ERRATA:

SYLVESTER'S PROBLEM AND MOCK HEEGNER POINTS

SAMIT DASGUPTA AND JOHN VOIGHT

This note gives some errata for the article Sylvester's problem and mock Heegner points [1]. Thanks to Guido Bosco.

(1) Section 2.1, description of MAut: this should be a semi-direct product, so

$$MAut(X_0(243)) = \langle w, v^{-1}wv \rangle \rtimes \langle v \rangle \simeq S_3 \rtimes \mathbb{Z}/3\mathbb{Z}.$$

- (2) Proof of Proposition 4.4.2, after (4.4.3), "modular automorphism": the matrix A is not in MAut $(X_0(243))$, so it is not a modular automorphism by our definition; but it does define an automorphism of $X(\Gamma)$, as explained in section 2.1.
- (3) Proposition 4.4.2: the element $\alpha_{\sigma} = 1 2p\omega^2$ works for $p \equiv 4 \pmod{9}$; for $p \equiv 7 \pmod{9}$, we take instead $\alpha_{\sigma} = 1 2p\omega$, with the same conclusion.
- (4) Proposition 4.4.2: should be

$$(wv^2wv)t^2v^2 = (wv^{-1}wv)t^2v^2$$

(instead of $(wvwv^2)t^2v^2$), giving the matrix $A = \begin{pmatrix} 4473 & 25\\ 12879 & 72 \end{pmatrix}$.

(5) (5.2.3): the term $f(p(\omega - 7)/9)$ appears in the denominator, so we cannot directly apply Proposition 5.2.1. Instead, write

$$f(p(\omega-7)/9)x(Q) = e^{\pi i/6} \sqrt[6]{3} f(p(\omega-7)/27) f(p\omega/9)$$

and apply Proposition 5.2.1 to get

$$f((\omega - 7)/9)x(Q)^p \equiv (e^{\pi i/6}\sqrt[6]{3})^p f((\omega - 7)/27)f(\omega/9) \pmod{p\overline{\mathbb{Z}}}.$$

Then use the evaluation $f((\omega - 7)/9) = -\omega^2/\sqrt[3]{9}$ in the proof of Lemma 5.2.4 to see that this value is invertible to obtain the equality.

References

 Samit Dasgupta and John Voight, Sylvester's problem and mock Heegner points, Proc. Amer. Math. Soc., to appear.

Date: September 5, 2018.