, σ1〉 = G, there is a unique
preimage under u.

Proof. The map (2.2.3) is well-defined, as ν ∈ N so ντ1ν−1 ∈ G and conjugacy
classes are taken in N .

We first show that (2.2.3) is surjective. Let [(σ0, σ1)] ∈ U . Then gσ0g−1 = τ0
for some g ∈ N , and so [(σ0, σ1)] = [(τ0, gσ1g

−1)] ∈ U . Similarly, there is h ∈ N
such that σ1 = hτ1h

−1 so [(σ0, σ1)] = [(τ0, (gh)τ1(gh)−1)], and gh = ν ∈ N .
Next, we show (2.2.3) is injective when restricted to generating pairs. Suppose

[(τ0, ντ1ν
−1)] = [(τ0, µτ1µ

−1)] ∈ U with µ, ν ∈ N . Then there exists ρ ∈ S with

(2.2.4) ρ(τ0, ντ1ν
−1)ρ−1 = (τ0, µτ1µ

−1).

Then ρ〈τ0, ντ1ν−1〉ρ−1 = ρGρ−1 = 〈τ0, µτ1µ−1〉 = G under the hypotheses on
generation, so we have ρ ∈ N . The equation in the first component reads ρτ0ρ−1 =
τ0, so ρ ∈ ZN (τ0) by definition. The second equation yields

(2.2.5)
ρντ1ν

−1ρ−1 = µτ1µ
−1

(µ−1ρν)τ1(µ−1ρν)−1 = τ1

so µ−1ρν ∈ ZN (τ1). Writing ν = (ρ−1)µ(µ−1ρν), we find that ZN (τ0)νZN (τ1) =
ZN (τ0)µZN (τ1), as desired. �

2.3. Computing passports. We now describe an algorithm to produce all pass-
ports for a given degree d and a representative set of permutation triples in each
passport up to simultaneous conjugation. We simplify this description by consid-
ering the transitive subgroups of Sd one at a time: these are currently available [6]
up to degree 47.
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There is a natural permutation action of S3 on passports and on the permu-
tation triples in a passport, corresponding to postcomposition of Belyi maps by
an automorphism of the base curve P1 permuting {0, 1,∞}. For the purposes of
tabulation, we will choose one passport up to this action of S3: to do so, we choose
a total ordering � on partitions (e.g., refining the dominance partial order).

Algorithm 2.3.1. Let d ∈ Z≥1, let G ≤ Sd be a transitive subgroup, and let
N := NSd

(G) be the normalizer of G in Sd. This algorithm returns a representative
list of passports for G up to the action of S3; and, for each passport, a representative
list of permutation triples (one for each simultaneous conjugacy class).

1. Compute representatives {τ1, . . . , τr} for the conjugacy classes {C1, . . . , Cr}
of G up to conjugation by N .

2. Out of the r2 possible pairs of conjugacy class representatives, only consider
pairs (τi, τj) with λ(τi) � λ(τj).

3. For each pair (τi, τj) from Step 2, apply Lemma 2.2.1 to compute the set

(2.3.2) Uij := {(σ0, σ1) ∈ Ci × Cj : 〈σ0, σ1〉 ⊆ G}/∼

by computing the double coset ZN (τi)\N/ZN (τj) and applying the map
u. Complete each pair (σ0, σ1) ∈ Uij to a permutation triple by setting
σ∞ := (σ1σ0)−1, and let Tij denote the resulting set of triples obtained
from Uij .

4. Keep only those triples σ ∈ Tij with 〈σ〉 = G and such that λ(σ1) � λ(σ∞).
5. Sort the triples obtained from Step 4 into passports by cycle structure.

Proof of correctness. We compute all possible input pairs (τ0, τ1) to Lemma 2.2.1
with λ(τ0) � λ(τ1). This accounts for all possible input pairs to Lemma 2.2.1 since
every passport is S3-equivalent to such a passport. We do not have control over
the conjugacy class of σ∞ in this process, but Step 4 insists that every resulting
passport representative σ has λ(σ0) � λ(σ1) � λ(σ∞) thereby ensuring a unique
passport up to the action of S3. �

We computed representatives for all passports (without equations) in degree
d ≤ 11 using Algorithm 2.3.1: this took about 18 minutes for all degrees d ≤ 9,
about 3.3 hours for d = 10, and 2.37 days for d = 11.

3. Numerical computation of Belyi maps

With triples and passports in hand, we now briefly review the numerical method
used to compute Belyi maps.

3.1. Overview. The method of Klug–Musty–Schiavone–Voight [12] takes as input
a permutation triple σ = (σ0, σ1, σ∞) and produces as output equations for the
curve X and Belyi map φ : X → P1 over a number field K ⊆ C that corresponds
to σ (in the monodromy bijection of Lemma 2.1.2).

This method is numerical, so it is not guaranteed to terminate (because of loss
of precision or convergence issues), but when it terminates, it gives correct output.
The method proceeds in the following steps.

1. Form the triangle subgroup Γ ≤ ∆(a, b, c) associated to σ and compute its
coset graph.
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2. Use a reduction algorithm for Γ and numerical linear algebra to compute
power series expansions of modular forms fi ∈ Sk(Γ) for an appropriate
weight k.

3. Use numerical linear algebra (and Riemann–Roch) to find polynomial rela-
tions among the series fi to compute equations for the curveX and similarly
to express the map φ in this model.

4. Normalize the equations of X and φ so that the coefficients are algebraic;
recognize these coefficients as elements of a number field K ⊆ C.

5. Verify that φ has the correct ramification and monodromy.
For the purposes of this article, the reader may treat this method as a black

box with two exceptions: in section 4.4 we describe an improvement to the method
in Step 4 for a choice of descent constant, and we discuss a numerical test for
hyperellipticity using power series in weight 2 in section 6.2.

3.2. Discussion. There are a few key advantages of the above algorithm for our
purposes. First, it is uniform, and in particular does not require the permutation
triple to have a special form or for the curve to be of any particular genus. Second,
it computes one Belyi map at a time, without needing the whole passport: and
in particular, there are no parasitic solutions (degenerate maps that arise in other
computational methods). Third, we obtain the bijection between triples and Belyi
maps by the very construction of the equations (and the embedding K ↪→ C).

There is an alternative method due to Monien [14, 15] that uses noncocompact
triangle subgroups Γ ≤ ∆(2, 3,∞) ' PSL2(Z) instead of our cocompact subgroups.
This method has been shown to work in genus 0 for maps of very large degree (e.g.
a Belyi map with monodromy group isomorphic to the Conway group Co3 is given
in [15]).

4. Descent issues

In this section, we discuss issues of descent for Belyi maps: when can a Belyi
map be defined over a minimal field? (The reader eager for Belyi map computations
should skip this and proceed to the next section.) A satisfactory answer to this
question is crucial for understanding the action of Gal(Qal |Q) on Belyi maps.

4.1. Field of moduli and field of definition. Let σ be a permutation triple
with passport P and corresponding Belyi map φ : X → P1 over Qal. The field of
moduli M(X,φ) ⊆ Qal ⊂ C of φ is the fixed field of {τ ∈ Gal(Qal |Q) : τ(φ) ' φ}.
The field of moduli is the intersection of all fields over which (X,φ) can be defined.

The degree of M(X,φ) is bounded above by the size of the passport P; this
bound is achieved if and only if the passport is irreducible.

Definition 4.1.1. We say that (X,φ) descends (to its field of moduli) if (X,φ)
can be defined over its field of moduli M(X,φ), that is, if there exists a Belyi map
φK : XK → P1 over K whose base change to Qal is isomorphic to φ : X → P1.

Weil [18] studied general conditions for descent. For example, if φ has trivial
automorphism group Aut(φ), then φ descends—this criterion suffices to deal with
a large majority of Belyi maps. More generally, to descend the Belyi map it is
necessary and sufficient to construct a Weil cocycle, a collection of isomorphisms
fσ : σ(X) → X, one for every element σ ∈ GalM(X,φ) := Gal(Qal |M(X,φ)), such
that fστ = fσσ(fτ ) for all σ, τ ∈ GalM(X,φ). (When Aut(φ) is trivial, this condition
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is satisfied for any collection of isomorphisms fσ.) This criterion can be made
explicit and computable [17, Method 4.1].

4.2. Pointed descent. There is another way to sidestep descent issues by rigidi-
fying, as follows.

Definition 4.2.1. A pointed Belyi map (X,φ;P ) is a Belyi map (X,φ) together
with a point P ∈ φ−1({0, 1,∞}) ⊆ X(Qal). An isomorphism of pointed Belyi maps
(X,φ;P )

∼−→ (X ′, φ′;P ′) is an isomorphism of Belyi maps ι such that ι(P ) = P ′.

Remark 4.2.2. In our computations we choose the point P to be one of the ramifi-
cation points of φ. Any point on X would do, but only the ramification points can
be seen from the combinatorial data.

Definition 4.2.3. A pointed permutation triple (σ; c) is a permutation triple σ ∈ S3
d

together with a distinguished cycle c in one of the permutations σs with s = 0, 1,∞;
we call s its base point and the length of the cycle c its length. We call (σ; c) a
pointed refinement of the permutation triple σ.

Two pointed permutation triples (σ; c) and (σ′; c′) are simultaneously conjugate
if the permutation triples σ, σ′ are simultaneously conjugate by an element τ ∈ Sd
such that cτ = c′. The automorphism group Aut(σ; c) ≤ Aut(σ) is the subgroup of
Sd that simultaneously conjugates (σ; c) to itself.

Returning to the correspondence of Lemma 2.1.2, we see that pointed permuta-
tion triples of degree d up to simultaneous conjugation are in bijection with pointed
Belyi maps of degree d up to isomorphism.

Proposition 4.2.4. The base point, length, and cardinality of the automorphism
group of a pointed permutation triple are invariant under simultaneous conjugation
and under the action of Gal(Qal |Q).

Proof. The statements for simultaneous conjugation are clear. For the Galois ac-
tion, we pass back to Belyi maps: the base point, the ramification index, and the
automorphism group of a pointed Belyi map are Galois invariant. �

We similarly define the field of moduli M(X,φ;P ) for a pointed Belyi map. The
following theorem gives us a widely applicable criterion for descent (even in the
presence of automorphisms).

Theorem 4.2.5. A pointed Belyi map (X,φ;P ) descends, i.e., the curve X, the
map φ, and the point P can all be defined over M(X,φ;P ).

Proof. The statement is given by Birch [4, Theorem 2]; for a constructive proof
using branches, see Sijsling–Voight [16, Theorem 1.12]. �

4.3. Pointed passports. Given the simplicity and importance of Theorem 4.2.5,
we refine our notion of passport as follows.

Definition 4.3.1. A pointed passport is the data (g,G, λ; c) where (g,G, λ) is a
passport and c = (s, e, a) consists of the data: s ∈ {0, 1,∞}, and e ∈ Z≥1 a
summand in the partition λs, and finally a ∈ Z≥1.

Given a pointed Belyi map (X,φ;P ), we define its pointed passport P(X,φ;P )
to be its passport together with the data s = φ(P ), the ramification degree e =
eφ(P ), and a = #Aut(X,φ;P ). Likewise, we define the pointed passport P(σ; c)
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to be the passport with s its base point, e its length, and a the cardinality of its
automorphism group. We define the size of a pointed passport P to be the number
of isomorphism classes of pointed Belyi maps (equivalently, number of classes of
pointed permutation triples) with pointed passport P.
Corollary 4.3.2. A pointed Belyi map is defined over a field whose degree is at
most the size of its pointed passport.

Proof. Apply Theorem 4.2.5. �

Proposition 4.3.3. If the size of P(σ; c) is equal to the size of P(σ), then all Belyi
maps with passport P(σ) descend.

Proof. Any field of definition of a pointed Belyi map is also a field of definition of
the underlying Belyi map, so the fields of moduli and pointed moduli coincide by
hypothesis. Descent follows by Theorem 4.2.5, since the moduli field of the pointed
curve is a field of definition. �

It seems quite common for a permutation triple to have a pointed refinement of
size 1. The first example where no such refinement exists occurs in degree 8: see
Example 4.5.1 below.

4.4. Descent from C. In Step 4 of our numerical method (see section 3.1), there
is a normalization procedure which we may interpret as an application of pointed
descent, as follows. In the original method [12, §5], modular forms are expanded as
power series centered in a neighborhood of a ramification point of the form |w| < 1
in a parameter w, and the coefficients of these power series are renormalized by
writing them in terms of Θw for a certain transcendental factor Θ, computed as
the ratio of two ‘consecutive’ terms in the power series expansion. In our setting,
we instead normalize not the coefficients of the power series but instead coefficients
of the Belyi map itself, now setting ‘consecutive’ coefficients equal. In practice, we
find that this normalization requires smaller precision to recognize the Belyi map
exactly from its numerical approximation.

Remark 4.4.1. In every example we computed, and in both ways of normalizing,
we obtained normalized power series expansions that numerically agree with series
defined over M(X,φ;P ) with chosen ramification point P . Currently this is only
a numerical observation; but it is a sensible expectation, as the method works by
computing the pluricanonical image using expansions at the designated point.

Example 4.4.2. Consider the passport (1, S5, (5
1, 4111, 4111)). The unique repre-

sentative up to simultaneous conjugation is given by σ with

(4.4.3) σ0 = (1 4 2 5 3), σ1 = (1 2 3 4), σ∞ = (1 2 3 5) .

We take c = (1 4 2 5 3), which has length 5 and trivial automorphism group. Since
the pointed passport also has size 1, the field of moduli of the Belyi map equals Q by
Corollary 4.3.2, and we can descend to this field by Proposition 4.3.3. Computing
with 50 digits of precision (here and throughout, we only ever display 5 digits), we
find X : y2 = x3 − 27c4x− 54c6 with

(4.4.4) c4 ≈ 0.01030 + 0.00748i c6 ≈ −0.00270 + 0.00196i

and Belyi map φ with:

(4.4.5) φ ≈ 2.0000

−1 + (2.21275 + 0.71897i)y + (1.77422i)xy
=

2

−1 + b3y + b5xy
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(where i2 = −1). The indeterminacy in this approximation is by λ ∈ C×, acting
according to the degree of the pole at ∞, so (c4, c6)← (λ−4c4, λ

−6c6) and (x, y)←
(λ−2x, λ−3y). Taking

(4.4.6) λ :=
b5
b23
≈ −0.19265− 0.26516i

the rescaled values b′3 := λ3b3 ≈ 216/510 and b′5 := λ5b5 ≈ −28/55 have (b′3)2/b′5 = 1
(and there exists a descent with this ratio, defined over Q). Now all the coefficients
a0, b3, b5, c4, c6 ∈ Q are easily identified. After computing a minimal model and
swapping 0,∞ ∈ P1 for cosmetics, we obtain X : y2 = x3 + 5x+ 10 with map

(4.4.7) φ(x, y) = ((x− 5)y + 16)/32 .

4.5. Examples. We now discuss some examples to see the various subtleties that
play a role when descending Belyi maps.

Example 4.5.1. The first case of a passport for which Proposition 4.3.3 does
not apply occurs in degree 8, given by (1, V 2

4 : S3, (3
212, 42, 42)). The passport is

size 1 but all pointed passports are size 2. The Belyi map descends because its
automorphism group is trivial. A descent is given by X : y2 = x3 +x2 + 8x+ 8 and

φ(x, y) =
4(7x4 + 24x3 + 92x2 + 320x+ 272)y − 16(x+ 1)(x2 + 8)(x2 + 16x+ 24)

27x4y
.

Because Aut(X,φ) is trivial, this is the only model over Q up to isomorphism.
Finally, none of its ramification points is rational, so no descent of a pointed refine-
ment immediately gets us to the field of moduli Q.

Example 4.5.2. The first dessin that does not descend to its field of moduli is
of degree 16. Indeed, in lower degree, there are only three passports for which
Proposition 4.3.3 does not apply and the automorphism group is nontrivial: all
occur in degree 12, one with size 1, the other two of size 2. Yet explicit calculation
shows that these three examples all descend.

For purposes of illustration, we consider the passport (4, t12n57, (62, 62, 62)) of
size 2, where t12n57 denotes the transitive group in S12 numbered 57. The pass-
port is irreducible and the curves are nonhyperelliptic: they arise as degree 2 cov-
ers branching at the ramification points of the unique Belyi map with passport
(1, A4(6), (32, 32, 32)), given by E : y2 = x3 + 6x2 − 3x and Belyi map φ(x, y) =
(x2 + 3)y/(8x2). The ramification points are then exactly the Q-rational points
∞, (0, 0), (1,±2), (−3,±6) on E. To construct the resulting degree 2 cover, we
choose a 4-torsion point P4 on E. Then the sum of the ramification points and 2P4

is equivalent to 8∞, so that we get a function whose square root gives rise to the
requested cover. The four possible covers thus obtained are all Galois conjugate;
we get the same Belyi map, this from the curve

(4.5.3) X :
y2 = x3 + 6x2 − 3x,
w2 = yx2 + 2yx− 3y + αx3 + 2αx2 − 3αx,

where α4−12α2 +48 = 0. The field Q(α) contains Q(
√
−3). This unique quadratic

subfield is also the field of moduli of the Belyi map from X, since one can show
that it is mapped to its Q(

√
−3)-conjugate by the automorphism

(4.5.4) (x, y, w) 7→
(
−3

x
,

3y

x2
,

3iw

x2

)
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of X. To show that the Belyi map descends, it suffices [8, Cor. 5.4] (or [16, Theorem
3.4.8] with R = ∅) to show that the canonical model E0 of E corresponding to the
cocycle defined by the first two entries of (4.5.4) has a rational point. It does; in
fact E0 is isomorphic to E. Still, none of the points on E0 that correspond to the
ramification points of E are rational over Q(

√
−3). We conclude that there is no

choice of pointed refinement that will give rise to a descent to Q(
√
−3) in this case,

even though the Belyi map descends.

5. Genus 1

In this section, we discuss some details for Belyi maps of genus 1.

5.1. Newton’s method. Let (X,φ) be a Belyi map with X of genus 1 defined by
X : y2 = f(x) = x3−27c4x−54c6. In our numerical method (see section 3.1, or the
Genus 1 subsection of [12, §5]), we compute a numerical Weierstrass X and Belyi
map φ on X to arbitrary precision.

Klug–Musty–Schiavone–Voight [12, Example 5.28] describe how to use Newton’s
method in the case of genus 0 to achieve very accurate approximations of the
coefficients of the Belyi map, allowing us to quickly pass from tens of digits of
precision to tens of thousands. We now explain how Newton’s method can be
extended to the case of genus 1 Belyi maps, ironing out some wrinkles.

Let P = (xP , yP ) ∈ X(C) be an affine point and let t := x−xP and s := y− yP .
Insisting that φ have a zero or pole of a given order at P imposes equations that
can be determined by working in the completed local ring Ĉ[X]P as follows.

If P is not a 2-torsion point of X, then t is a uniformizer for Ĉ[X]P . We solve
for s in terms of t by substituting x = t+ xP and y = s+ yP into the equation for
X, thereby obtaining a quadratic equation in s whose solution is

(5.1.1) s := −yP + yP

√
1 +

t3 + 3xP t2 + (3x2P − 27c4)t

y2P
.

If instead P is a 2-torsion point, then s is a uniformizer for Ĉ[X]P ; substituting as
above, we obtain a cubic equation in s, which we solve via Hensel lifting. In either
case, we may express the numerator and denominator of φ as power series in the
local parameter. Once this has been accomplished, we obtain the equations imposed
by a zero (resp., pole) at P of order eP by insisting that the first eP coefficients of
the series for the numerator or denominator, respectively, of φ vanish.

Newton’s method has proven invaluable in our computations: it has allowed us
to compute genus 1 maps that were previously out of reach, and has also sped up
our computations considerably.

5.2. Example. We illustrate the above method with an example.

Example 5.2.1. Consider the passport (1, S7, (6
111, 6111, 2231)) of size 13. Its

pointed refinement taking the 6-cycle over 0 also has size 13. A representative
permutation triple is

(5.2.2) σ0 = (1 2 3 4 5 6), σ1 = (2 7 6 3 4 5), σ∞ = (1 7 2)(3 5)(4 6).

This ramification data and a Riemann–Roch calculation implies that φ can be
written as φ = φ0/φ∞ for φ0 ∈ L (2∞) and φ∞ ∈ L (8∞). (For details, see section
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6.3 below.) Since 1, x and 1, x, y, x2, xy, . . . , x4 are bases for L (2∞) and L (8∞),
respectively, pulling out leading coefficients and changing notation, we write

(5.2.3) φ = u
φ0
φ∞

= u
a0 + x

b0 + b2x+ b3y + · · ·+ b7x2y + x4

for some a0, a2, b0, b2 . . . , b7 ∈ Qal ⊂ C. Computing with 40 digits of precision
(displaying 5), we find after 20 seconds on a standard CPU the initial approximation
for X and φ. After normalizing as in section 4.4 to obtain b7(= b8) = 1, we obtain

(5.2.4)
c4, c6 ≈ −0.00031, 0.0000035

φ ≈ 0.0024
−0.18587 + x

−0.00042 + 0.00112x+ · · ·+ 0.03839x3 + x2y + x4
.

Let P = (xP , yP ) be the point corresponding to the 3-cycle in σ∞. Since P ∈ X(C),
our first equation is y2P = x3P − 27c4xP − 54c6. Computing s as in (5.1.1), we find

(5.2.5)
s =

3
2x

2
P − 27

2 c4

yP
t+
− 9

8x
4
P + 81

4 c4x
2
P + 3

2xP y
2
P − 729

8 c24
y3P

t2

+
27
16x

6
P − 729

16 c4x
4
P + · · ·+ 81

4 c4xP y
2
P + 1

2y
4
P − 19683

16 c34
y5P

t3 +O(t4) .

Substituting x = t+ xP and y = s+ yP into the above expression for φ∞ yields

(5.2.6)

φ∞ = x4P + x3P b6 + x2P yP b7 + x2P b4 + xP yP b5 + xP b2 + yP b3 + b0

+
(
3
2x

4
P b7 + 4x3P yP + 3

2x
3
P + · · ·+ b5 + yP b2 − 27

2 c4b3
) t

yP

+
(
− 9

8x
6
P b7 − 9

8x
5
P b5 + · · ·+ 729

8 c24b3
) t2
y3P

+O(t3) .

To impose the condition that φ has a pole of order 3 at P , we set the first three
coefficients of φ∞ equal to 0, giving 3 relations.

Proceeding similarly with the other ramification points, we obtain 22 polynomial
equations in the 23 variables u, c4, c6, a0, b0, . . . , b7 and xP , yP for each of the rami-
fication points, other than the point corresponding to the cycle containing 1 in σ0.
(The point corresponding to this cycle is∞, and we have already imposed the con-
dition that φ vanishes to order 6 at ∞ by taking φ0 ∈ L (2∞) and φ∞ ∈ L (8∞).)
This system is underdetermined, so in order to apply Newton’s method, we must
find at least one more equation. We observe that although φ is a degree 7 map, φ∞
has degree 8, so there must be a common zero of φ0 and φ∞. Calling this point
Ps = (xs, ys), we obtain three more equations

(5.2.7)
y2s = x3s − (27c4xs − 54c6) 0 = φ0(Ps) = a0 + xs

0 = φ∞(Ps) = b0 + b2xs + b3ys + · · ·+ b7x
2
sys + x4s .

We have adjoined two more variables xs, ys and produced three more equations to
ensure non-degeneracy. This produces a system of 25 equations in 25 variables.
Applying Newton’s method to this system, in 16.20 seconds we obtain approxima-
tions of coefficients with 2000 digits of precision, which allows us to recognize the
coefficients of φ as algebraic numbers. After a change of variables to reduce the
size of the output, we find the elliptic curve

(5.2.8) X : y2 = x3 − (24ν + 75)x+ 1
2 (−657ν2 − 1014ν + 3278)
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and Belyi map φ = uφ0/φ∞ where u = 1/(2932) and

φ0 = (−419ν2 − 358ν + 2947) + 49x

φ∞ = (−806361ν2 − 724014ν + 5449304) + (−3150ν2 − 15652ν + 84560)x

+ (−11310ν2 + 17940ν + 118656)y + (−33180ν2 + 74760ν − 55104)x2

+ (59556ν2 − 189336ν + 233856)xy + (5166ν2 − 16380ν + 20720)x3

+ (−59022ν2 + 184980ν − 225792)x2y + (25557ν2 − 80122ν + 97832)x4

over the number field Q(ν) where ν3 − 6ν + 12 = 0. It turns out that this passport
decomposes into two Galois orbits, one of size 3 as shown above, and the other of
size 10. The coefficients of the Belyi map for the size 10 orbit are too large for us
to display here, but it is defined over the number field Q(µ) where

(5.2.9) µ10− 2µ9 + 15µ8− 78µ7 + 90µ6 + 48µ5 + 90µ4− 78µ3 + 15µ2− 2µ+ 1 = 0 .

Remark 5.2.10. The “extra zero" phenomenon in (5.2.7) is typical; it can be avoided
in the special case when 0 is totally ramified (i.e., when σ0 is a d-cycle).

6. Hyperelliptic curves

We now discuss some issues and improvements for hyperelliptic curves.

6.1. Setup. Recall that a hyperelliptic curve of genus g ≥ 2 over K has a model

(6.1.1) X : y2 + u(x)y = v(x)

where deg(u) ≤ g+ 1 and deg(v) ≤ 2g+ 2. Letting f(x) := u(x)2 + 4v(x), we have
f(x) separable with deg f(x) = 2g + 1 or 2g + 2; we refer to the model as even or
odd according to the parity of deg f(x). Note that an odd model has the single
point ∞ = (1 : 1 : 0) at infinity while an even model has two, ∞′ = (1 :

√
f0 : 0)

and ∞ = (1 : −
√
f0 : 0) where f0 is the leading coefficient of f(x) (I.e., the point

∞ is a Weierstrass point if and only if the model is odd.) In constructing the Belyi
map, in both cases we take ∞ to be the marked point (around which we expand
series), and by convention it corresponds to the cycle containing 1 in σ0.

6.2. Numerical test for hyperellipticity. Let Γ be a triangle subgroup with
X = X(Γ) of genus g ≥ 2. We test if X is numerically hyperelliptic (in the
sense the curve appears to be hyperelliptic to the precision computed) as follows.
First, we compute power series expansions of an echelonized basis f1, f2, . . . , fg of
S2(X(Γ)). We have an isomorphism S2(X(Γ)) ∼= Ω(X(Γ)) given by f(z) 7→ f(z) dz
where Ω(X(Γ)) is the C-vector space of holomorphic differential 1-forms on X(Γ).
If X is hyperelliptic with model as in (6.1.1), since f1, . . . , fg is an echelonized basis
we have the further isomorphism

(6.2.1)
Ω(X(Γ))

∼→ Ω(X)

fi(z) dz 7→ xg−i
dx

y

for i = 1, . . . , g. Thus, to recover x, y defined on X(Γ), we can take

(6.2.2) x := f1/f2 y := x′/fg
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where x′ denotes the derivative of x with respect to w (the coordinate in the hy-
perbolic disc). If the model is odd, then ord∞ x = −2 and ord∞ y = −(2g + 1); if
the model is even, then ord∞ x = −1 and ord∞ y = −(g + 1).

Consider the rational map X(Γ) → A2
C with coordinates x, y. Using numerical

linear algebra, we test if there is an approximate linear relation among

(6.2.3) 1, x, . . . , x2g+2, y, xy, . . . , xg+1y, y2 ∈ C[[w]].

If there is such a relation, we obtain a rational map from X to a hyperelliptic curve
X ′ ⊆ A2. If g(X ′) = g(X), then the Riemann–Hurwitz formula implies that this
map is birational, hence X ′ is a model of X as in (6.1.1). If no such relation exists,
then we conclude that X is not numerically hyperelliptic.

6.3. Computing a hyperelliptic Belyi map. Suppose now that X is hyperel-
liptic with model as in (6.1.1). We compute the expression of the Belyi map φ as
a rational function in x and y roughly as follows. (1) Determine an appropriate
Riemann–Roch space L (D). (2) Compute a basis of L (D) in terms of x and y.
(3) Using numerical linear algebra, express φ as a linear combination of functions
in this basis.

We make this precise as follows, following Javanpeykar–Voight [11, Lemma 3.2].
Let σ = (σ0, σ1, σ∞) be a transitive permutation triple of degree d with correspond-
ing hyperelliptic Belyi map (X,φ), and let g be the genus of X. Let s be the length
of the cycle containing 1 in σ0 and let k1, . . . kr be the lengths of the remaining
cycles in σ0. Then the divisor of poles of 1/φ is div∞(1/φ) = s∞ +

∑r
i=1kiPi

for some points P1, . . . , Pr ∈ X(C). Since we do not have control over the points
P1, . . . , Pr, we “cancel" these poles by multiplying φ by a suitable function φ0 that
has zeroes at P1, . . . , Pr and has poles only at ∞. Such a φ0 will belong to the
space L (D) ⊆ L (t∞) where

(6.3.1) D := −
∑r
i=1kiPi + t∞

for some (as of yet undetermined) t ∈ Z≥0. Once we have obtained φ0, then
φ0/φ ∈ L ((s + t)∞). As we will describe in the next step, we can write down
a basis for Riemann–Roch spaces for divisors of the form m∞. This allows us to
compute φ0 and φ∞ := φ0/φ ∈ L ((s + t)∞) with respect to this basis. Thus we
have φ = φ0/φ∞ for some φ0 ∈ L (t∞) and φ∞ ∈ L ((s+ t)∞).

It remains to determine a value of t so that such a φ0 exists. To do this, we
apply Riemann–Roch to the divisor D. Since

∑r
i=1ki = d− s, this yields

(6.3.2) `(D)− `(KX −D) = 1− g + deg(D) = 1− g + (s− d+ t)

where KX is a canonical divisor of X. To ensure the existence of a nonzero φ0 as
above, we must have `(D) ≥ 1. By (6.3.2), this holds if 1− g+ s− d+ t ≥ 1, i.e., if
t ≥ d− s+ g. Thus we may take t = d− s+ g. (This conclusion actually does not
require X to be hyperelliptic.)

Next, we explain how to compute bases for L (t∞) and L ((s+ t)∞) as in step
2. In the case of an odd model, this basis is particularly simple: x and y have poles
at ∞ of orders 2 and 2g + 1, respectively, so

(6.3.3) 1, x, x2, . . . , xbm/2c, y, xy, . . . , xb
m−(2g+1)

2 cy

is a basis for L (m∞). In the case of an even model the situation is more compli-
cated. Now x, y 6∈ L (m∞) because they have poles at∞′. We compute a basis for
L (m∞) as follows. Since x has a simple pole at ∞′ we know t = 1/x has a simple
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zero, and hence is a uniformizing parameter at∞′. Working in the completed local
ring ÔX,∞′ ' C[[t]], we can express y as a Laurent series in t via

(6.3.4) y =
1

2

(
−u(1/t)±

√
u(1/t)2 + 4v(1/t)

)
.

We use the series expansions x(w), y(w) at ∞ to match the correct sign in (6.3.4).
For each j ∈ {0, . . . ,m− (g + 1)} we compute the Laurent tail Pj ∈ C[1/t] = C[x]

of xjy, so that xjy − Pj is holomorphic at ∞′. In this way we obtain the basis

(6.3.5) 1, y − P0, xy − P1, . . . , x
m−(g+1)y − Pm−(g+1)

for L (m∞).

Example 6.3.6. We now illustrate the above procedure. Consider the passport
(2, G, (61, 61, 32)), where G := 2A4(6) ' A4 × C2. The passport (and pointed
passport) are size 1, with representative triple

(6.3.7) σ0 = (1 6 2 4 3 5), σ1 = (1 3 5 4 6 2), σ∞ = (1 3 5)(2 4 6).

Computing the coordinate functions x, y as in (6.2.2) to 50 digits (displaying 5),
we find approximate series

(6.3.8)
x ≈ 0.99999w−1 − 0.79370w − 0.31498w3 +O(w4)

y ≈ −0.99999w−3 − 0.79370w−1 − 0.94494w − 0.02142w3 +O(w4) .

Since the series for y has a pole of order 3 = g + 1, we are in the case of an even
model. Forming the matrix of coefficients of the monomials

(6.3.9) 1, x, x2, x3, x4, x5, x6, y, xy, x3y, y2 ,

we find a hyperelliptic equation as in (6.1.1) with u = 0 and

(6.3.10) v ≈ 1.00000x6 + 6.34960x4 + 15.11905x2 + 11.99999

This gives the local expansion

(6.3.11)
y =

√
v(1/t) =

√
1.00000t−6 + 6.34960t−4 + 15.11905t−2 + 11.99999

= 1.00000t−3 + 3.17480t−1 + 2.51984t− 1.99999t3 +O(t4) .

Thus the Laurent tail of y is 1.00000x3+3.17480x, and the first nonconstant element
of our basis for L (m∞) for m ≥ 3 is

(6.3.12)
y − (1.00000x3 + 3.17480x)

≈ −2.00000w−3 − 1.58740w−1 + 0.62996w − 0.04285w3 +O(w4)

and we can compute the remaining elements of the basis similarly. Proceeding as
explained above, we obtain the Belyi map

(6.3.13) φ(x, y) =
x4 + 2x2 + xy + 1

2(x2 + 1)2

defined on the hyperelliptic curve X : y2 = x6 + 4x4 + 6x2 + 3.
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7. Database

7.1. Technical description. Our database is organized by passports as computed
in Algorithm 2.3.1. For each passport we store basic information such as degree,
genus, ramification indices, and the monodromy group. We also store the automor-
phism group and passport representatives, as well as their pointed counterparts.
After computing equations for every Belyi map in a passport, we store the Belyi
maps, curves, the fields over which they are defined, and the associated complex em-
bedding. We then partition the pointed passport representatives into Galois orbits
obtained from this information. Lastly, the numerical power series and information
to recover the normalization in Section 3.1 Step 4 are also saved.

7.2. Running time. Since our numerical method for computing equations some-
times requires a workaround for corner cases, we do not have detailed information
about the total running time. To give a rough idea of the running time, we consider
some examples. In (7.2.1) we list the approximate CPU time to compute one Belyi
map in the listed passport, with power series computed to the specified number of
decimal digits of precision and then precision obtained in Newton iteration.

(7.2.1)

Passport Size Precision (Newton) CPU Time
(0, A9, (5

122, 33, 412113)) 2 20 (1000) 7s
(0, S9, (7

121, 412113, 412211)) 23 20 (16000) 2m46s
(1, A7, (7

1, 3122, 3122)) 2 30 (1000) 23s
(1, S7, (5

121, 5121, 3122)) 4 40 (1500) 2m48s
(1, A7, (7

1, 412111, 412111)) 22 20 (1500) 10s
(2,GL3(F2), (71, 71, 3211)) 4 20 4m59s

The current database of Belyi maps consists of approximately 240MB of text files.

7.3. Observations. Having completed a large scale computation of Belyi maps, it
remains to analyze our data.

• The largest passport sizes in each degree are:

(7.3.1)
Degree ≤ 4 5 6 7 8 9 10 11
Passport size 1 3 8 38 177 1260 8820 72572

• The largest degree number field arising as a field of definition of a Belyi map
in our database occurs for the passport (1, S7, (6

111, 6111, 412111)) which
is irreducible of size 32. This degree 32 number field has discriminant
26832759715 and Galois group Z/2Z o S16.
• The passport (2, A7, (7

1, 71, 511111)) provides an example of a highly re-
ducible passport: it has size 24 and decomposes into six Galois orbits of
sizes 1, 2, 3, 4, 6, and 8. The associated number fields are Q, and those with
defining polynomials x2−x−5, x3+2x−2, x4−2x3−2x2+3x−3, x6−
2x4−5x3−2x2 +1, and x8−4x7 +14x5−35x4 +42x3−126x2 +108x+135.

• There are 262 passports with degree d ≤ 7. We have computed equations
for all Belyi maps in 255 of these passports and found that 37 are reducible.
For a passport P of size l, the Galois action determines a partition of l with
parts l1, . . . , lr. To measure the irreducibility of P, define

(7.3.2) w(P) :=

{
1, if l = 1;

(l − 1)−2
∑r
i=1(li − 1)2, if l ≥ 2.
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Let Pd be the set of passports with degree no larger than d and define

(7.3.3) β(d) := (#Pd)
−1∑

P∈Pd
w(P).

From the database we find that β(d) = 1 for d ≤ 4, β(5) ≈ 0.9393, β(6) ≈
0.9444, and 0.8779 < β(7) < 0.9046.
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