ADDENDA: COMPUTING EUCLIDEAN BELYI MAPS

MATTHEW RADOSEVICH AND JOHN VOIGHT

This note gives an addenda for the article Computing Euclidean Belyi maps [1].

1. Addenda

The addenda is summarized in the following additional remark.
Remark 3.2.10. If in Algorithm 2.4 .4 we compute instead the Smith normal form (SNF) of A as $\left(\begin{array}{cc}n & 0 \\ 0 & m\end{array}\right)=P A Q$ (with $n \mid m$), the result gives a basis for Λ_{Γ} relative to a basis for Λ_{Δ} such that $\Lambda_{\Gamma}=\left\langle n \omega_{1}^{\prime}, m \omega_{2}^{\prime}\right\rangle$ with $\Lambda_{\Delta}=\left\langle\omega_{1}^{\prime}, \omega_{2}^{\prime}\right\rangle$. Accordingly, we adjust Step 4 in Algorithm 3.2.5 by replacing the occurrences of ω_{1} and ω_{2} respectively with $\omega_{1}^{\prime}=a \omega_{1}+b \omega_{2}$ and $\omega_{2}^{\prime}=c \omega_{1}+d \omega_{2}$ where $Q^{-1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

Incorporating Remark 3.2.9, we may further simplify by factoring n from each entry in our basis matrix (corresponding to factoring the multiplication by n map from $\widehat{\psi}$). This reduces us to the case $n=1$ in Algorithm 3.2.5.

In more detail, computing the map $\psi: E(\Gamma) \rightarrow E(\Delta)$ is the most complicated and costly step in Algorithm 3.5.1. To do so, we must first determine a basis for the lattice Λ_{Γ} relative to a basis for the lattice Λ_{Δ}. In Corollary 2.2.7, we make a "standard" choice for the basis vectors ω_{1} and ω_{2} for Λ_{Δ} that coincide with the periods Magma assigns to our canonical curves E_{\square} and E_{\square}. Algorithm 2.4.4 then produces a two column matrix A whose rows, taken as coordinates relative to the basis vectors ω_{1} and ω_{2}, give a set of vectors that span Λ_{Γ}.

Reducing A to Hermite normal form and taking its first two rows gives a basis matrix

$$
B_{H}:=\left(\begin{array}{cc}
n_{1} & n_{2} \\
0 & m_{2}
\end{array}\right)
$$

such that $\Lambda_{\Gamma}=\left\langle n_{1} \omega_{1}+n_{2} \omega_{2}, m_{2} \omega_{2}\right\rangle$.
If, instead, we reduce A to Smith normal form and take its first two rows, we obtain a matrix of the form

$$
B_{S}:=\left(\begin{array}{cc}
n & 0 \\
0 & m
\end{array}\right)
$$

where n divides m. Like with B_{H}, the matrix B_{S} describes a basis for Λ_{Γ} relative to a basis for Λ_{Δ} such that $\Lambda_{\Gamma}=\left\langle n \omega_{1}^{\prime}, m \omega_{2}^{\prime}\right\rangle$ with $\Lambda_{\Delta}=\left\langle\omega_{1}^{\prime}, \omega_{2}^{\prime}\right\rangle$. We note that the basis vectors ω_{1}^{\prime} and ω_{2}^{\prime} need not be the same as ω_{1} and ω_{2}.

Because Magma's implementation of the Weierstrass \wp-function takes inputs relative to ω_{1} and ω_{2}, it is then necessary to relate ω_{1}^{\prime} and ω_{2}^{\prime} back to the "standard" basis vectors. Let $P, Q \in \mathrm{GL}_{2}(\mathbb{Z})$ be such that $B_{S}=P B_{H} Q$. Then the matrices P and Q correspond, respectively, to elementary row and column operations performed on B_{H} that transform it to B_{S}. As each elementary column operation
corresponds to an invertible change to the choice of basis for Λ_{Δ}, we can recover the relationship between each ω_{i}^{\prime} and ω_{i} from the matrix Q indicated above. Specifically, if

$$
Q^{-1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then $\omega_{1}^{\prime}=a \omega_{1}+b \omega_{2}$ and $\omega_{2}^{\prime}=c \omega_{1}+d \omega_{2}$.
Working with B_{S} rather than B_{H} simplifies our computation of the isogeny $\psi: E(\Gamma) \rightarrow E(\Delta)$. Algorithm 3.2.5 describes a procedure for computing ψ (by first computing its dual, $\widehat{\psi}$) that assumes the Hermite basis matrix B_{H}. If we instead work with the Smith matrix B_{S}, we may assume that $n_{2}=0$ and let $n_{1}=n$ and $m_{2}=m$. Incorporating remark 3.2.9 and recalling that n divides m, we may further simplify by factoring n from each entry in our basis matrix (corresponding to factoring the multiplication by n map from $\widehat{\psi}$), leaving us with the matrix

$$
\frac{1}{n} B_{S}=\left(\begin{array}{cc}
1 & 0 \\
0 & m / n
\end{array}\right)
$$

where $m / n \in \mathbb{Z}$.
The combined effect of Remark 3.2.9 and this Smith simplification allows us to always assume in Algorithm 3.2.5 a basis matrix B of particularly simple form:

$$
B:=\left(\begin{array}{ll}
1 & 0 \\
0 & d
\end{array}\right)
$$

This basis matrix gives coordinates relative to ω_{1}^{\prime} and ω_{2}^{\prime} rather than ω_{1} and ω_{2}. Accordingly, we adjust the implementation of step 4 in Algorithm 3.2.5 by replacing the occurrences of ω_{1} and ω_{2} respectively with $\omega_{1}^{\prime}=a \omega_{1}+b \omega_{2}$ and $\omega_{2}^{\prime}=c \omega_{1}+d \omega_{2}$ as obtained above.

References

[1] Matt Radosevich and John Voight, Computing Euclidean Belyi maps, accepted to J. Théorie Nombres Bordeaux.

Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, NH 03755, USA

Email address: matt.j.radosevich@gmail.com
Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, NH 03755, USA

Email address: jvoight@gmail.com

