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ABSTRACT. We compute tables of paramodular forms of degree two and cohomological
weight via a correspondence with orthogonal modular forms on quinary lattices.

1. INTRODUCTION

Number theorists have a longstanding tradition of making tables of modular forms (for a
brief history, see [CMFs21, §2]), with myriad applications to arithmetic and geometry. Mov-
ing beyond GL,, there has been substantial interest in similar catalogues of Siegel modular
forms, as computed first for Sp,(Z) by Kurokawa [Kur78] and then more systematically by
Skoruppa [Sko92], Raum [Raul0], and others. Moving beyond trivial level, we find several
interesting families of congruence subgroups of symplectic groups. Among these possibili-
ties, the paramodular groups have recently received considerable interest, owing in part to
their agreeable theory of newforms [RS07] as well as applications in the Langlands program
[BK19, Grol6]. Direct computations of paramodular forms have focused on the more trou-
blesome case of (noncohomological) weight 2 [PY15, BPY16, PSY17] (analogous to weight
1 classical modular forms), working with Fourier expansions using clever and sophisticated
techniques.

In this paper, we report on our computation of a moderately large database of paramodular
forms for GSp, (i.e., degree 2), but via a complementary approach in weight > 3: we compute
with algebraic modular forms [Gro99] on orthogonal groups of positive definite quadratic
forms in five variables. Instead of working with Fourier expansions, we access only the
underlying systems of Hecke eigenvalues (enough for Galois representations and L-function).
An explicit correspondence between orthogonal and paramodular forms was first conjectured
by Ibukiyama [IK17, Ibul9] and recently proven by van Hoften [vH21|, Rosner—Weissauer
[RW21], and Dummigan—Pacetti-Rama—Tornaria [DPRT21]. Our approach using quinary
quadratic forms is analogous to the use of ternary quadratic forms to compute classical
modular forms introduced by Birch [Bir91] (see also [Tor05, Ram14, Heil6, HTV]). Our
algorithms involve lattice methods, as described by Greenberg—Voight [GV14] and further
developed and investigated by Hein [Heil6], Ladd [Lad18], and Rama [Ram20, Ram20git].

The tables computed here supersede data computed by Rama-Tornaria [RT20] in square-
free level N < 1000: we compute systematically in nonsquare level N < 1000, in higher
weight, and with more Dirichlet coefficients. Our data is available at https://github.com/
assaferan/omf5_data, and we will incorporate it into the L-functions and Modular Forms
Database (LMFDB) [LMFDB].
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2. ALGORITHMIC COMMENTS

Definite orthogonal methods for paramodular forms. The relation between modular
forms of SO(5) and automorphic forms on GSp(4) with trivial central character is predicted
by Langlands functoriality. An explicit correspondence was conjectured by Ibukiyama in
[IK17, Ibul9] involving two steps: a correspondence between (para)modular forms of GSp(4)
and its compact twist GU(2, B), where B is a definite quaternion algebra; and a correspon-
dence between modular forms of GU(2, B) and those of SO(Q) for a suitable chosen quinary
quadratic form Q. The first correspondence was proved by van Hoften [vH21] and Résner—
Weissauer [RW21], and extended by Dummigan-Pacetti-Rama-Tornaria [DPRT21] where
the second correspondence was proved.

More precisely [DPRT21, Theorem 9.8], we can compute the space Sp5"(K(N)) of para-
modular newforms of level N and weight (k, j) under the following assumptions:

(1) There is a prime py such that py || N (p exactly divides N); and
(2) k>3 and j > 0 even.

Suppose that these conditions hold. Then [DPRT21, Theorem 5.14] there exists a unique
genus of positive definite integral quinary quadratic forms of (half-)determinant N with
Eichler invariants —1 at py and +1 at all other primes [DPRT21, §5]. We choose one quadratic
form @ = @y, in the genus, corresponding to a lattice A, noting that the corresponding
space of orthogonal modular forms is independent of this choice.

Following notation in [DPRT21, §8], write a := k+ j — 3 and b := k — 3, noting a = b
(mod 2). Let W, be the corresponding weight representation of SO5(C); and for each d || N,
let 8, be the associated spinor character. Let M, ,(SO(A), ;) for the space of orthogonal
modular forms for () with weight representation W, ; and character 6.

Theorem 2.1 ([DPRT21, Theorem 9.8]). There is an isomorphism of Hecke modules
SP(K(N)) @) ~ @D Mup(SO(A), b))
N

between the space of po-new paramodular cusp forms of weight (k, j) of general type (G) and
the space of orthogonal modular forms for A with arbitrary spinor character of general type

(G).
Moreover, the paramodular forms corresponding to M,p(SO(A), 0q)(a) have their Atkin-
Lehner signs ¢, determined by d: we have e,, = —1 if and only if po 1 d, and for primes

p # po we have €, = —1 if and only if p | d.

The condition (G) of general type concerns the type of the automorphic representation,
following Schmidt [Sch18, §1.1]: it excludes the forms of Saito-Kurokawa type (P) on both
sides and the forms of Yoshida type (Y) appearing as orthogonal modular forms. See the
section on detecting lifts below for further discussion.

We can compute the Hecke operators for all good primes p + N and bad primes p || N
[RT20]. In either case, the Euler factors can be obtained by computing p and p*-neighbors.

See the section on bad Euler factors below for bad primes p? | N.
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Algorithm overview. Algorithms to compute with orthogonal modular forms using lattice
methods were exhibited by Greenberg—Voight [GV14]; a recent overview is given by Assaf-
Fretwell-Ingalls—Logan—Secord—Voight [AFILSV22, §3]. These algorithms take as input a
positive definite quadratic form and compute the action of Hecke operators on spaces of
functions on the class set, with values in a weight representation. The Hecke operators are
computed as p-neighbors, after Kneser.

Algorithmic improvements. In order to make the calculations of Hecke operators men-
tioned in the previous section more efficient, it is possible to take advantage of the action of
the isometry group of the lattice. Indeed, two p-isotropic vectors in the same orbit of the
isometry group Aut(A) will produce the same target lattice when applying the p-neighbor
relation. It is also possible to save on isometry testing via taking the first few entries of the
theta series for the lattice.

To carry out this idea (which has been observed before), We present a few algorithmic
improvements to further speed up the computation. First, instead of precomputing all the
orbits of isotropic vectors under Aut(A), we order the isotropic vectors in a lexicographical
order. Given a Z,-isotropic vector v, we compute its orbit under Aut(A), and proceed with
the computation only when it is the minimal vector in its orbit.

Second, we precompute the automorphism group of all lattices in the genus, and their
conjugations into a single quadratic space, saving the cost of conjugation when computing
the spinor norm.

Finally, for a given genus we measure the cost Tison, of isometry testing and the cost Ty(B)
of computing the short vectors of length up to B, and we choose B that optimizes the total
cost a(B)Tisom + Tp(B), where «(B) is the average number of collisions in the hash table,
with the lattices in the genus averaged by the size of their automorphism groups. This follows
from the fact that the frequency of appearance of a lattice A as a p-neighbor is inversely
proportional to # Aut(A), as proven by Chenevier [Che22].

Detecting lifts. Among the orthogonal forms we compute, like Eisenstein series in the
classical case, we have forms that arise from lifts (endoscopy). Since those lifts are classified
and can be computed in other ways, we focus on what remains on computing newforms of
type (G).

To discard forms of type (P) corresponding to Saito-Kurokawa lifts, a single good Euler
factor is enough: a form of type (P) will have a Satake parameter p'/? that cannot otherwise
appear by the Ramanujan conjecture for non-CAP forms [Wei09].

To discard forms of type (Y) corresponding to Yoshida lifts, it suffices to find that a single
good Euler factor is irreducible. If all the computed degree 4 Euler factors are product of
two degree 2 factors, we look in tables to conjecturally identify the form as a Yoshida lift, as
we know exactly which Yoshida lifts should appear [DPRT21, Proposition 9.1]. To identify
the lifts, a simple inspection and comparison of the traces often suffices.

Newforms and oldforms. In all cases, we have a good guess as to what is new and old;
computing inductively we can verify that a form is not a lift and not an oldform. However,
old lifts and nonlifts may appear in the space of orthogonal modular forms with multiplicity,
so we need to know if there are newforms that look like lifts or oldforms up to the precision
computed, in which case we can increase the precision (compute more Hecke eigenvalues).

In this way, we rigorously compute a subset of newforms, but need additional certification
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to be sure that the forms that look like oldforms are in fact old (and do not just agree with
oldforms to the precision computed).

To improve upon this, we refer to the local newform theory of Roberts—Schmidt [RS07],
which gives precise formulas for the multiplicity of paramodular oldforms for forms of types
(G) and (Y) [RS07, Theorem 7.5.6] as well as type (P) [RS07, Theorem 5.5.9]. We plan to
analyze this multiplicity and implement degeneracy maps in future work, to certify our list
of oldforms.

3. RUNNING THE CALCULATION

Data and running time. For reliability, we carried out and compared two separate im-
plementations to compute the data, one in C and one in PARI/GP. Eventually, these gave
the same output. The code can be found at https://github.com/assaferan/modfrmalg
and https://gitlab.fing.edu.uy/grama/quinary.

We computed the spaces of paramodular forms of level N and weight (k,j), the Hecke
eigenforms and the eigenvalues of the Hecke operators in the following ranges:

o (k.j) = (3,0), D = N < 1000, good T},; with p’ < 200
e (k,j)=(4,0), D= N <1000, good T,; with p* < 100, p* < 30
e (k,j)=(3,2), D= N <500, good T,,; with p' < 100, p* < 30

The total counts are summarized as follows:

(k, §) Newspaces Newforms

’ squarefree N | nonsquarefree N | total [ squarefree N | nonsquarefree N | total
(3,0) 2764 4817 7581 52181 23 853 76 034
(3,2) 1363 3072 4435 72551 29 226 101777
(4,0) 2856 7783 10639 287974 132 380 420354

TABLE 1. Newspace and newform data computed

For Hecke irreducible spaces of dimension > 20, we only store the traces; to avoid painful
calculations in an extension field, we compute modulo a prime p of degree 1 which is large
enough, and reconstruct.

The total data takes approximately 200 MB of disk space and took a total of 4575 hours
of CPU time on a standard processor.

Bad Euler factors. When p? | N, the local Euler factor has degree at most 2 and is given by
Roberts—Schmidt [RS07, Theorem 7.5.3] in terms of eigenvalues for a pair of Hecke operators
which correspond to p and p*-neighbors as in [DPRT21, Proposition 8.5] (extended in the
same way for p # pg). In practice, for p* | N we found easier to guess the appropriate Hecke
operator via reconstruction by checking that the functional equation for the L-function is
satisfied (ruling out all possibilities but one).

The first such bad factor occurs at level 76 = 22 - 19: the bad Euler factors are

LQ(f?G,X) = 1 + 5X + 23X2

Lig(fre, X) = (14+19X)(1 — 50X + 19°X?)
4
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The next one occurs at level 96 = 2° - 3, and its Euler factors at the bad primes are

Lo(fos, X) = 14+ 4X +2°X?
Ls(fos, X) = (1 — 3X)(1 + 8X + 3°X?).

The functional equations have been verified to a precision of 22 decimal digits.
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