ERRATA:
 SMALL ISOSPECTRAL AND NONISOMETRIC ORBIFOLDS OF DIMENSION 2 AND 3

BENJAMIN LINOWITZ AND JOHN VOIGHT

This note gives some errata for the article Small isospectral and nonisometric orbifolds of dimension 2 and 3 [2]. The authors thank Aurel Page and Alex Bartel.

Errata

(1) Proposition 2.5 can be strengthened as follows.

Proposition 2.5.
(a) [Vignéras [3, Corollaire 5]] Suppose that for all $g \in G$, the weight of g^{G} over Γ is equal to the weight of g^{G} over Γ^{\prime}. Then Γ and Γ^{\prime} are representation equivalent.
(b) [Gordon-Mao [1, Theorem A]] Suppose that $G=\operatorname{SO}(d, 1)$ for $d \geq 1$ and that $\Gamma, \Gamma^{\prime} \leq G$ are cocompact. Then the converse to (a) holds: Γ and Γ^{\prime} are representation equivalent if and only if for all $g \in G$, the weight of g^{G} over Γ is equal to the weight of g^{G} over Γ^{\prime}.

Proof. Part (a) of Proposition 2.5 is proven by Vignéras as a direct consequence of the Selberg trace formula.

For part (b), we refer to Gordon-Mao [1, Theorem A, Lemma 1.1]. Our hypothesis that $G=\mathrm{SO}(d, 1)$ implies that the quotients $\Gamma \backslash G / K$ and $\Gamma^{\prime} \backslash G / K$ for $K=\mathrm{SO}(d)$ are compact, hyperbolic orbifolds. The rest of their proof can be applied verbatim, restoring the hypothesis that the groups are representation equivalent.
(2) Remark 2.6: To clarify, change first sentence to "In fact, in dimension 2, a converse to Theorem 2.1 holds". The relevant converse in Proposition 2.5 is above, part (b).
(3) End of the proof of Theorem 6.4: Expand to "else employ Theorem 2.19 to exhibit a selectivity obstruction which precludes the possibility that the groups are representation equivalent: by Proposition $2.5(\mathrm{~b})$, there is a conjugacy class corresponding to the selective order that embeds in one group and not the other."
(4) Before (4.14), "Lemma lem:neq5": should be Lemma 4.13 .
(5) Theorem D, Example 6.3: The example is not a manifold. In Lemma 5.1, we characterized when there are no torsion elements in a group Γ^{1} coming from norm 1 units, but this example concerns a larger group Γ^{+}. We would have needed to check in addition that for every totally positive unit $u \in \operatorname{nrd}(\Gamma)$ that $F(\sqrt{-u})$ does not embed in B. In fact, there is such an

[^0]embedding for the example, and consequently there are nontrivial 2-torsion elements in Γ. (Such a nontrivial 2-torsion element can be given explicitly.)

Theorem D did not claim to find the smallest example, so the infraction is minor-in particular, the other results in the paper are unaffected, and the 2-manifold example remains correct.

We can find an example to replace Theorem D which is only a bit bigger as follows. Let $F=\mathbb{Q}(t)$ be the quintic field with discriminant -43535 and defining polynomial $x^{5}-x^{4}+3 x^{3}-3 x+1$. Let $B=\left(\frac{3 t^{3}-2,-13}{F}\right)$, so that B is ramified at the three real places of F and the prime ideal $\mathfrak{p}=\left(t^{4}-t^{3}+3 t^{2}-t-2\right)$ of norm 13. The algebra B contains two conjugacy classes of maximal orders, does not admit an embedding of a quadratic cyclotomic extension of F and obviously exhibits no selectivity as selectivity can only occur in quaternion algebras unramified at all finite primes. Thus the hyperbolic 3-manifolds associated to two non-conjugate maximal orders will be isospectral. The volume of these isospectral manifolds is $51.024566 \ldots$ So in Theorem D, $39.2406 \ldots$ should be replaced with this larger volume.

Consequently, the remarks on Theorem D at the end of the paper must also be adjusted upwards, but they remain as daunting as they were before.
(6) Theorem 6.4: This should read as in the statement of Theorem C, namely, "The smallest volume of a representation equivalent-nonisometric pair".

References

[1] C. Gordon and Y. Mao. Comparisons of Laplace spectra, length spectra and geodesic flows of some Riemannian manifolds. Math. Res. Lett., 1(6):677-688, 1994.
[2] Benjamin Linowitz and John Voight, Small isospectral and nonisometric orbifolds of dimension 2 and 3, Math. Z. 281 (2015), no. 1, 523-569.
[3] Marie-France Vignéras, Variétés riemanniennes isospectrales et non isométriques, Ann. of Math. (2) 112 (1980), no. 1, 21-32.

[^0]: Date: October 20, 2018.

