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Abstract. We describe the computation of tables of Hilbert modular forms of parallel weight 2
over totally real fields.

Tables of classical modular forms have been computed for many decades now, starting with a table
of rational eigenforms (corresponding to modular elliptic curves) appearing in the proceedings of
the Antwerp conference in 1972 [1]. Large tables of classical modular forms now exist, as computed
by Cremona [6, 7] for rational eigenforms, Stein [16, 17], and more recently appearing in the L-
functions and Modular Forms Database (LMFDB) [14], computed by Stephan Ehlen and Fredrik
Strömberg. In this article, we continue this tradition of tabulating automorphic forms on Shimura
varieties by computing extensive tables of Hilbert modular cusp forms of parallel weight 2 over
totally real fields. This work is in a sense complementary to more recent work [2] on tables of
(modular) elliptic curves over Q(

√
5). Our data is available at the second author’s webpage [18]

and is searchable online at the LMFDB [14].
In Section 1, we give an overview of the basic algorithms employed. In Section 2, we describe

in more detail the implementation in the computer algebra system Magma [3], providing some
documentation and detail about computations in practice and a few auxiliary algorithms employed.
In Section 3, we gather the data which was computed and discuss the extent of the computation.
Finally, in Section 4 we some interesting aspects of the data in detail.

The authors would like to thank Lassina Dembélé and Matthew Greenberg for useful discussions.
Thanks also go to John Cremona and Aurel Page for adding Galois conjugate Hilbert modular form
data to the LMFDB. The second author was supported by an NSF Grant (DMS-0901971) during
the time that these computations were first undertaken, and by an NSF CAREER Award (DMS-
1151047) while work was completed.

1. The algorithm: an overview

In this section, we give a basic overview of the algorithm we employ. For a motivated introduction,
see the expository work by Dembélé–Voight [10]; for a more basic reference on Hilbert modular
forms, see e.g. Freitag [11].

Throughout, let F be a totally real field of degree n = [F : Q] with ring of integers ZF and let
N ⊆ ZF be an ideal. Let Sk(N) denote the space of Hilbert cusp forms of level N and parallel
weight k ∈ Z≥2 for F , and let Snew

k (N) be the new subspace.
The algorithm we use combines methods of Dembélé [8] and Dembélé–Donnelly [9], along with

methods of Greenberg–Voight [12] and Voight [20].

Theorem 1.1. There exists an (explicit) algorithm that, on input a totally real field F and an ideal
N ⊆ ZF , computes as output the systems of eigenvalues for the Hecke operators Tp with p - N and
the Atkin-Lehner involutions Wpe with pe ‖ N that occur in the space Snew

k (N).

In other words, there exists an explicit finite procedure which takes as input the totally real field
F , an ideal N ⊆ ZF (encoded in bits in the usual way [5]), and an even integer k ≥ 2, and outputs
a finite set of number fields Ef ⊆ Q and sequences (af (p))p encoding the Hecke eigenvalues for each
eigenform constituent f in Sk(N) and af (p) ∈ Ef .
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In this article, we consider the first and essential case k = 2; we believe it would be an interesting
project to extend these efforts to include tabulation of Hilbert modular forms of higher weight as
well.

The general strategy of the algorithm in Theorem 1.1 is as follows. Let B be the quaternion
algebra over F which is unramified at all finite places and ramified at either all or all but one real
place according as n = [F : Q] is even or odd. Then by the Eichler–Shimizu–Jacquet–Langlands
correspondence, there exists an isomorphism of Hecke modules

SB2 (N)
∼−→ S2(N)

where SB2 (N) denotes the space of quaternionic modular forms over B of weight k and level N. The
description of the space SB2 (N) varies accordingly as n is even or odd. Let O ⊆ B be a maximal
order.

If n is even, we use Brandt matrices, following the method of Dembélé [8] and Dembéle–Donnelly
[9]. The Hecke module SB2 (N) is computed via an explicit action on maps from the set of right
ideal classes in O to P1(ZF /N). We refer to this as the definite method, since the algebra B in this
case is definite.

If instead n is odd, the algorithm in Theorem 1.1 is supplied by Greenberg–Voight [12] and
Voight [20]. For simplicity of exposition, assume F has strict class number 1; the method works
for arbitrary class number. Let O×1 = {γ ∈ O : nrd(γ) = 1} denote the group of units of O
with reduced norm 1. Suppose that the unique real split place of B corresponds to the embedding
ι∞ : B ↪→ M2(R) and let Γ(1) = ι∞(O×1 )/{±1} ⊆ PSL2(R). Let O0(N) be an Eichler order of level
N and let Γ0(N) = ι∞(O0(N)×1 )/{±1}. Then by the theorem of Eichler-Shimura, and Shapiro’s
lemma, we have a further isomorphism of Hecke modules

SB2 (N)
∼−→ H1

(
Γ(1),Coind

Γ(1)
Γ0(N) C

)+
where + denotes the +1-eigenspace for complex conjugation. The Hecke module SB2 (N) is then
computed via this isomorphism as group cohomology, using an explicit presentation for the group
Γ(1) based on the computation of a fundamental domain [19]. We call this the indefinite method.

Remark 1.2. More generally, one can use a quaternion algebra B over F of discriminant D, ramified
at all or all but one real place, and M an ideal coprime to D; then with N = DM, the Jacquet-
Langlands correspondence yields an isomorphism

SB2 (M)
∼−→ S2(N)D-new

where S2(N)D-new ⊆ S2(N) denotes the space of Hilbert cusp forms which are new at all primes
dividing D. Since D is squarefree, these methods overlap when there is a prime p which exactly
divides the level N. We use this to verify our calculations by computing with both the definite and
indefinite method when it applies; for more, see Section 3.

2. Computing systems of Hecke eigenvalues

In this section, we discuss the Magma [3] implementation of the above algorithms. These
methods saw a first implementation over Q by David Kohel, and they rely heavily on code for
quaternion algebras over number fields, due to Donnelly, Markus Kirschmer, Nicole Sutherland,
and Voight (documented in work of Kirschmer–Voight [13]).

Our algorithm has 6 main steps:

1. Precomputation
2. Computing a basis
3. Hecke computation via reduction
4. Decomposition into newforms
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We refer to Dembélé–Voight [10] for an explicit mathematical description, and here we provide
some additional comments about the implementation.

Step 1: Precomputation. The first step of the algorithm involves precomputation steps that
only depend on the field F : that is to say, for all levels N with p ‖ N, this step need only be
performed once. For the definite method, the precomputation step involves determining a set of
representatives for the right ideal classes in O up to isomorphism.

• We precompute the theta series of each left order O in the set of ideal representatives,
recording

#{α ∈ OL(I) : TrF/Q nrd(α) = n}
for a small set of values n ∈ Z≥0. This reduces the number of isomorphism tests of ideals
when computing Hecke operators below, but at the marginal additional cost of requiring
the computation of left orders and representation numbers.
• As computing inverses and colon ideals can also be time consuming, we compute for each

representative right ideal I a small element b ∈ I and a left ideal I ′ of prime power norm such
that OL(I)b = II ′: then JI ′ = J(I−1)b, and α generates JI ′ if and only if α/b generates
JI−1.

For the indefinite method, we compute a fundamental domain for the Shimura curve associated
to the maximal order, together with a presentation for the group Γ0(1) [19].

Step 2: Computing a basis. To compute a basis of forms, we need fast algorithms for working
with P1(ZF /N), and our efficient implementation treats the case where N is prime and composite
differently: in the latter we index elements [a : b] ∈ P1(ZF /N) according to divisor a = (a) | N.
With these representatives in hand, in the definite case we list orbits of P1(ZF /N) under the action
of the stabilizer groups and in the indefinite case we record the permutation action in the coinduced
module. (If we were working in higher weight, and a nontrivial representation V , we would put a
copy of V on each element of P1(ZF /N).)

For sanity, we also verify the dimension of the space using a dimension formula (involving class
numbers and embedding numbers).

Step 3: Hecke computation via reduction. For the computation of Hecke operators, we use
reduction on P1(ZF /N) in the definite case and reduction theory in the fundamental domain in the
indefinite case.

Step 4: Decomposition into newforms. With Hecke matrices in hand, we now outline the pro-
cedures used in our implementation to decompose a newspace as a direct sum of new simultaneous
eigenspaces. Let S = S2(N). We use the following properties.

(1) The Hecke operators Tp for p coprime to N all commute.
(2) The Hecke eigenspaces in S have distinct systems of eigenvalues for the operators Tp with

p coprime to N (“multiplicity one”).
(3) We have dimSp-old = 2 dimS2(N/p)− dimS2(N/p2), with the last term omitted if p2 does

not divide N.

These properties are standard: for (2), see for instance work of Shemanske and Walling [15, Theo-
rem 3.6], and (3) follows from standard facts about degeneracy maps (the proof is a straightforward
generalization of the classical proof (where F = Q), and is omitted).

Using (1) and standard linear algebra techniques, we decompose the space into Hecke constituents
corresponding to Q-irreducible subspaces (a direct sum of eigenspaces). As harmless as it may seem,
this step is often the bottleneck in computation.

Finally, we show how to decompose a space into old and new subspaces. For a prime p - N, the p-
old subspace Sp-old of S = S2(N) is the span of the images of all degeneracy maps S2(N/p)→ S2(N).
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The old subspace Sold is the sum of the spaces Sp-old for primes p | N. The newspaces Snew and
Sp-new are the unique Hecke-invariant complements of Sold and Sp-old, respectively.

Now suppose we are given two Hecke-modules S and S0 (e.g. S0 = S2(N/p) and we wish to
compute the Hecke-submodule Sold of S consisting of all the irreducible Hecke-submodules (i.e.
simultaneous eigenforms) of S that arise from S0 via degeneracy maps. In addition, suppose we
know a priori the dimension of Sold, as in Property (3). For a prime p coprime to N, the space
Sold is contained in the kernel of the characteristic polynomial of Tp | S0 evaluated at Tp | S.
Since we know the dimension, we may compute Sold in this manner using finitely many primes p,
stopping when the intersection has the right dimension. One could obtain the complement Snew by
computing the Hecke-invariant complement, requiring extra module-splitting effort. However, for
present purposes, we do not need to know Snew as a particular subspace of S; we merely need the
Hecke action on Snew, which can be obtained using the quotient S/Sold ∼= Snew.

Alternatively, we can compute the degeneracy operators themselves, and then compute the or-
thogonal complement.

Now suppose that S is a new subspace of dimension d. By (1), it contains d simultaneous
eigenvectors having distinct systems of eigenvalues, which we wish to determine. The Hecke algebra
T = Z[Tn]n is a commutative Z-algebra which is generated by Hecke operators Tp with p coprime
to N. Therefore T ⊗ Q is a direct product of number fields, an étale Q-algebra generated by a
single primitive element. For practical purposes, one may find a primitive element by trial and
error (for instance taking simple combinations of the first few Hecke operators), since the set of
non-primitive elements must be sparse. Then the simultaneous eigenspaces of S are simply the
eigenvectors associated to the primitive element.

3. Data computed

We compute for the totally real fields F of degree n ≤ 6 with discriminant ≤ 2 · 10n. Note that
if [F : Q] > 6 then dF > 2 · 10n by the Odlyzko bounds; indeed, the totally real field of degree 7 of
smallest discriminant is blank.

In this range, the discriminant and degree of the field uniquely characterizes the field, with
one exceptional pair: in degree 4, there are two fields of discriminant 16448: one, with minimal
polynomial x4 − 2x3 − 6x2 + 2 has Galois group S4 and the other x4 − 2x3 − 7x2 + 8x + 14 has
Galois group D8. (The first multiple discriminant for cubic fields is 3969.)

This gives a total of 233676 Hilbert modular forms in the database. To save space, we did not
include data for conjugate levels; for consistency across the database, these were later added to the
LMFDB, increasing the overall size of the data.

The computation was performed using the Vermont Advanced Computing cluster (VACC). The
odd degree fields, which used the indefinite method, took approximately 4 CPU years to compute.
Much of this time is spent computing Atkin-Lehner involutions and coping with higher class number
issues.

The data is hosted at the LMFDB [14] and backed up at the NECC File Exchange. The raw
data takes 172 GB, compressed 78 GB.

Remark 3.1. As in Remark 1.2, in many situations we can employ either the definite or indefinite
method. For example, if F has odd degree and p ‖ N, then one can apply the definite method with
a quaternion algebra B ramified at all real places and the prime p; the Hecke module computed
is then S2(N)p-new. To compute a single space of forms, the definite method runs more quickly
than the indefinite method, but for tabulation one must use the indefinite method if one wants to
compute with forms of square level; it is also more efficient to use the indefinite method since for
each quaternion algebra used one must repeat the precomputation step.
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dF N num dF N num
5 4999 7583 49 2059 838
8 5000 12875 81 719 343
12 5000 10565 148 499 1068
13 1999 5837 169 625 515
17 988 3387 229 256 673

...
...

493 4 28 1944 54 568
497 7 19 1957 27 199

104593 40330

dF N num dF N num dF N num
725 4091 2807 14641 1013 217 300125 911 177
1125 991 375 24217 835 1062 371293 961 251

...
...

...
19821 97 241 195829 83 234 1997632 127 84

64329 15402 9022

4. Comments on data

Base change forms. We detect base change forms as follows. First, a necessary condition for f to
be a base change from a smaller field E is that σ(N) = N and aσ(p) = ap for all σ ∈ Gal(F/E). If
the form fails this test (for all possible subfields E), it is not a base change form; if it passes this
test, then is likely to be a base change. (One could detect more generally forms that are twists of
base change forms.) To be certain, we look in the database for forms over the field E with level
supported at primes dividing the discriminant dF/E and n = ZE ∩N; the precise recipe is provided
by Loeffler and Weinstein for forms that are base change from Q.

CM forms. We detect CM forms as follows. Let p be a prime which is trivial in the narrow
class group; then the Hecke eigenvalue ap is a totally real algebraic integer and the characteristic
polynomial of Frobenius T 2 − apT + N(p) has discriminant a2

p − 4N(p). If the form is CM, then
the Frobenius belongs to the quadratic field of this discriminant. If we find two such primes p with
ap 6= 0 whose CM discriminants belong to different square classes in F×/F×2, then the form does
not have CM; if these square classes agree, then it gives strong likelihood that the form is CM with
the given CM discriminant K. One can then also verify that ap = 0 for primes p inert in K to
provide further evidence. To conclude that the form really is CM, we could use the machinery for
Hecke characters.

Computing the L-function. Given the Hecke eigenvalues ap(f) of a Hilbert modular form f with
trivial central character, we define its L-series via the Euler product

L(s, f) =
∏
p|N

(1− ap(Np)−s)−1
∏
p-N

(1− ap(Np)−s + (Np)−2s)−1.

The function L(s, f) has analytic continuation to all of C and a functional equation

Λ(s, f) = (d2
F N(N))s/2ΓC(s+ 1/2)nL(s, f) = Λ(1− s, f).

Factorization of new subspaces. The largest Hecke-irreducible space in our database has dimension
286, and occurs for the field F = Q(

√
296) and level N of norm 29. It would be interesting to

consider the distribution of the dimensions of Hecke irreducible subspaces inside the new subspace.
5



Endomorphism algebras. We can also see some interesting patterns in the distribution of endomor-
phism algebras of modular abelian surfaces over totally real fields. First, we have the following
conjecture of Coleman (see e.g. Bruin–Flynn–González–Rotger [4, Conjecture C(e, g)].

Conjecture 4.1. Let F be a totally real field and let g ∈ Z≥1. Then the set

{E = End(X)Q : [E : Q] = g and X an abelian variety over F with dim(X) = g}

is finite.

In particular, there should be only finitely many real quadratic fields E that occur as the endo-
morphism algebra of a GL2-type abelian surface (g = 2) over a fixed totally real field F . (Our data
becomes a bit too sparse to say anything for g ≥ 3 except for a few fields.) There are a total of
37444 Hilbert modular forms whose Hecke eigenvalue field has degree g = 2; corresponding to such
a form f over F is an isogeny class of abelian surfaces X over F whose common endomorphism
algebra E = End(X)Q is a quadratic field.

Hilbert modular forms over F whose Hecke field E is an imaginary quadratic field correspond
to Hecke Grossencharacters. The largest absolute discriminant of an imaginary quadratic field
observed was E = Q(

√
−288), occurring for a Hilbert modular form over F = Q(

√
440), a field

with class number 2.
More interesting are the cases when the Hecke field E is a real quadratic field. The largest such

real quadratic field observed as a Hecke field was E = Q(
√

1260), occurring over the totally real
quartic field F of discriminant 11025. The distribution of the quadratic Hecke fields for a fixed
field F shows rapid decay by discriminant; the following histogram of the quadratic Hecke fields
for F = Q(

√
5) is typical.

The largest discriminant field for F = Q(
√

5) is E = Q(
√

228), and it occurs just once with
level norm 3420 (up to the computed level norm 4999). We tabulate in a similar way the following
maximum discriminant quadratic Hecke fields for the first few F :

dF max(dE)
5 228
8 384
12 192
13 252
17 192
21 588
24 288
28 448
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Put together, this data gives some weak evidence for Conjecture 4.1—at the very least, it shows
that the large discriminant fields occur with very low density.
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