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Abstract We use Kneser’s neighbor method and isometry testing for lattices due
to Plesken and Souveigner to compute systems of Hecke eigenvalues associated to
definite forms of classical reductive algebraic groups.

1 Introduction

Let Q(x)=Q(x1, . . . ,xn)∈Z[x1, . . . ,xn] be an even positive definite integral quadratic
form in n variables with discriminant N. A subject of extensive classical study, con-
tinuing today, concerns the number of representations of an integer by the quadratic
form Q. To do so, we form the corresponding generating series, called the theta
series of Q:

θQ(q) = ∑
x∈Zn

qQ(x) ∈ Z[[q]].

By letting q = e2πiz for z in the upper half-plane H, we obtain a holomorphic func-
tion θ : H → C; owing to its symmetric description, this function is a classical
modular form of weight n/2 and level 4N. For example, in this way one can study
the representations of an integer as the sum of squares via Eisenstein series for small
even values of n.

Conversely, theta series can be used to understand spaces of classical modular
forms. This method goes by the name Brandt matrices as it goes back to early
work of Brandt and Eichler [13, 14] (the basis problem). From the start, Brandt
matrices were used to computationally study spaces of modular forms, and explicit
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algorithms were exhibited by Pizer [35], Hijikata, Pizer, and Shemanske [20], and
Kohel [29]. In this approach, a basis for S2(N) is obtained by linear combinations
of theta series associated to (right) ideals in a quaternion order of discriminant N;
the Brandt matrices which represent the action of the Hecke operators are obtained
via the combinatorial data encoded in the coefficients of theta series. These meth-
ods have also been extended to Hilbert modular forms over totally real fields, by
Socrates and Whitehouse [42], Dembélé [8], and Dembélé and Donnelly [9].

The connection between such arithmetically-defined counting functions and
modular forms is one piece of the Langlands philosophy, which predicts deep con-
nections between automorphic forms in different guises via their Galois representa-
tions. In this article, we consider algorithms for computing systems of Hecke eigen-
values in the more general setting of algebraic modular forms, as introduced by
Gross [18]. Let G be a linear algebraic group defined over Q, a closed algebraic
subgroup of the algebraic group GLn. (For simplicity now we work over Q, but in
the body we work with a group G defined over a number field F ; to reduce to this
case, one may just take the restriction of scalars.) Let G(Z) = G(Q)∩GLn(Z) be
the group of integral points of G.

Suppose that G is reductive, so that its maximal connected unipotent normal sub-
group is trivial (a technical condition important for the theory). Let G∞ = G(R) de-
note the real points of G. Then G∞ is a real Lie group with finitely many connected
components.

Now we make an important assumption that allows us to compute via arithmetic
and lattice methods: we suppose that G∞ is compact. For example, we may take G
to be a special orthogonal group, those transformations of determinant 1 preserving
a positive definite quadratic form over a totally real field, or a unitary group, those
preserving a definite Hermitian form relative to a CM extension of number fields.
Under this hypothesis, Gross [18] showed that automorphic forms arise without
analytic hypotheses and so are called algebraic modular forms.

Let Q̂=Q⊗Z Ẑ be the finite adeles of Q. Let K̂ be a compact open subgroup of
Ĝ = G(Q̂) (a choice of level), let G = G(Q), and let

Y = G\Ĝ/K̂.

The set Y is finite. Let W be an irreducible (finite-dimensional) representation of G.
Then the space of modular forms for G of weight W and level K̂ is

M(W, K̂) = { f : Ĝ/K̂→W | f (γg) = γ f (g) for all γ ∈ G}.

Such a function f ∈M(W, K̂) is determined by its values on the finite set Y ; indeed,
if W is the trivial representation, then modular forms are simply functions on Y . The
space M(W, K̂) is equipped with an action of Hecke operators for each double coset
K̂ p̂K̂ with p̂ ∈ Ĝ; these operators form a ring under convolution, called the Hecke
algebra.

Algebraic modular forms in the guise of Brandt matrices and theta series of
quaternary quadratic forms, mentioned above, correspond to the case where G =
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PGL1(B) = B×/F× where B is a definite quaternion algebra over a totally real field
F . The first more general algorithmic consideration of algebraic modular forms was
undertaken by Lanksy and Pollack [30], who computed with the group G= PGSp4
and the exceptional group G = G2 over Q. Cunningham and Dembélé [7] later
computed Siegel modular forms over totally real fields using algebraic modular
forms, and Loeffler [32] has performed computations with the unitary group U(2)
relative to the imaginary quadratic extension Q(

√
−11)/Q and U(3) relative to

Q(
√
−7)/Q.

In this paper, we consider the case where the group G arises from a definite or-
thogonal or unitary group. Our main idea is to use lattice methods, making these
computations efficient. This connection is undoubtedly known to the experts. We
conjecture that, assuming an appropriate analogue of the Ramanujan-Petersson con-
jecture, lattice methods will run in polynomial time in the output size. (This is
known to be true for Brandt matrices, by work of Kirschmer and the second au-
thor [24].)

To illustrate our method as we began, let Q be a positive definite quadratic form
in d variables over a totally real field F , and let O(Q) be the orthogonal group
of Q over F . (If we take a Hermitian form instead, we would then work with the
unitary group.) Then G is a reductive group with G∞ = G(F ⊗Q R) compact. Let
Λ be a ZF -lattice in Fd . Then the stabilizer K̂ ⊂ Ĝ of Λ̂ = Λ ⊗Z Q̂ is an open
compact subgroup and the set Y = G\Ĝ/K̂ is in natural bijection with the finite set
of equivalence classes of lattices in the genus of Λ , the set of lattices which are
locally equivalent to Λ .

The enumeration of representatives of the genus of a lattice has been studied in
great detail; we use Kneser’s neighbor method [27]. (See the beginning of Section 5
for further references to the use of this method.) Let p⊂ZF be a nonzero prime ideal
with residue class field Fp. We say that two ZF -lattices Λ ,Π ⊂ Fn are p-neighbors
if we have pΛ ,pΠ ⊂Λ ∩Π and

dimFp Λ/(Λ ∩Π) = dimFp Π/(Λ ∩Π) = 1.

The p-neighbors of Λ are easy to construct and, under nice conditions, they are
locally equivalent to Λ and every class in the genus is represented by a p-neighbor
for some p. In fact, by the theory of elementary divisors, the Hecke operators are
also obtained as a summation over p-neighbors. Therefore the algorithmic theory of
lattices is armed and ready for application to computing automorphic forms.

The main workhorse in using p-neighbors in this way is an algorithm for isometry
testing between lattices (orthogonal, Hermitian, or otherwise preserving a quadratic
form). For this, we rely on the algorithm of Plesken and Souvignier [36], which
matches up short vectors and uses other tricks to rule out isometry as early as pos-
sible. This algorithm was implemented in Magma [2] by Souvignier, with further
refinements to the code contributed by Steel, Nebe, and others.

These methods also apply to compact forms of symplectic groups; see the work
of Chisholm [3]. We anticipate that these methods can be generalized to a wider
class of reductive groups, and believe that such an investigation would prove valu-
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able for explicit investigations in the Langlands program. Already the case of a
(positive definite) quadratic form in many variables over Q of discriminant 1 we
expect will exhibit many interesting Galois representations.

The outline of this paper is as follows. In Section 2, we give basic terminology
and notation for algebraic modular forms. In section 3, we review orthogonal and
unitary groups and their Hecke theory. In section 4 we discuss elementary divi-
sors in preparation for section 5, where we give an exposition of Kneser’s neighbor
method and translate Hecke theory to the lattice setting. In section 6, we present the
algorithm, and we conclude in section 7 with some explicit examples.

2 Algebraic modular forms

In this first section, we define algebraic modular forms; a reference is the original
work of Gross [18] as well as the paper by Loeffler in this volume [33].

Algebraic modular forms

Let F be a totally real number field and let

F∞ = F⊗QR∼= R[F :Q].

Let Q̂=Q⊗Z Ẑ be the finite adeles of Q, let F̂ = F⊗Q Q̂ be the ring of finite adeles
of F .

Let G be a reductive algebraic group over F . We make the important and non-
trivial assumption that the Lie group G∞ = G(F∞) is compact. Let Ĝ = G(F̂) and
G = G(F).

Remark 2.1. We do not assume that G is connected, even though this assumption is
often made; the results we need hold even in the disconnected case (in particular,
for the orthogonal group).

Let ρ : G→W be an irreducible (finite-dimensional) representation of G defined
over a number field E.

Definition 2.2. The space of algebraic modular forms for G of weight W is

M(G,W ) =

{
f : Ĝ→W

∣∣∣ f is locally constant and
f (γ ĝ) = γ f (ĝ) for all γ ∈ G and ĝ ∈ Ĝ

}
.

We will often abbreviate M(W ) = M(G,W ).
Each f ∈M(W ) is constant on the cosets of a compact open subgroup K̂ ⊂ Ĝ, so

M(W ) is the direct limit of the spaces
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M(W, K̂) =

{
f : Ĝ→W

∣∣∣ f (γ ĝû) = γ f (ĝ)
for all γ ∈ G, ĝ ∈ Ĝ, û ∈ K̂

}
. (1)

of modular forms of level K̂. We will consider these smaller spaces, so let K̂ ⊂ Ĝ be
an open compact subgroup. When W = E is the trivial representation, M(W, K̂) is
simply the space of E-valued functions on the space Y = G\Ĝ/K̂.

Proposition 2.3 ([18, Proposition 4.3]). The set Y = G\Ĝ/K̂ is finite.

Let h = #Y . Writing

Ĝ =
h⊔

i=1

Gx̂iK̂, (2)

it follows from the definition that any f ∈M(W, K̂) is completely determined by the
elements f (x̂i) with i = 1, . . . ,h. Let

Γi = G∩ x̂iK̂x̂−1
i .

The (arithmetic) group Γi, as a discrete subgroup of the compact group G∞, is finite
[18, Proposition 1.4].

Lemma 2.4. The map

M(W, K̂)−→
h⊕

i=1

H0(Γi,W )

f 7→ ( f (x̂1), . . . , f (x̂h))

is an isomorphism of F-vector spaces, where

H0(Γi,W ) = {v ∈W : γv = v for all γ ∈ Γi}.

In particular, from Lemma 2.4 we see that M(W, K̂) is finite-dimensional as an E-
vector space.

Hecke operators

The space M(W, K̂) comes equipped with the action of Hecke operators, defined
as follows. Let H(Ĝ, K̂) =H(K̂) be the space of locally constant, compactly sup-
ported, K̂-bi-invariant functions on Ĝ. Then H(Ĝ, K̂) is a ring under convolution,
called the Hecke algebra, and is generated by the characteristic functions T (p̂) of
double cosets K̂ p̂K̂ for p̂∈ Ĝ. Given such a characteristic function T (p̂), decompose
the double coset K̂ p̂K̂ into a disjoint union of right cosets

K̂ p̂K̂ =
⊔

j

p̂ jK̂ (3)
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and define the action of T (p̂) on f ∈M(W, K̂) by

(T (p̂) f )(ĝ) = ∑
j

f (ĝ p̂ j). (4)

This action is well-defined (independent of the choice of representative p̂ and repre-
sentatives p̂ j) by the right K̂-invariance of f . Finally, a straightforward calculation
shows that the map in Lemma 2.4 is Hecke equivariant.

Level

There is a natural map which relates modular forms of higher level to those of lower
level by modifying the coefficient module, as follows [10, §8]. Suppose that K̂′ ≤ K̂
is a finite index subgroup. Decomposing as in (2), we obtain a bijection

G\Ĝ/K̂′ =
h⊔

i=1

G\
(
Gx̂iK̂

)
/K̂′ ∼−→

h⊔
i=1

Γi\K̂i/K̂′i

G(γ x̂iû)K̂′ 7→ Γi(x̂iûx̂−1
i )K̂′i

for γ ∈ G and û ∈ K̂. This yields

M(W, K̂′) ∼−→ H0(Γi,Hom(K̂i/K̂′i ,W ))∼=
h⊕

i=1

H0(Γi,CoindK̂i
K̂′i

W ).

Via the obvious bijection
K̂i/K̂′i ∼= K̂/K̂′, (5)

letting W = CoindK̂
K̂′

W we can also write

M(W, K̂′)∼=
h⊕

i=1

H0(Γi,Wi) (6)

where Wi is the representation W with action twisted by the identification (5). More-
over, writing K̂ = (Kp)p in terms of its local components, for any Hecke operator
T (p̂) such that

if p̂ 6∈ K′p then Kp = K′p

(noting that p̂∈K′p for all but finitely many primes p), the same definition (4) applies
and by our hypothesis we have a simultaneous double coset decomposition

K̂′ p̂K̂′ =
⊔

j

p̂ jK̂′ and K̂ p̂K̂ =
⊔

j

p̂ jK̂.
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Now, comparing (6) to the result of Lemma 2.4, we see in both cases that modular
forms admit a uniform description as h-tuples of Γi-invariant maps. For this reason,
a special role in our treatment will be played by maximal open compact subgroups.

Automorphic representations

As it forms one of the core motivations of our work, we conclude this section by
briefly describing the relationship between the spaces M(W ) of modular forms and
automorphic representations of G. Suppose that W is defined over F (cf. Gross [18,
§3]). Since G∞ is compact, by averaging there exists a symmetric, positive-definite,
G∞-invariant bilinear form

〈 ,〉 : W∞×W∞ −→ F∞.

where W∞ =W ⊗F F∞. Then we have a linear map

Ψ : M(W )−→ HomG∞
(W∞,L2(G\(Ĝ×G∞),F∞))

by
Ψ( f )(v)(ĝ,g∞) = 〈ρ(g∞)v, f (ĝ)〉

for f ∈M(W ), v ∈W , and (ĝ,g∞) ∈ Ĝ×G∞. The Hecke algebra H(K̂) acts on the
representation space

HomG∞
(W∞,L2(G\(Ĝ×G∞),F∞))

via its standard action on L2 by convolution.
Now, for a nonzero v ∈W∞, define

Ψv : M(W )→ L2(G\(Ĝ×G∞),F∞)

f 7→Ψ( f )(v).

(In practice, it is often convenient to take v to be a highest weight vector.)

Proposition 2.5 ([18, Proposition 8.5]). The map Ψv is H(K̂)-equivariant and in-
duces a bijection between irreducible H(K̂)-submodules of M(W, K̂) and automor-
phic representations π of G(AF) such that

(i) π(K̂) has a nonzero fixed vector, and
(ii) π∞ is isomorphic to ρ∞.

In particular, an H(K̂) eigenvector f ∈ M(W, K̂) gives rise to an automorphic
representation. Since automorphic representations are of such fundamental impor-
tance, explicit methods to decompose M(W, K̂) into its Hecke eigenspaces are of
significant interest.
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3 Hermitian forms, classical groups, and lattices

Having set up the general theory in the previous section, we now specialize to the
case of orthogonal and unitary groups. In this section, we introduce these classical
groups; basic references are Borel [1] and Humphreys [21].

Classical groups

Let F be a field with charF 6= 2 and let L be a commutative étale F-algebra equipped
with an involution : L→ L such that F is the fixed field of L under . Then there
are exactly three possibilities for L:

1. L = F and is the identity;
2. L is a quadratic field extension of F and is the nontrivial element of Gal(L/F);

or
2′. L∼= F×F and (b,a) = (a,b) for all (a,b) ∈ F×F .

(As étale algebras, cases 2 and 2′ look the same, but we will have recourse to single
out the split case.)

Let V be a finite-dimensional vector space over L. Let

ϕ : V ×V −→ L

be a Hermitian form relative to L/F , so that:

(i) ϕ(x+ y,z) = ϕ(x,z)+ϕ(y,z) for all x,y,z ∈V ;
(ii) ϕ(ax,y) = aϕ(x,y) for all x,y ∈V and a ∈ L; and

(iii) ϕ(y,x) = ϕ(x,y) for all x,y ∈V .

Further suppose that ϕ is nondegenerate, so ϕ(x,V ) = {0} for x ∈V implies x = 0.
For example, the standard nondegenerate Hermitian form on V = Ln is

ϕ(x,y) =
n

∑
i=1

xiyi. (7)

Let G be the (linear) algebraic group of automorphisms of (V,ϕ) over F : that is
to say, for a commutative F-algebra D, we have

G(D) = AutD⊗F L(VF ⊗F D,ϕ).

(Note the tensor product is over F , so in particular we consider V as an F-vector
space and write VF .) More explicitly, we have

G(F) = AutL(V,ϕ) = {T ∈ GL(V ) : ϕ(T x,Ty) = ϕ(x,y)}.
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Since ϕ is nondegenerate, for every linear map T : V → V , there is a unique linear
map T ∗ : V →V such that

ϕ(T x,y) = ϕ(x,T ∗y)

for all x,y ∈V . It follows that

G(F) = {T ∈ GL(V ) : T T ∗ = 1}

where the ∗ depends on ϕ . The group G is a reductive linear algebraic group.
In each of the three cases, we have the following description of G.

1. If L = F , then ϕ is a symmetric bilinear form over F and G = O(ϕ) is the or-
thogonal group of the form ϕ .

2. If L is a quadratic field extension of F , then ϕ is a Hermitian form with respect
to L/F and G= U(ϕ) is the unitary group associated to ϕ .

2′. If L = F ×F , then actually we obtain a general linear group. Indeed, let e1 =
(1,0) and e2 = (0,1) be an F-basis of idempotents of L. Then V1 = e1V and
V2 = e2V are vector spaces over F , and the map T 7→ T |V1 gives an isomorphism
of G= G onto GL(V1).

Remark 3.1. To obtain symplectic or skew-Hermitian forms, we would work instead
with signed Hermitian forms above.

Remark 3.2. We have phrased the above in terms of Hermitian forms, but one
could instead work with their associated quadratic forms Q : V → L defined by
Q(v) = ϕ(v,v). In characteristic 2, working with quadratic forms has some advan-
tages, but in any case we will be working in situations where the two perspectives
are equivalent.

Integral structure

Suppose now that F is a number field with ring of integers ZF . By a prime of F we
mean a nonzero prime ideal of ZF .

Let (V,ϕ) and G be as above. Since our goal is the calculation of algebraic mod-
ular forms, we insist that G∞ = G(F∞) = G(F ⊗QR) be compact, which rules out
the case 2′ (that L = F×F) and requires that F be totally real, so either:

1. L = F and G is the orthogonal group of the positive definite quadratic space
(V,ϕ), or

2. L/F is a quadratic field extension and G is the unitary group of the definite Her-
mitian space (V,ϕ).

Let ZL be the ring of integers of L. Let Λ ⊂V be a lattice in V , a projective ZL-
module with rank equal to the dimension of V . Suppose further that Λ is integral,
so ϕ(Λ ,Λ)⊆ ZL. Define the dual lattice by
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Λ
# = {x ∈V : ϕ(Λ ,x)⊆ ZL}.

We say Λ is unimodular if Λ # = Λ .
To a lattice Π ⊆V we associate the the lattice

Π̂ = Π ⊗ZL ẐL ⊂ V̂ =V ⊗L L̂

with Πp = Π⊗ZL ZL,p; we have Π⊗ZL ZL,p =Λ⊗ZL ZL,p for all but finitely primes
p. Conversely, given a lattice (Πp)p ⊆ V̂ with Πp = Λp for all but finitely many p,
we obtain a lattice

Π = {x ∈V : x ∈Πp for all p}.

(In fact, one can take this intersection over all localizations in V , not completions,
but we do not want to confuse notation.) These associations are mutually inverse to
one another (weak approximation), so we write Π̂ = (Πp)p unambiguously.

Let Ĝ = G(F̂) be the group of (finite) adelic points of Ĝ, and let

K̂ = {ĝ ∈ Ĝ : ĝΛ̂ = Λ̂} (8)

be the stabilizer of Λ̂ in Ĝ. Then K̂ is an open compact subgroup of Ĝ. Further, let
G = G(F) be the F-point of Ĝ and let

Γ = {g ∈ G : gΛ = Λ}

be the stabilizer of Λ in G. Then the group Γ is finite, since it is a discrete subgroup
of the compact group G∞ [18, Proposition 1.4].

Remark 3.3. In fact, by work of Gan and Yu [17, Proposition 3.7], there is a unique
smooth linear algebraic group G over ZF with generic fiber G such that for any
commutative ZF -algebra D we have

G(D) = AutD⊗ZF ZL(Λ ⊗ZL D,ϕ).

As we will not make use of this, we do not pursue integral models of G any further
here.

We now consider the extent to which a lattice is determined by all of its localiza-
tions in this way: this extent is measured by the genus, which is in turn is given by
a double coset as in Section 2, as follows.

Definition 3.4. Let Λ and Π be lattices in V . We say Λ and Π are (G-)equivalent
(or isometric) if there exists γ ∈ G such that γΛ = Π . We say Λ and Π are locally
equivalent (or locally isometric) if there exists ĝ ∈ Ĝ such that ĝΛ̂ = Π̂ . The set of
all lattices locally equivalent to Λ is called the genus of Λ and is denoted gen(Λ).

For any ĝ = (gp)p ∈ Ĝ, we have

ĝΛ̂ = ∏
p

gpΛp;
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since gpΛp = Λp for all but finitely many p, by weak approximation, there is a
unique lattice Π ⊆V such that Π̂ = ĝΛ̂ . By definition, Π ∈ gen(Λ) and every lattice
Π ∈ gen(Λ) arises in this way. Thus, the rule

(ĝ,Λ) 7→Π = ĝΛ

gives an action of Ĝ on gen(Λ). The stabilizer of Λ under this action is by definition
K̂, therefore the mapping

Ĝ/K̂→ gen(Λ)

ĝK̂ 7→ ĝΛ

is a bijection of G-sets. The set G\gen(Λ) of isometry classes of lattices in gen(Λ)
is therefore in bijection with the double-coset space (class set)

Y = G\Ĝ/K̂.

By Proposition 2.3 (or a direct argument, e.g. O’Meara [34] for the orthogonal case
and Iyanaga [22, 6.4] for the Hermitian case), the genus gen(Λ) is the union of
finitely many equivalence classes called the class number of Λ , denoted h = h(Λ).

In this way, we have shown that an algebraic modular form f ∈M(W, K̂) can be
viewed as a function of the set of classes in gen(Λ). Translating the results of Sec-
tion 1 in this context, if Λ1, . . . ,Λh are representatives for the equivalence classes in
gen(Λ), then a map f : gen(Λ)→W is determined by the finite set f (Λ1), . . . , f (Λh)
of elements of W . The problem of enumerating this system of representatives Y be-
comes the problem of enumerating representatives for the equivalence classes in
gen(Λ), a problem which we will turn to in Section 5 after some preliminary dis-
cussion of elementary divisors in Section 4.

4 Elementary divisors

In this section, we give the basic connection between elementary divisors and Hecke
operators, providing a link to the neighbor method in the lattice setting. These results
being standard, the goals of this section are to gather results that are somewhat
scattered throughout the literature and to give precise statements adapted to our
desired applications.

Let F be a local field of mixed characteristic with ring of integers ZF , let ϕ be
a Hermitian form on V relative to L/F (including the possibility L = F , as before),
and let ZL be the integral closure of ZF in L with uniformizer P.

Let Ts ⊂G be a maximal split torus in G and let Ws be the Weyl group of (G,Ts).
Let

X∗(Ts) = Hom(Ts,Gm) and X∗(Ts) = Hom(Gm,Ts)

be the groups of characters and cocharacters of Ts, respectively.
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Theorem 4.1. The Cartan decomposition holds

G =
⊔

λ∈X∗(Ts)/Ws

Kλ (P)K,

where K is a hyperspecial maximal compact subgroup of G.

There is a standard method for producing a fundamental domain for the action of
Ws on X∗(Ts), allowing for a more explicit statement of the Cartan decomposition.
Let Φ+ ⊆ X∗(Ts) be a set of positive roots and let

Y+
s = {λ ∈ X∗(Ts) : λ (α)≥ 0 for all α ∈Φ

+}.

Proposition 4.2 ([43, p. 51]). Y+
s is a fundamental domain for the action of Ws on

X∗(Ts). Therefore, we have
G =

⊔
λ∈Y+

s

Kλ (P)K.

We now proceed to analyze the decomposition in Proposition 4.2 explicitly in our
situation. We suppose that Λ is unimodular (in our methods, we will consider the
completions at primes not dividing the discriminant), and we consider two cases.

We first consider the split case (2′) with L∼= F×F . Let

V1 = (1,0)V ∼= Fn and Λ1 = (1,0)Λ ∼= Zn
F .

Recall that T 7→ T |V1 identifies G = G(F) with GL(V1). Already having described
V1 and Λ1 in terms of coordinates we have

G = GLd(F) and K = GLd(ZF).

Let T ≤ G be the subgroup of diagonal matrices, consisting of elements t =
diag(t1, . . . , tn). For i = 1, . . . ,n, define the cocharacter λi : F×→ T by

λi(a) = diag(1, . . . ,1,a,1, . . . ,1),

where a occurs in the i-th component. Then

Y+
s = {λ r1

1 · · ·λ
rn
n : r1 ≤ ·· · ≤ rn}.

Proposition 4.3 (Elementary divisors; split case). Let Λ and Π be unimodular
lattices in V with L∼= F×F. Then there is a basis

e1, . . . ,en

of Λ and integers
r1 ≤ ·· · ≤ rn

such that
(P/P)r1 e1, . . . ,(P/P)rnen
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is a basis of Π . Moreover, the sequence r1 ≤ ·· · ≤ rn is uniquely determined by Λ

and Π .

Now we consider the more difficult cases (1) and (2), which we can consider
uniformly. We have that either L = F or the maximal ideal of ZF is inert or ramified
in ZL. Let ν = ν(ϕ) be the Witt index of (V,ϕ), the dimension of a maximal isotropic
subspace. Then ν = dimTs ≤ n/2 and V admits a basis of the form

e1, . . . ,eν ,g1, . . . ,gn−2ν , f1, . . . , fν

such that
ϕ(ei,e j) = ϕ( fi, f j) = 0 and ϕ(ei, f j) = δi j. (9)

In this basis, the matrix ϕ is

A(ϕ) =

 I(
ϕ(gi,g j)

)
i, j

I


where I is the ν×ν identity matrix. The set of matrices of the formdiag(t1, . . . , tν)

I
diag(t1, . . . , tν)

−1


constitute a maximal split torus in G. Considering λi as a cocharacter of GLν(F) as
above, define

µi : F×→ T

a 7→ µi(a) =

λi(a)
I

λi(a)−1

 .

With these choices, we have

Y+
s = {µr1

1 · · ·µ
rn
ν : r1 ≤ ·· · ≤ rν}.

Proposition 4.4 (Elementary divisors; nonsplit case). Let Λ and Π be unimodular
lattices in V with L 6∼= F×F. Then there is a basis

e1, . . . ,eν ,g1, . . . ,gn−2ν , f1, . . . , fν

of Λ satisfying (9) and integers

r1 ≤ ·· · ≤ rν

such that
P−r1e1, . . . ,P−rν eν ,g1, . . . ,g j,P

r1 f1, . . . ,P
rν fν
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is a basis of Π . Moreover, the sequence r1 ≤ ·· · ≤ rν is uniquely determined by Λ

and Π .

5 Neighbors, lattice enumeration, and Hecke operators

In this section, we describe the enumeration of representatives for equivalence
classes in the genus of a Hermitian lattice. We develop the theory of neighbors with
an eye to computing Hecke operators in the next section.

The original idea of neighbors is due to Kneser [27], who wished to enumerate
the genus of a (positive definite) quadratic form over Z. Schulze-Pillot [40] im-
plemented Kneser’s method as an algorithm to compute the genus of ternary and
quaternary quadratic forms over Z, and Scharlau and Hemkemeier [39] developed
effective methods to push this into higher rank. For Hermitian forms, Iyanaga [23]
used Kneser’s method to compute the class numbers of unimodular positive defi-
nite Hermitian forms over Z[i] of dimensions ≤ 7; later Hoffmann [19] pursued the
method more systematically with results for imaginary quadratic fields of discrimi-
nants d =−3 to d =−20 and Schiemann [38] extended these computations further
for imaginary quadratic fields (as far as d =−455). For further reference on lattices,
see also O’Meara [34, Chapter VIII], Knus [25], Shimura [41], and Scharlau [37].

Neighbors and invariant factors

Let F be a number field with ring of integers ZF . Let L be a field containing F with
[L : F ]≤ 2, ring of integers ZL, and involution with fixed field F . In particular, we
allow the case L = F and ZL = ZF . Let ϕ be a Hermitian form on V relative to L/F ,
and let Λ ⊂V be an integral lattice.

If Π ⊂V is another lattice, then there exists a basis e1, . . . ,en for V and fractional
ideals A1, . . . ,An and B1, . . . ,Bn of ZL, Ai ⊂Bi, such that

Λ = A1e1⊕·· ·⊕Anen

and
Π =B1e1⊕·· ·⊕Bnen

(a direct sum, not necessarily an orthogonally direct sum) satisfying

B1/A1 ⊇ ·· · ⊇Bn/An.

The sequence B1/A1, . . . ,Bn/An is uniquely determined and called the invariant
factors of Π relative to Λ . Note that Π ⊆ Λ if and only if the invariant factors are
integral ideals of ZL.

Define the fractional ideal
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d(Λ ,Π) =
n

∏
i=1

Bi/Ai

and let d(Λ) = d(Λ #,Λ), where Λ # ⊇Λ is the dual lattice of Λ . Then in fact d(Λ) =
d(Λ), so d(Λ) arises from an ideal over ZF , which we also denote d(Λ) and call the
discriminant of Λ . In particular, Λ is unimodular if and only if d(Λ) =ZF , and more
generaly Λp = Λ ⊗ZF ZF,p is unimodular whenever p is a prime of F with p - d(Λ).

Definition 5.1. Let P be a prime of L and let k ∈ Z with 0 ≤ k ≤ n. An integral
lattice Π ⊂ V is a Pk-neighbor of Λ if Π has k invariant factors P and P−1, i.e.,
invariant factors

P, . . . ,P︸ ︷︷ ︸
k

,ZL, . . . ,ZL,P
−1, . . . ,P−1︸ ︷︷ ︸

k

if k ≤ n/2 and
P, . . . ,P︸ ︷︷ ︸

n−k

,PP−1, . . . ,PP−1︸ ︷︷ ︸
2k−n

,P−1, . . . ,P−1︸ ︷︷ ︸
n−k

if k > n/2 and P 6=P.

Although when k > n/2 the definition makes sense when P = P—and a Pk-
neighbor is the same as an Pn−k-neighbor—we avoid this redundancy (recall the
maximal isotropic subspaces in this case have dimension ≤ n/2, by Proposition
4.4). It follows from a comparison of invariant factors that Π is a Pk-neighbor of Λ

if and only if

Π/(Λ ∩Π)∼= (ZL/P)k and Λ/(Λ ∩Π)∼= (ZL/P)k.

A P-neighbor Π of Λ has the same discriminant d(Λ) = d(Π).

Remark 5.2. One may also define N-neighbors for N a finitely generated torsion
ZL-module.

Neighbors and isotropic subspaces

Let P be prime of L above p and let q =PP. Then q = p or q = p2. Suppose that
p - d(Λ). Let X ⊆Λ be a finitely generated ZL-submodule. We say that X is isotropic
modulo q if

ϕ(x,y) ∈ q for all x,y ∈ X .

Define the dual of X to be

X# = {y ∈V : ϕ(X ,y)⊆ ZL}.

Then
PX# = {y ∈V : ϕ(X ,y)⊆P}

and Λ ∩PX# ⊆Λ ⊂V is a lattice.
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Proposition 5.3. Let X ⊆Λ be isotropic modulo q. Then

Λ(P,X) =P−1X +(Λ ∩PX#)

is a Pk-neighbor of Λ , where k = dimX/PX.

Proof. The integrality of Λ(P,X) follows from the fact that ϕ(x,y) ∈ PP for all
x,y ∈ X and ϕ(x,y) ∈P for all x ∈ X and all y ∈Λ ∩PX#.

First, we prove a claim: Λ ∩Λ(P,X) =Λ ∩PX#. The inclusion (⊇) is clear. For
the reverse, suppose y∈Λ ∩Λ(P,X), so y= v+w with v∈P−1X and w∈Λ ∩PX#;
then v = y−w ∈Λ and

ϕ(X ,v)⊆ ϕ(X ,P−1X) = ϕ(X ,X)P
−1 ⊆PPP

−1
=P

so v ∈Λ ∩PX# and thus y = v+w ∈Λ ∩PX# as well. This proves the claim.
Now, choose a ZL/P-basis x1, . . . ,xk for X/PX ⊆Λ/PΛ . Consider the map

ϕ(·,X) = Λ → (ZL/P)k

y 7→ (ϕ(y,xi))+P.

Since p is coprime to d(Λ), the Hermitian form ϕ is nondegenerate modulo P; since
X is totally isotropic, it follows that ϕ(·,X) is surjective. Since ϕ(y,x) = ϕ(x,y) for
all x,y ∈V , we have that kerϕ(·,X) = Λ ∩PX#. Therefore, by the claim, we have

Λ/(Λ ∩Λ(P,X)) = Λ/(Λ ∩PX#)∼= (ZL/P)k. (10)

Next, we have
P−1X ∩Λ = X .

Therefore,

Λ(P,X)/(Λ ∩Λ(P,X)) = (P−1X +Λ ∩PX#)/(Λ ∩PX#)

∼=P−1X/(P−1X ∩ (Λ ∩PX#))

=P−1X/X ∼= X/PX

(11)

and X/PX ∼= (ZL/P)k. Together with (10), we conclude that Λ(P,X) is a Pk-
neighbor.

Proposition 5.4. Let Π be a Pk-neighbor of Λ . Suppose that q = PP is coprime
to d(Λ). Then there exists X ⊆Λ isotropic modulo q with dimX/PX = k such that
Π = Λ(P,X).

Proof. Let X be the ZL-submodule of PΠ generated by a set of representatives for
PΠ modulo P(Π ∩Λ). Then X is finitely generated and ϕ(X ,X)⊆PP= q by the
integrality of Π . Since Π is a P-neighbor, we have

Π/(Λ ∩Π)∼= (ZL/P)k
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so PΠ ⊆Λ ∩Π ⊆Λ , showing that X ⊆Λ and X/PX ∼= (ZL/P)k by nondegener-
acy.

Next, we prove that Π ⊆Λ(P,X). If y ∈Π , then by the integrality of Π ,

ϕ(X ,y)⊆ ϕ(PΠ ,y) =Pϕ(Π ,y)⊆P.

Therefore, Λ ∩Π ⊆Λ ∩PX#. But

Λ ∩Π (P−1X +Λ ∩Π ⊆Π

and

(P−1X +(Λ ∩Π))/(Λ ∩Π)∼=P−1X/(P−1X ∩ (Λ ∩Π))
∼= X/(X ∩P(Λ ∩Π))∼= X/PX

by construction; since Π/(Λ ∩Π)∼= (ZL/P)k and X/PX ∼= (ZL/P)k, we conclude
P−1X +(Λ ∩Π) = Π . Thus

Π =P−1X +(Λ ∩Π)⊆P−1 +(Λ ∩PX#) = Λ(P,X)

as claimed.
But now since both Λ(P,X) and Π are Pk-neighbors of Λ , they have the

same invariant factors relative to Λ , so the containment Π ⊆ Λ(P,X) implies
Π = Λ(P,X).

From this proposition, we see that by taking a flag inside an isotropic subspace X
modulo q with dimX/PX = k, every Pk-neighbor Π can be obtained as a sequence

Λ1 = Λ(P,X1),Λ2 = Λ1(P,X2), . . . ,Π = Λk−1(P,Xk−1)

of P-neighbors. However, not all such k-iterated neighbors are Pk-neighbors: Λ is
itself a P-neighbor of any of its P-neighbors, for example.

The P-neighbors can also be understood very explicitly when P is odd (i.e., P -
2). Let X ⊆Λ be isotropic modulo q with dimX/PX = k. We revisit the elementary
divisor theory of Section 4. There is a ZL,q-basis x1, . . . ,xn for Λq such that x1, . . . ,xk
modulo q is a basis for X modulo q and such that a basis for Λ(P,X)q is

(P/P)x1, . . . ,(P/P)xk,xk+1, . . . ,xn (12)

if P 6=P and is

P−1x1, . . . ,P−1xk,xk+1, . . . ,xn−k,Pxn−k+1, . . . ,Pxn, (13)

if P=P, where P is a uniformizer of P.
To conclude would like to put together Propositions 5.3 and 5.4 to obtain a bijec-

tion between isotropic subspaces and neighbors of Λ ; this is almost true, but some
additional structure is needed.

In the split case (P 6=P), the bijection is simple enough.
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Lemma 5.5. Let X ,X ′ ⊆Λ be isotropic modulo q with dimX/PX = dimX ′/PX ′ =
k. Suppose that P 6=P. Then Λ(P,X)=Λ(P,X ′) if and only if X/PX =X ′/PX ′⊆
Λ/PΛ .

This lemma implies that when P 6= P, there is a bijection between isotropic
subspaces X modulo q with dimX/PX = k and Pk-neighbors of Λ .

Proof. We have q=PP and so we use the Chinese remainder theorem. We have

Λ(P,X)P = Λ(P,X)⊗ZL,P =P−1XP+ΛP,

so Λ(P,X)P =Λ(P,X ′)P if and only if X/PX =X ′/PX ′. Similarly, Λ(P,X)P =

(Λ ∩PX#)P and this only depends on X modulo P.

So we turn to the non-split case. Let X ⊆Λ be isotropic modulo q with dimX/PX =
k. By (9), there exists a projective submodule Z ⊆ Λ isotropic modulo q with
dimZ/PZ = k such that X ,Z form a hyperbolic pair; we call Z a hyperbolic com-
plement.

Now suppose that X ′ ⊆Λ is also isotropic modulo q with dimX ′/PX ′ = k. Then
by the results in Section 4, there exists a common hyperbolic complement Z to both
X and X ′. We say that X ,X ′ are equivalent, and write X ∼ X ′, if X/PX = X ′/PX ′

and there exists a common hyperbolic complement Z such that

(X ∩q(X⊕Z)#)/(Λ ∩q(X⊕Z)#) = (X ′∩q(X⊕Z)#)/(Λ ∩q(X⊕Z)#)

⊆Λ/(Λ ∩q(X⊕Z)#).

The sum X⊕Z is direct (but not orthogonally direct) and this space is nondegen-
erate, as it is hyperbolic. In other words, the two subspaces are equivalent if they are
the same modulo P and the same modulo q projecting orthogonally onto a common
hyperbolic space. The relation ∼ is indeed an equivalence relation: it is symmetric
since Λ ∩q(X⊕Z)# =Λ ∩q(X ′⊕Z)# and transitive by choosing a subspace Z which
is a common hyperbolic complement to all three.

Proposition 5.6. We have Λ(P,X) = Λ(P,X ′) if and only if X ∼ X ′. If k = 1 or
P 6=P, then X ∼ X ′ if and only if X/PX = X ′/PX ′.

Proof. Suppose that X ∼ X ′, and let Z be a common hyperbolic complement to
X ,X ′. It is enough to understand what happens locally at q, so let Xq = X⊗ZF,q and
so on. We write

Λq = Xq⊕Zq⊕Uq

with Uq =Λ ∩q(X⊕Z)# the orthogonal complement of Xq⊕Zq, and similarly with
X ′q. We have Uq =U ′q. Then

Λ(P,X)q =P−1Xq⊕PZq⊕Uq

and so Λ(p,X)q = Λ(p,X ′)q if and only if X ∼ X ′.
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This proposition can be understood quite explicitly. In the case given by the
choice of basis (13), the hyperbolic complement Z is the subspace generated locally
by xn−k+1, . . . ,xn, and the set of inequivalent subspaces X ′ with this complement are
given by the isotropic subspaces of the form

x′1 = x1 +Py1, . . . ,x′k = xk +Py′k

where yi ∈ Z.

Neighbors, the genus, and strong approximation

We now relate neighbors to the genus. Referring back to the explicit form of the
neighbors given in (12)–(13), when P is odd, we see that the corresponding change
of basis from Λ to its neighbor Λ(P,X) is an isometry: in the first case, since q =
PP−1 has qq = 1, this diagonal change of basis is an isometry and thus Λ(P,X)p ∼=
Λp; a direct calculation in the latter case shows again that it is an isometry. Since
the invariant factors of a Pk-neighbor are supported over p, we have proven the
following lemma.

Lemma 5.7. Let Π be a P-neighbor of Λ with p below P and p - 2d(Λ). Then Π

belongs to the genus of Λ .

Now we form the graph of Pk-neighbors: the vertices consist of a set of equiva-
lence classes of lattices in the genus of Λ , and for each vertex Π we draw a directed
edge to the equivalence class of each Pk-neighbor of Π . This graph is κ-regular,
where κ is the number of isotropic subspaces of Λp modulo P of dimension k—
since all lattices in the genus are isomorphic. If, for example, ϕ is the standard form
(so is totally split) and P 6= P, then this number is simply the cardinality of the
Grassmanian Gr(n,k)(FP) of subspaces of dimension k in a space of dimension n,
and we have the formula

#Gr(n,k)(Fq) =
(qn−1)(qn−q) · · ·(qn−qk−1)

(qk−1)(qk−q) · · ·(qk−qk−1)
. (14)

To conclude, we show that in fact the entire genus can be obtained via iterated
P-neighbors; this is equivalent to the assertion that the graph of P-neighbors is
connected.

First, we need the following important result, a consequence of strong approxi-
mation. For the orthogonal case L = F , see Eichler [12], Kneser [27], or O’Meara
[34, §104]; for the unitary case L/F , see Shimura [41, Theorem 5.24, 5.27] (and
Schiemann [38, Theorem 2.10]); and for a further perspectives, see the survey by
Kneser [28].

We say that a lattice Λ is nice at the ramified primes if for all q ramified in L/F ,
the lattice Λq splits a one-dimensional sublattice. If n is odd or L = F or Λ is even
unimodular, this condition holds.
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Let Cl(ZL) be the class group of ZL and let Cl(ZL)
〈 〉 be the subgroup of those

classes that have a representative A with A= A.

Theorem 5.8 (Strong approximation). Let S be a nonempty set of primes of L co-
prime to 2d(Λ), and suppose that:

(i) L = F, n≥ 3, d(Λ) is squarefree, and #Cl(ZF) is odd; or
(ii) [L : F ] = 2, n≥ 2, Λ is nice at the ramified primes, and S represents all elements

in Cl(ZL)/Cl(ZL)
〈 〉.

Then every lattice in gen(Λ) is equivalent to a lattice Π with Πq =Λq for all primes
q below a prime Q 6∈ S.

Proof (sketch). The hypotheses n≥ 3 in case (i) and n≥ 2 in case (ii) are necessary,
as they imply that the corresponding spin or special unitary group is simply con-
nected; they also further imply that for all primes p - d(Λ) below a prime P ∈ S, the
form ϕp on Vp is isotropic, so Gp is not compact. Since the set S is nonempty, strong
approximation then implies that every lattice in the spin genus or special genus of
Λ is equivalent to a lattice Π as in the statement of the theorem. Finally, in the or-
thogonal case (i), the hypothesis that S represents all elements in Cl(ZF)/Cl(ZF)

2

implies that the genus of Λ is covered by the the spinor genera: over Q, see Kneser
[26] and more generally see O’Meara [34, §91, §102] (in his notation, θ(O+(Λq))
contains all q-adic units, and so gen(Λ) = spn+(Λ)). In the unitary case (ii), the
difference between the special genus and the genus of Λ is measured by the group
Cl(ZL)/Cl(ZL)

〈 〉 by the above cited work of Shimura when Λ is nice at the rami-
fied primes.

Remark 5.9. These are not the minimal set of hypotheses in which strong approxi-
mation holds, but they will suffice for our purposes; see the references above for a
more comprehensive treatment.

We then have the following corollary; see also Kneser [27, §2], Iyanaga [23,
2.8–2.11], and Hoffmann [19, Theorem 4.7].

Corollary 5.10. Under the hypotheses of Theorem 5.8, every lattice in gen(Λ) can
be obtained as a sequence of P-neighbors for P ∈ S.

Proof. Let Π ∈ gen(Λ). By strong approximation, we may assume that ΠQ = ΛQ

for all Q 6∈ S.
First, suppose that ΠQ =ΛQ for all Q 6=P. Then PmΠ ⊆Λ for some m ∈ Z≥0.

We proceed by induction on m. If m = 0, then Π ⊆ Λ and since d(Π) = d(Λ) we
have Π = Λ .

Suppose m > 0, and choose m minimal so that PmΠ ⊆ Λ . Let X be the ZL-
submodule of PmΠ generated by a set of representatives for PmΠ modulo PmΠ ∩
PΛ . Then X ⊆PmΠ ⊆Λ . Now consider again the proof of Proposition 5.4. We see
that X is isotropic (in fact, ϕ(X ,X) ∈ (PP)m). Form the neighbor Λ(P,X). Then
Λ(P,X) can be obtained from a sequence of P-neighbors of Λ .

Now we have
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Pm−1
Π =P−1X +(Λ ∩Pm−1

Π)⊆P−1X +(Λ ∩PX#) = Λ(P,X)

since
ϕ(X ,Pm−1

Π)⊆ ϕ(Pm
Π ,Pm−1

Π)⊆Pqm−1
ϕ(Π ,Π)⊆P.

Therefore, by induction, Pm−1Π can be obtained by a repeated P-neighbor of
Λ(P,X), and we are done by transitivity.

In the general case, we simply repeat this argument for each prime P in ZL.

Hecke operators

We now connect the theory of neighbors to Hecke operators via elementary divisors
and the Cartan decomposition as in the previous section. Specifically, we compute
the action of H(G(Fp),Kp) on M(W, K̂) for primes p - d(Λ). In this case, the corre-
sponding lattice is unimodular.

As should now be evident from this description in terms of maximal isotropic
subspaces, the Hecke operator acts on a lattice by a summation over its neighbors.
We record this in the following theorem.

Theorem 5.11. Let p̂ ∈ Ĝ correspond to the sequence

0≤ ·· · ≤ 0≤ 1≤ ·· · ≤ 1︸ ︷︷ ︸
k

in Proposition 4.4 or 4.3. Write K̂ p̂K̂ =
⊔

p̂ jK̂. Then for any x̂∈ Ĝ, the set of lattices

Π j = x̂ p̂ jΛ = x̂ p̂ jΛ̂ ∩V

is in bijection with the set of Pk-neighbors of x̂Λ .

6 Algorithmic details

Having discussed the theory in the previous sections, we now present our algorithm
for using lattices to compute algebraic modular forms.

General case

We first give a general formulation for algebraic groups: this general blueprint can
be followed in other situations (including symplectic groups, exceptional groups,
etc.). We compute the space M(W, K̂) of algebraic modular forms of weight W and
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level K̂ on a group G. To begin with, we must decide upon a way to represent in bits
the group G, the open compact subgroup K̂, and the G-representation W so we can
work explicitly with these objects. Then, to compute the space M(W, K̂) as a module
for the Hecke operators, we carry out the following tasks:

1. Compute representatives x̂iK̂ (i = 1, . . . ,h) for G\Ĝ/K̂, as in (2), compute Γi =
G∩ x̂iK̂x̂−1

i , and initialize

H =
h⊕

i=1

H0(Γi,W ).

Choose a basis of (characteristic) functions f of H.
2. Determine a set of Hecke operators T (p̂) that generate H(K̂), as in Section 4.

For each such T (p̂):

a. Decompose the double coset K̂ p̂K̂ into a union of right cosets p̂ jK̂, as in (3);
b. For each x̂i and p̂ j, find γi j ∈ G and j∗ so that

x̂i p̂ jK̂ = γi j x̂ j∗K̂.

c. Return the matrix of T (p̂) acting on H via the formula

(T (p̂) f )(x̂i) = ∑
j

γi j f (x̂ j∗)

for each f in the basis of H.

In step 2c, since each function f is a characteristic function, we are simply
recording for each occurrence of j∗ an element of G.

We now turn to each of the pieces of this general formulation in our case.

Representation in bits

We follow the usual algorithmic conventions for number fields [5]. A Hermitian
form (V,ϕ) for L/F is represented by its Gram matrix. We represent a ZF -lattice
Λ ⊂V by a pseudobasis over ZF , writing

Λ = A1x1⊕·· ·⊕Anxn

with x1, . . . ,xn ∈ V linearly independent elements and Ai ⊂ L fractional ZL-ideals
[6]. The open compact subgroup K̂ is the stabilizer of Λ by (8) so no further speci-
fication is required.

The irreducible, finite dimensional representations of G are given by highest
weight representations. The theory is explained e.g. by Fulton and Harris [15], and
in the computer algebra system Magma there is a construction of these representa-
tions [11, 4], based on the LiE system [31].
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Step 1: Enumerating the set of representatives

We enumerate a set of representatives x̂iK̂ for G\Ĝ/K̂ using the results of Sections
4 and 5. For this, we will use Corollary 5.10, and so we must assume the hypotheses
of Theorem 5.8.

Next, according to Corollary 5.10 we compute a nonempty set of primes S of L
coprime to 2d(Λ) that represent all elements in Cl(ZL)/Cl(ZL)

〈 〉. By the Cheb-
otarev density theorem, we may assume that each prime P is split in L/F if L 6= F .
There are standard techniques for computing the class group due to Buchmann (see
Cohen [6, Algorithm 6.5.9] for further detail). We compute the action of the invo-
lution on Cl(ZL) directly and then compute the subgroup Cl(ZL)

〈 〉 fixed by and
the corresponding quotient using linear algebra over Z.

Next, we traverse the graph of P-neighbors for each P ∈ S. To do this, we per-
form the following tasks:

a. Compute a basis for ΛP as in Propositions 4.3 and 4.4 according as L = F or
L 6= F .

b. Compute the one-dimensional isotropic subspaces modulo P in terms of the basis
ei for the maximal isotropic subspace.

c. For each such subspace X , compute the P-neighbor Λ(P,X) = P−1X +PX#

using linear algebra.
d. Test each neighbor Λ(P,X) for isometry against the list of lattices already com-

puted. For each new lattice Λ ′, repeat and return to step a with Λ ′ in place of
Λ .

Since the genus is finite, this algorithm will terminate after finitely many steps.

Remark 6.1. One can also use the exact mass formula of Gan and Yu [17] and Gan,
Hanke, and Yu [16] as a stopping criterion, or instead as a way to verify the correct-
ness of the output.

In steps 1a–1b we compute a basis. When [L : F ] = 2, this is carried out as in
Section 5 via the splitting Lp

∼= Fp×Fp. When L = F , we use standard methods
including diagonalization of the quadratic form: see e.g. work of the second author
[44] and the references therein, including an algorithm for the normalized form
of a quadratic form over a dyadic field, which at present we exclude. From the
diagonalization, we can read off the maximal isotropic subspace, and this can be
computed by working not over the completion but over ZF/p

e for a large e. Next, in
step 1c we compute the neighbors. This is linear algebra. Step 1d, isometry testing,
is an important piece in its own right, which we discuss in the next subsection; as a
consequence of this discussion, we will also compute Γi = Aut(Λi). From this, the
computation of a basis for H =

⊕h
i=1 H0(Γi,W ) is straightforward.
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Isometry testing

To test for isometry, we rely on standard algorithms for quadratic Q-spaces and Z-
lattices even when computing relative to a totally real base field F or a CM extension
L/F . Let a1, . . . ,ad be a Z-basis for ZL with a1 = 1, and let x1, . . . ,xn be a basis of
V . Then

{aix j}i=1,...,d
j=1,...,n

is a Q-basis of V . Define Q-bilinear pairings

ϕi : V ×V −→Q by ϕi(x,y) = trL/Q ϕ(aix,y).

Since a1 = 1 and ϕ is a definite Hermitian form on V over L, ϕ1 is a positive definite,
symmetric, bilinear form on V over Q. In other words, (V,ϕ1) is a quadratic Q-
space. The L-space (V,ϕ) can be explicitly recovered from (V,ϕ1), together with
the extra data ϕ2, . . . ,ϕd by linear algebra. Note that the forms ϕ2, . . . ,ϕd are in
general neither symmetric nor positive definite.

Lemma 6.2. Let f : V → V be a Q-linear, surjective map. Then the following are
equivalent.

1. f is L-linear and ϕ( f (x), f (y)) = ϕ(x,y) for all x,y ∈V .
2. ϕi( f (x), f (y)) = ϕi(x,y) for all i = 1, . . . ,d and all x,y ∈V .

Proof. If f is L-linear and ϕ( f (x), f (y)) = ϕ(x,y) for all x,y ∈V , we have

ϕi( f (x), f (y)) = trL/Q ϕ(ai f (x), f (y))

= trL/Q ϕ( f (aix), f (y)) = trL/Q ϕ(aix,y) = ϕi(x,y).

Thus, (1) implies (2).
Suppose now that ϕi( f (x), f (y)) = ϕi(x,y) for all i = 1, . . . ,d and all x,y∈V . Let

x ∈ V and let i ∈ {1, . . . ,d}. We want to show that f (aix) = ai f (x). First, note the
identity

ϕi(u,v) = ϕ1(aiu,v) (∗)

We compute:

ϕ1( f (aix)−ai f (x), f (y))

= ϕ1( f (aix), f (y))−ϕ1(ai f (x), f (y))

= ϕ1(aix,y)−ϕi( f (x), f (y)) (by the f -invariance of ϕ1 and (∗))
= ϕi(x,y)−ϕi(x,y) (by (∗) and the f -invariance of ϕi)
= 0.

Since f is assumed surjective, f (y) varies over all elements of V . Therefore, by the
nondegeneracy of ϕ1 (it’s positive-definite), we must have f (aix) = ai f (x) as was
to be shown.
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We now show that ϕ is f -invariant. Let σ1, . . . ,σd be the embeddings of L into
C. If A = (a

σ j
i ) ∈Mn(C), then

A

ϕ( f (x), f (y))σ1

...
ϕ( f (x), f (y))σn

=

ϕ1( f (x), f (y))
...

ϕn( f (x), f (y))

=

ϕ1(x,y)
...

ϕn(x,y)

= A

ϕ(x,y)σ1

...
ϕ(x,y)σn

 .

Since A is invertible by independence of characters and σ1 is injective, we get
ϕ( f (x), f (y)) = ϕ(x,y).

Using Lemma 6.2, we reduce the problem of testing if two Hermitian lattices
over ZF are isometric to a problem of testing if two lattices over Z are isometric in
a way which preserves each ϕi. For this, we rely on the algorithm of Plesken and
Souvignier [36], which matches up short vectors and uses other tricks to rule out
isometry as early as possible, and has been implemented in Magma [2] by Souvig-
nier, with further refinements by Steel, Nebe, Unger, and others.

Remark 6.3. An essential speed up in the case of Brandt modules is given by
Dembélé and Donnelly [9] (see also Kirschmer and the second author [24, Algo-
rithm 6.3]). To decide if two right ideals I,J in a quaternion order O are isomorphic,
one first considers the colon ideal (I : J)L = {α ∈ B : αJ ⊆ I} to reduce the problem
to show that a single right ideal is principal; then one scales the positive definite
quadratic form over Q by an explicit factor to reduce the problem to a single short-
est vector calculation. It would be very interesting to find an analogue of this trick
in this context as well.

Step 2: Hecke operators

Essentially all of the work to compute Hecke operators has already been set up in
enumerating the genus in Step 1. The determination of the Hecke operators follows
from Sections 4 and 5, and their explicit realization is the same as in Step 1a. We
work with those Hecke operators supported at a single prime. In Step 2a, from The-
orem 5.11, the double coset decomposition is the same as set of P-neighbors, which
we compute as in Step 1. In Step 2b, we compute the isometry γi j using isometry
testing as in the previous subsection: we quickly rule out invalid candidates until the
correct one is found, and find the corresponding isometry. Finally, in Step 2c, we
collect the results by explicit computations in the weight representation.
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7 Examples

In this section, we illustrate our methods by presenting the results of some explicit
computations for groups O(3) and O(4) and of the form G= UL/F(3), relative to a
CM extension L/F , where L has degree 2, 4, or 6.

Remark 7.1. We made several checks to ensure the correctness of our programs.
First, we checked that matrices of Hecke operators for p and q with p 6= q commuted.
(They did.) Additionally, a known instance of Langlands functoriality implies that
forms on U(1)×U(1)×U(1) transfer to U(3). Checking that resulting endoscopic
forms occur in the appropriate spaces [32, §§4.2, 4.6] also provided a useful test of
our implementation. (It passed.)

We begin with two illustrative examples on orthogonal groups.

Example 7.2. We begin with an example with a direct connection to classical mod-
ular forms, realizing the isogeny between O(3) and GL(2). We consider integral,
positive definite quadratic forms in three variables (taking for simplicity F = Q).
We take the quadratic form Q(x,y,z) = x2 + y2 + 3z2 + xz, with (half-)discriminant
11, and the associated bilinear form

ϕ =

2 0 1
0 2 0
1 0 6

 .

We take Λ = Z3 to be the standard lattice. We then compute the 3-neighbors of Λ :
the maximal isotropic subspaces are all of dimension ν = 1, and there are 3+1 = 4
such: we find one new class in the genus, represented by the lattice Π with basis
(1,0,0),(0,3,0),(1/3,2/3,1/3), so the class set is of cardinality 2. (The quadratic
form Q in this basis for Π is x2 +9y2 + z2 + xz+4yz.) We work with trivial weight
W . Computing the Hecke operators at a prime p 6= 2,11 then amounts to computing
the p+ 1 neighbors of Λ and Π , respectively, and identifying their isometry class.
We find:

T3 =

(
2 2
3 1

)
, T5 =

(
4 2
3 3

)
, T7 =

(
4 4
6 2

)
, T13 =

(
10 4
6 8

)
, . . . .

We compute the Hecke operators up to p = 97 in just a few seconds, and we verify
that these matrices commute.

The eigenvector (1,1), obtained as the span of the constant functions, corre-
sponds to the Eisenstein series of level 11 and weight 2, with eigenvalues ap = p+1
for p 6= 11. The other eigenvector, (1,−1), has eigenvalues ap =−1,1,−2,4, . . . for
p = 3,5,7,13, . . ., and we immediately recognize this as the unique classical cusp
form of level 11 and weight 2:
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∞

∑
n=1

anqn =
∞

∏
n=1

(1−qn)2(1−q11n)2

= q−2q2−q3 +2q4 +q5 +2q6−2q7−2q9−2q10 +q11 + . . . .

This form corresponds to the isogeny class of the elliptic curve y2 + y = x3− x2 of
conductor 11 via the relation ap = p+1−#E(Fp) for p 6= 11.

Example 7.3. Now we consider the next largest space O(4). We take the bilinear
form

ϕ =


2 0 0 1
0 2 1 0
0 1 6 0
1 0 0 6


of discriminant 112. (This form corresponds to the reduced norm form on a maximal
order in the quaternion algebra of discriminant 11 over Q.) We now find a class set of
size 3 by computing 3-neighbors. Here, we have ν = 2, so for each prime p 6= 2,11
we have two Hecke operators, corresponding to subspaces of size k = 1 and k = 2.

This space breaks up into three Hecke irreducible subspaces. The Eisenstein
space again corresponds to the constant functions with eigenvalues (p+1)2 for Tp,1
and 2p(p+ 1) for Tp,2. We have two others: we label their eigenvalues as ap,i and
bp,i for i = 1,2.

Table 1 Computation of Tp,i on M(Q) for p with p 6= 2,11 and p < 50.

p 3 5 7 13 17 19 23 29 31 37 41 43 47
ap,1 1 1 4 16 4 0 1 0 49 9 64 36 64
bp,1 -4 6 -16 56 -36 0 -24 0 224 114 -336 -264 384
ap,2 -6 -10 -8 4 -28 -40 -46 -60 34 -58 44 -16 32
bp,2 9 25 52 184 292 360 529 840 1009 1377 1744 1884 2272

These calculations take just a couple of minutes, with many careful checks along
the way to ensure the calculations are correct.

Now presumably, since O(4) is isogeneous to O(3)×O(3), there is some rela-
tionship between these eigenspaces and the eigenspaces given in Example 7.2 given
by the associated Galois representations.

We now turn to four examples on unitary groups.

Example 7.4. UL/F(3), L =Q(
√
−7), F =Q, weights (0,0,0) and (3,3,0):

Here, we extend aspects of the calculation in the principal example of [32]. In
this case, the class number of the principal genus of rank 3 Hermitian lattices for
L/Q is 2, with classes represented by the standard lattice Λ1 = Z3

L and the lattice
Λ2 ⊂ L3 with basis

(1−ω,0,0), (1,1,0), 1
2 (−3+ω,−1+ω,−1+ω).

(
ω = 1

2 (1+
√
−7)

)
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Table 2 Computation of Tp,1 on M(Q) for unramified, degree one p⊂ ZL with 2 < N(p)< 200.

N(p) 2 11 23 29 37 43 53 67 71 79 107
ap 7 133 553 871 1407 1893 2863 4557 5113 6321 11557
bp -1 5 41 -25 -1 101 47 -51 185 -15 293

N(p) 109 113 127 137 149 151 163 179 191 193 197
ap 11991 12883 16257 18907 22351 22953 26733 32221 36673 37443 39007
bp 215 -109 129 -37 335 425 237 -163 -127 131 479

The lattices Λ1 and Λ2 are 2-neighbours:

ωΛ2 ⊂Λ1, ω̄Λ1 ⊂Λ2.

(Representatives for the ideal classes in the principal genus were computed in the
first place by constructing the 2-neighbour graph Λ1.) It follows that the space of
M(Q) of algebraic modular forms for UL/F(3) with trivial coefficients is simply the
2-dimensional space of Q-valued function on {[Λ1], [Λ2]}. We obtain two distinct
systems ap and bp of Hecke eigenvalues occurring in M(Q). (See Table 2. Comput-
ing the data in this table took about 3 minutes in total.) We point out observations of
Loeffler considering the nature of the corresponding algebraic modular forms: First,
observe that the system ap is “Eisenstein”, in the sense that the eigenvalues of Tp,1
is the degree of the Hecke operator Tp,1:

ap = N(p)2 +N(p)+1.

Equivalently, the corresponding algebraic modular form is the lift from U(1)×
U(1)×U(1) of χtriv×χtriv×χtriv. The algebraic modular form with system of eigen-
values bp is also a lift form U(1)×U(1)×U(1): if p is either generator of p, then

bp = p2 + pp̄+ p̄2

(the expression is independent of the choice of p).
We now consider analogous computations involving forms of higher weight. The

space M(V3,3,0) the associated to the above data has dimension 4, while the represen-
tation space V3,3,0 itself has dimension 64. Loeffler [32] showed that M(V3,3,0) splits
as the direct sum of two 2-dimensional, Hecke-stable subspaces not diagonalizable
over Q(

√
−7):

M(V3,3,0) =W1⊕W2.

One of these spaces arises as the lift involving a 2-dimensional Galois conjugacy
class of classical eigenforms in S9(Γ1(7)) via a lifting from the endoscopic subgroup
U(1)×U(2) of U(3). The other corresponds to a Galois conjugacy class of nonen-
doscopic forms, whose associated `-adic Galois representations ρ : GL→ GL2(Q`)
are irreducible.
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We consider the corresponding modular space M(V3,3,0/F7) of mod (
√
−7)-

modular forms of weight (3,3,0). We computed the Hecke operators Tp,1 for un-
ramified, degree one primes p ⊂ ZL of norm at most 100. The data is presented in
Table 3.

Table 3 Computation of Tp,1 mod (
√
−7) for degree one, unramified p⊂ZL with 2 <N(p)< 100.

2 11 23 29 37 43 53 67 71 79
āp 0 0 0 3 0 3 0 0 3 0
b̄p 6 5 6 3 6 3 5 5 3 6

Simultaneously diagonalizing the matrices of these Hecke operators we obtain
two mod (

√
−7) systems of eigenvalues that we write āp and b̄p. We choose this

notation because those systems are the reductions modulo 7 of the corresponding
trivial weight systems ap and bp from earlier. We have an explicit modulo 7 congru-
ence between a nonendoscopic form in weight (3,3,0) and an endoscopic form in
weight (0,0,0). Thus, the modulo 7 Galois representation associated to the system
bp is reducible.

Example 7.5. UL/F(3), F =Q(
√

13), L = F
(√
−13−2

√
13
)

, weight (0,0,0):
In this example, the class number of the principal genus is 9, as is the dimension

of the corresponding space of automorphic forms with trivial weight. We computed

Table 4 Computation of Tp,1 for degree one, unramified p⊂ ZL with 2 < N(p)< 250.

N(p) 29 53 61 79 107 113 131 139 157 191 211
āp 4 11 12 5 5 3 6 10 1 11 2

the matrices of the Hecke operators acting on the Q-vector space M(Q) for unrami-
fied, degree one p⊂ ZL with 2 < N(p)< 250. There appears to be a 1-dimensional
“Eisenstein” subspace on which Tp,1 acts via degTp,1 = N(p)2 +N(p)+ 1. The 8-
dimensional complement of this line decomposes into Q-irreducible subspaces of
dimensions 2, 2, and 4. In all of these computations, the level subgroup is the stabi-
lizer of the standard lattice Z3

L ⊂ L3.
The Hecke algebra acts nonsemisimply on the space M(F13) of modulo 13 au-

tomorphic forms. It appears that the minimal polynomial of Tp,1 has degree 6
when N(p)≡ 1 (mod 13) and degree 7 when N(p)≡ 3,9 (mod 13). (Other residue
classes do not occur for norms of degree one primes of F splitting in L.) When
N(p) ≡ 1 (mod 13), the eigenvalue 3 ≡ N(p)2 +N(p)+ 1 (mod 13) occurs with
multiplicity 5, while when N(p) ≡ 3,9 (mod 13), the eigenvalue 0 ≡ N(p)2 +
N(p) + 1 (mod 13) occurs with multiplicity 1. Finally, there is a 1-dimensional
eigenspace in M(F13) with eigenvalues āq as in Table 4.
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Example 7.6. UL/F(3), F =Q(ζ7 +ζ
−1
7 ), L =Q(ζ7), weight (0,0,0):

In this case, the class number of the principal genus is 2, with the classes repre-
sented by the standard lattice Λ1 = Z3

L and its 29-neighbour Λ2 with basis

(ζ7 +ζ
4
7 −ζ

5
7 ,0,0), (6,1,0),
1
29 (−138−234ζ7−210ζ

2
7 −303ζ

3
7 −258ζ

4
7 −117ζ

5
7 ,

16+12ζ7 +13ζ
2
7 +20ζ

3
7 +11ζ

4
7 +6ζ

5
7 ,

16+12ζ7 +13ζ
2
7 +20ζ

3
7 +11ζ

4
7 +6ζ

5
7 ).

(This calculation took 1.85 seconds.)

Table 5 Timings: computation of Tp,1 mod (
√
−7) for p with 2 < N(p)< 100 and p 6= p̄

N(p) 29 43 71 113 127 197 211 239 281
ap 871 1893 5113 12883 16257 39007 44733 57361 79243
bp -25 101 185 -109 129 479 -67 17 395

As above, ap = N(p)2 +N(p)+1 = degTp,1, and the form with system of Hecke
eigenvalues ap is a lift from U(1)×U(1)×U(1). Also, observe that

ap ≡ bp ≡ 3 (mod 7),

implying that the modulo 7 Galois representation attached to the system bp is re-
ducible.
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