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Abstract. Let A be an abelian surface over Q whose geometric endomorphism ring is a
maximal order in a non-split quaternion algebra. Inspired by Mazur’s theorem for elliptic
curves, we show that the torsion subgroup of A(Q) is 12-torsion and has order at most 18.
Under the additional assumption that A is of GL2-type, we give a complete classification of
the possible torsion subgroups of A(Q).
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1. Introduction

1.1. Motivation. Let E be an elliptic curve over Q. In [Maz77], Mazur famously showed
that if a prime ` divides the order of the torsion subgroup E(Q)tors of E(Q) then ` ≤ 7.
Combining with previous work of Kubert [Kub76], Mazur deduced that #E(Q)tors ≤ 16 and
that E(Q)tors is isomorphic to one of fifteen finite abelian groups, each of which gives rise to
a genus 0 modular curve with a well known rational parametrization.

It is not known whether there is a uniform bound on the size of the rational torsion
subgroup of abelian varieties of fixed dimension g ≥ 2 over a fixed number field. In fact,
there is not even a single integer N for which it is known that there is no abelian surface over
Q with a torsion point of order N . Indeed, determining rational points on Siegel modular
threefolds with level structure seems challenging in general.

1.2. Results. In this paper we study the torsion subgroup of abelian surfaces A over Q
whose geometric endomorphism ring is large. Namely, we suppose that the geometric endo-
morphism ring End(AQ) is a maximal order O in a division quaternion algebra over Q; we
refer to these as O-PQM surfaces (“potential quaternionic multiplication”). Such abelian
surfaces are geometrically simple, so their torsion subgroup cannot be studied using torsion
subgroups of elliptic curves. On the other hand, they give rise to rational points on certain
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Shimura curves, much as elliptic curves over Q give rise to rational points on modular curves.
Thus O-PQM surfaces are a natural place to explore torsion questions in higher dimension.

Our main results show that the torsion behaviour ofO-PQM surfaces is rather constrained.

Theorem 1.1. Let A be an O-PQM abelian surface over Q with a rational point of order `,
where ` is a prime number. Then ` = 2 or ` = 3.

Theorem 1.2. Each O-PQM abelian surface A over Q has #A(Q)tors ≤ 18.

The fact that the rational torsion on O-PQM surfaces is uniformly bounded is not new
nor is it difficult to prove. Indeed, since O-PQM surfaces have everywhere potentially good
reduction (Lemma 4.1.2), local methods quickly show that ` | #A(Q)tors implies ` ≤ 19 and
that #A(Q)tors ≤ 72 [CX08, Theorem 1.4]. The goal of this paper is instead to prove results
which are as precise as possible.

Theorems 1.1 and 1.2 are optimal since it is known that each of the seven groups

(1.2.1)
{1}, Z/2Z, Z/3Z, (Z/2Z)2

Z/6Z, (Z/3Z)2, Z/2Z× (Z/3Z)2

is isomorphic to A(Q)tors for some O-PQM surface A/Q, with the largest group having order
18. Indeed, each of these groups arises as A(Q)tors for infinitely many Q-isomorphism classes
of such surfaces by [LS23, Theorem 1.1].

Our methods give the following more precise constraints on the group structure of A(Q)tors.

Theorem 1.3. Let A be an O-PQM abelian surface over Q. Then A(Q)tors is isomorphic
either to one of the groups in (1.2.1) or to one of the following groups:

(1.2.2)
Z/4Z,Z/2Z× Z/4Z, (Z/2Z)3, (Z/2Z)2 × Z/3Z,

Z/4Z× Z/3Z, (Z/2Z)2 × Z/4Z, (Z/4Z)2.

We leave open the question of whether any of the groups of (1.2.2) arise as A(Q)tors for
some O-PQM surface or not.

Theorem 1.3 can be interpreted as a non-existence result for non-special rational points
on certain types of Shimura curves with level structure. Since the discriminant of End(AQ)
and level are unconstrained, the result covers infinitely many distinct such curves. However,
as we explain below, our proof of Theorem 1.3 does not make direct use of the arithmetic of
Shimura curves.

Whereas the theorems above consider general O-PQM abelian surfaces, one is sometimes
interested in surfaces with additional structure. For example, recall that A is of GL2-type if
the endomorphism ring End(A) is a quadratic ring. Modularity results (see Theorem 5.1.1)
imply that an abelian variety A of GL2-type over Q is a quotient of the modular Jacobian
J1(N) for some N . More precisely, the isogeny class of A arises from a cuspidal newform of
weight 2 and level N , where A has conductor N2. Specializing our methods to this setting,
we obtain the following complete classification.

Theorem 1.4. Let A be an O-PQM surface over Q of GL2-type. Then A(Q)tors is isomor-
phic to one of the following groups:

{1},Z/2Z,Z/3Z, (Z/2Z)2, (Z/3Z)2.

Every one of these groups arises as A(Q)tors for infinitely many Q-isomorphism classes of
O-PQM surfaces A over Q of GL2-type.
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Remark 1.2.3. The proof shows that if the maximality assumption on O is omitted, then a
similar classification holds except we do not know whether the group (Z/2Z)3 arises or not.

Another natural class of abelian surfaces is Jacobians of genus two curves. Recall that for
geometrically simple abelian surfaces, being a Jacobian is equivalent to carrying a principal
polarization. Thus, the following result gives a near-classification for rational torsion sub-
groups of genus two Jacobians over Q in the O-PQM locus of the Siegel modular 3-fold A2

parameterizing principally polarized abelian surfaces.

Theorem 1.5. Let J be an O-PQM surface over Q which is the Jacobian of a genus two
curve over Q. Then J(Q)tors is isomorphic to one of the following groups:

{1},Z/2Z,Z/3Z, (Z/2Z)2,Z/6Z, (Z/3Z)2,

Z/4Z,Z/2Z× Z/4Z, (Z/2Z)2 × Z/3Z,Z/4Z× Z/3Z, (Z/4Z)2

In particular, #J(Q)tors ≤ 16.

The first six groups in the list above can be realized as J(Q)tors; see Table 2. We do not
know whether they can be realized infinitely often by O-PQM Jacobians over Q.

1.3. Methods. We first describe the proof of Theorem 1.4, which is almost entirely local
in nature. Let A be an O-PQM surface over Q of GL2-type. We show that A has totally
additive reduction at every prime p of bad reduction, meaning that the identity component
of the special fiber of the Néron model at p is unipotent. It is well known that in this case
the prime-to-p torsion subgroup of A(Qp) embeds in the Néron component group of A at p,
and that this component group is controlled by the smallest field over which A acquires good
reduction. Our proof of Theorem 1.4 therefore involves an analysis of this field extension, in
particular we show that its degree is coprime to ` for any prime ` ≥ 5. Applying these local
arguments requires the existence of suitable primes of bad reduction, and breaks down when
A has conductor of the form 2n, 3n, or 64. We handle these cases seperately by invoking the
modularity theorem. It turns out there is a single isogeny class whose conductor is of this
form, namely the isogeny class of conductor 310, corresponding to a Galois orbit of newforms
of level 35 = 243, with LMFDB label 243.2.a.d.

To prove Theorem 1.1, we need to exclude the existence of an O-PQM surface A over Q
such that A[`](Q) is nontrivial for some prime ` ≥ 5. By studying the interaction between
the Galois action on the torsion points of A and the Galois action on End(AQ), we show that
such an A must necessarily be of GL2-type, so we may conclude using Theorem 1.4. The
methods of this ‘reduction to GL2-type’ argument are surprisingly elementary. Aside from
some calculations in the quaternion order O, the key observation is that in the non-GL2-
type case, the geometric endomorphism algebra End0(AQ) contains a (unique) Galois-stable
imaginary quadratic subfield, which is naturally determined by the (unique) polarization
defined over Q.

To prove Theorems 1.2 and 1.3, we must constrain the remaining possibilities for A(Q)tors,
which is a group of order 2i3j by Theorem 1.1. Our arguments here are ad hoc, relying on a
careful analysis of the reduction of A modulo various primes via Honda–Tate theory (with
the aid of the LMFDB [LMF23]) to constrain the possible torsion groups, reduction types,
and Galois action on the endomorphism ring. The proof of Theorem 1.5 is similar, but using
the relationship between endomorphisms, polarizations, and level structures.
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1.4. Previous work. Rational torsion on O-PQM surfaces was previously considered in the
Ph.D. thesis of Clark [Cla03, Chapter 5], but see the author’s caveat emptor, indicating that
the proofs of the main results of that chapter are incomplete.

1.5. Future directions. Our methods use the maximality assumption on End(AQ) in var-
ious places. It would be interesting and desirable to relax this condition, especially since
groups of order 12 and 18 can indeed arise in genus two Jacobians with non-maximal PQM;
see, for example, the curve y2 = 24x5+36x4−4x3−12x2+1 and [LS23, Remark 7.17]. It would
also be interesting to systematically analyze rational points on (Atkin–Lehner quotients of)
Shimura curves with level structure, for example to determine whether the remaining groups
(1.2.2) arise or not. We hope to address this in future work.

1.6. Organization. Sections 2-4 are preliminary, and the remaining sections are devoted
to proving the main theorems of the introduction. As explained in §1.3, we start by proving
Theorem 1.4 because the other theorems depend on it.

Those who wish to take the shortest route to Theorem 1.4 (minus eliminating (Z/2Z)3)
only need to read Sections 3.2, 4 and 5. Eliminating the last group (Z/2Z)3 in Proposition
5.3.8 requires more algebraic preliminaries from Section 2 and 3.

1.7. Acknowledgements. We would like to thank Davide Lombardo for interesting discus-
sions related to this project. Schembri and Voight were supported by a Simons Collaboration
Grant (550029, to JV). Part of this project was carried out while Laga visited Shnidman
at the Hebrew University of Jerusalem. Shnidman was funded by the European Research
Council (ERC, CurveArithmetic, 101078157).

1.8. Notation. We fix the following notation for the remainder of this paper:

• B: an indefinite (so B ⊗ R ' Mat2(R)) quaternion algebra over Q of discriminant
disc(B) 6= 1;
• trd(b), nrd(b) and b̄: reduced trace, reduced norm, and canonical involution of an

element b ∈ B respectively;
• O: a choice of maximal order of B;
• F̄ : a choice of algebraic closure of a field F ;
• GalF : the absolute Galois group of F ;
• End(A): the endomorphism ring of an abelian variety A defined over F ;
• End0(A) = End(A)⊗Q: the endomorphism algebra of A;
• NS(A): the Néron–Severi group of A;
• AK : base change of A/F along a field extension K/F ;
•
(
m,n
F

)
: the quaternion algebra over F with basis {1, i, j, ij} such that i2 = m, j2 = n

and ij = −ji;
• Dn : the dihedral group of order 2n.

We say an abelian surface A over a field F is an O-PQM surface if there is an isomorphism
End(AF̄ ) ' O. O-PQM surfaces over Q are the central object of interest in this paper,
but some of our results apply to abelian surfaces whose geometric endomorphism ring is a
possibly non-maximal order in a non-split quaternion algebra. We call such surfaces simply
PQM surfaces.
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We emphasize that this is a restrictive definition of ‘PQM’: we require that End(AF̄ ) does
not merely contain such a quaternion order, but is equal to it. In particular, under our
terminology, a PQM surface A is geometrically simple.

Concerning actions: we will use view Galois actions as right actions. We will view End(A)
as acting on A on the left. If a group G acts on a set X on the right, we write XG for the
set of G-fixed points.

2. Quaternionic arithmetic

This section collects some algebraic calculations in the quaternion order O. It can be
safely skipped on a first pass; the reader can return back to it when these calculations are
used.

2.1. The normalizer of a maximal order. We recall the following characterization of the
normalizer NB×(O) of O in B× (with respect to the conjugation action).

Lemma 2.1.1. An element of B×/Q× lies in NB×(O)/Q× if and only if it can be represented
by an element of O of reduced norm dividing disc(B).

Proof. An element b ∈ B lies in NB×(O) if and only if it lies in the local normalizer
N(B⊗Qp)×(O ⊗ Zp) for all primes p. If p does not divide disc(B), then this normalizer group
equals Q×p (O ⊗ Zp)× [Voi21, (23.2.4)]. If p divides disc(B), this group equals (B ⊗ Qp)

×

((23.2.8) in op. cit.). If b has norm dividing disc(B), then this description shows that b lies
in all local normalizer groups. Conversely, if b normalizes O then this description shows that
there exists a finite adele (λp)p such that λpb ∈ (O ⊗ Zp)× for all p - disc(B) and such that
nrd(λpb) has p-adic valuation ≤ 1 for all p | disc(B). Since Z has class number one, there
exists λ ∈ Q× such that λλ−1

p ∈ Z×p for all p and so λb ∈ O has norm dividing disc(B), as
desired. �

We recall for future reference that the quotient of NB×(O)/Q× by the subgroup O×/{±1}
is by definition the Atkin–Lehner group W of O, an elementary abelian 2-group whose
elements can be identified with positive divisors of disc(B).

2.2. Dihedral actions on O. For reasons that will become clear in §3.2, we are interested
in subgroups G ⊂ Aut(O) isomorphic to Dn for some n ∈ {1, 2, 3, 4, 6}. In this section we
describe these subgroups very explicitly.

By the Skolem–Noether theorem, every ring automorphism of O is of the form x 7→ b−1xb
for some b ∈ B× normalising O, and b is uniquely determined up to Q×-multiples. Therefore
Aut(O) ' NB×(O)/Q×.

If b ∈ B×, write [b] for its class in B×/Q×.

Lemma 2.2.1. Every element of NB×(O)/Q× of order 2 is represented by an element b ∈ O
such that b2 = m 6= 1 is an integer dividing disc(B). Moreover O〈b〉 = {x ∈ O | b−1xb = x}
is isomorphic to an order in Q(

√
m) containing Z[

√
m].

Proof. By Lemma 2.1.1, we may choose a representative b ∈ NB×(O) lying in O whose norm
nrd(b) divides disc(B). Since the element has order 2, m := b2 = − nrd(b) is an integer. We
have m 6= 1 since otherwise b2 = 1 hence b = ±1 ∈ Q×, which is trivial in NB×(O)/Q×. This
implies O〈b〉 = {x ∈ B | b−1xb = x} is an order in B〈g〉 = Q(b) containing Z[b] ' Z[

√
m], as

claimed. �
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Lemma 2.2.2. Let G ⊂ NB×(O)/Q× be a subgroup isomorphic to D2 = C2 × C2. Then
there exist elements i, j, k ∈ O such that B has basis {1, i, j, k}, such that i2 = m, j2 = n and
k2 = t all divide disc(B), such that ij = −ji and ij ∈ Q×k, and such that G = {1, [i], [j], [k]}.
Moreover, t equals −mn up to squares.

Proof. By Lemma 2.2.1, we can pick representatives i, j, k ∈ O of the nontrivial elements of
G that each square to an integer dividing disc(B). Since G is commutative, ji = λij for
some λ ∈ Q×. Comparing norms shows that λ = ±1. If λ = 1, then ij = ji but this would
imply that B is commutative, contradiction. Therefore ij = −ji. Finally, since [i][j] = [k],
k ∈ Q×ij. Taking norms, we see that t equals −mn up to squares. �

Lemma 2.2.3. Let G ⊂ NB×(O)/Q× be a subgroup isomorphic to D4. Then there exists
elements i, j ∈ O such that B has basis {1, i, j, ij}, such that i2 = −1, j2 = m divides
disc(B) and ij = −ji, and such that G = 〈[1 + i], [j]〉. Moreover, 2 | disc(B).

Proof. The fact that such i, j ∈ B exist follows from [Voi21, §32.5 and §32.6] (itself based
on results of [CF00]). By Q×-scaling j we may assume that j2 = m is a squarefree integer.
Since 1 + i, j ∈ NB×(O), Lemma 2.1.1 shows that i, j ∈ O and m | disc(B) and nrd(1 + i) =
2 | disc(B). �

Lemma 2.2.4. Let G ⊂ NB×(O)/Q× be a subgroup isomorphic to D3 or D6. Then there
exist elements ω, j ∈ O such that B has basis {1, ω, j, ωj}, such that ω3 = 1, j2 = m | disc(B)
and ωj = jω̄ = j(−1− ω), and such that G = 〈[1 + ω], [j]〉 if G ' D3 and G = 〈[1− ω], [j]〉
if G ' D6. Moroever, if G ' D6 then 3 | disc(B).

Proof. Identical to that of Lemma 2.2.3, again using [Voi21, §32.5 and §32.6] and Lemma
2.1.1. �

2.3. Fixed point subgroups modulo N . For reasons similar to those of §2.2, we study
the fixed points of G-actions on O/NO for subgroups G ⊂ Aut(O) isomorphic to Dn for
some n ∈ {1, 2, 3, 4, 6} and integers N ≥ 1 of interest.

Theorem 2.3.1. Let G be a subgroup of Aut(O) isomorphic to Dn for some n ∈ {1, 2, 3, 4, 6}.
(a) Suppose that N is coprime to 2 and 3. Then (O/NO)G is isomorphic to (Z/NZ)2 if

G = D1 and isomorphic to Z/NZ if G = D2, D3, D4 or D6.
(b) The group (O/3O)G is isomorphic to (Z/3Z)2 if G = D1; isomorphic to Z/3Z if

G = D2, D4, D6; and isomorphic to Z/3Z or (Z/3Z)2 if G = D3.
(c) We have

(O/2O)G '


(Z/2Z)2, (Z/2Z)3 or (Z/2Z)4 if G = D1,

(Z/2Z)2 or (Z/2Z)3 if G = D2,

(Z/2Z)2 if G = D4,

Z/2Z if G = D3 or D6.

Proof. The reduction map rN : OG ⊗ Z/NZ → (O/NO)G is injective and its cokernel is
isomorphic to the N -torsion of the group cohomology H1(G,O). Indeed, this can be seen
by taking G-fixed points of the exact sequence 0→ O → O → O/N → 0. The group OG is
isomorphic to Z2 if G = D1 and to Z if G = D2, D3, D4 or D6. Since the finite abelian group
H1(G,O) is killed by the order of G, Part (a) immediately follows. To prove (b) and (c), it
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therefore suffices to prove that H1(G,O)[6] is a subgroup of (Z/2Z)2 if G = D1; isomorphic
to (Z/2Z) or (Z/2Z)2 if G = D2; a subgroup of Z/3Z if G = D3; isomorphic to (Z/2Z) if
G = D4; and trivial if G = D6. Since H1(G,O ⊗ Zp) ' H1(G,O)⊗ Zp for all primes p and
since Aut(O ⊗ Zp) has only finitely many subgroups isomorphic to G up to conjugacy, this
is in principle a finite computation; we give a more detailed proof below.

Case G = D1. Since G = D1 = C2 has order 2, H1(G,O) is 2-torsion and is isomorphic to

the cokernel of r2 : OG⊗Z/2Z→ (O/2O)G. By Lemma 2.2.1, OG ' Z2 and so this cokernel
is either 0,Z/2Z or (Z/2Z)2. It follows that H1(G,O) ' 0,Z/2Z or (Z/2Z)2.

Case G = D2. By Lemma 2.2.2, there exist i, j, k ∈ O such that i2 = m, j2 = n and
k2 = t are all integers dividing disc(B), such that ij = −ji and k ∈ Q×ij and such that
G = {1, [i], [j], [k]}. Let Si = O ∩ Q(i), Sj = O ∩ Q(j), Sk = O ∩ Q(k). Then Si is
an order in Q(i) containing Z[i], and similarly for Sj and Sk. Since −mn equals t up
to squares, upon reordering {i, j, k} we may assume that Z[i] is maximal at 2. Therefore
Z[
√
m]⊗ (Z/2Z) = Si ⊗ (Z/2Z) ⊂ (O/2O) is a subring on which G acts trivially. It follows

that (Z/2Z)2 ⊂ (O/2O)G. We will now show that G acts nontrivially on (O/2O), so assume
by contradiction that this action is trivial. By the classification of involutions on finite free Z-
modules, every such involution is a direct sum of involutions of the form x 7→ x, x 7→ −x and
(x, y) 7→ (y, x). If G = 〈[i], [j]〉 acts trivially on O/2O, then both [i], [j] ∈ Aut(O) are direct
sums of involutions of the first two kinds. It follows that O is a direct sum of the eigenspaces
corresponding to the eigenvalues of [i] and [j]. It follows that O = Z1⊕Zi⊕Zj ⊕Zk. This
implies that the discriminant of O is ±4u, contradicting the fact that O is maximal at 2.
We conclude that (O/2O)G is (Z/2Z)2 or (Z/2Z)3 and since G is coprime to 3, this proves
that H1(G,O)[6] is isomorphic to Z/2Z or (Z/2Z)2.

Case G = D4. Let i, j ∈ O be elements satisfying the conclusion of Lemma 2.2.3, so
G = 〈[1 + i], [j]〉. Since Z[i] is maximal at 2, the map Z[i] ⊗ Z/2Z → O/2O is injective.
Since G acts trivially on the image of this map, (O/2O)G contains (Z/2Z)2. We need to show
that (O/2O)G = (Z/2Z)2. To prove this, it is enough to show that (O/2O)〈1+i〉 = (Z/2Z)2.
Since O is ramified at 2, there exists a unique conjugacy class of embeddings Z2[i] ↪→ OZ2

[Voi21, Proposition 30.5.3]. Therefore it is enough to verify that (O/2O)〈1+i〉 = (Z/2Z)2 in a

single example, for which this can be checked explicitly. Indeed, one may take B =
(
−1,6
Q

)
,

which has maximal order with Z-basis {1, (1 + i+ ij)/2, (1− i+ ij)/2, (j+ ij)/2}. Since #G
is coprime to 3, we conclude that H1(G,O)[6] = Z/2Z.

Case: G = D3, D6. Let ω, j ∈ O be elements satisfying the conclusion of Lemma 2.2.4.
Let Cn ≤ Dn be the cyclic normal subgroup of order n for n ∈ {3, 6}. The low terms of the
Lyndon–Hochschild–Serre spectral sequence give rise to the exact sequence

0→ H1(C2,OCn)→ H1(G,O)→ H1(Cn,O)C2 → H2(C2,OCn).(2.3.2)

The subring OCn equals O〈1±ω〉 = Z[ω] and C2 = Dn/Cn acts on OCn via conjugation
ω 7→ ω̄. A cyclic group cohomology calculation shows that H i(C2,Z[ω]) is trivial for all
i ≥ 1. Therefore H1(G,O) ' H1(Cn,O)C2 . Assume G = D6. Using the analogous exact
sequence to (2.3.2) for the subgroup C3 ≤ C6, we get H1(C6,O) ' H1(C3,O)C2 . Since C2

acts trivially on C3 = {1, g, g2} and acts as −1 on {x ∈ O | x + gx + g2x = 0}, it will act
as −1 on H1(C3,O) ' (Z/3Z)r, so H1(C3,O)C2 = 0 and so H1(G,O) ' H1(C6,O)C2 ⊂
H1(C6,O) ' H1(C3,O)C2 is zero too in this case. It remains to consider the case G = D3.
ThenH1(G,O) ' H1(C3,O)C2 . Let g ∈ C3 be a generator, given by conjugating by 1+ω. Let
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L = {x ∈ O | x+gx+g2x = 0}. Using the basis {1, ω, j, ω} of B, we see that L = O∩Q(ω)·j.
Using the explicit description of group cohomology of cyclic groups, H1(C3,O) is isomorphic
to L/(1 − g)O. Since (1 − g)O contains (1 − g)L = (1 − ω)L, H1(C3,O) is a quotient of
L/(1 − ω)L. Since (1 − ω)2L = 3L and L/3L ' (Z/3Z)2, L/(1 − ω)L is of order 3. This
shows that H1(C3,O) = 0 or Z/3Z, so H1(D3,O) = 0 or Z/3Z, as claimed.

�

Remark 2.3.3. A calculation with the quaternion algebra package in Magma shows that all
the possibilities in Theorem 2.3.1 do indeed occur.

The next three lemmas give some more precise information about subgroups G ⊂ Aut(O)
for which (O/2O)G ' (Z/2Z)3. In these lemmas, we will use the fact that if 2 | disc(B),
there exists a unique ring homomorphism O/2O → F4, see [Voi21, Theorem 13.3.11].

Lemma 2.3.4. Let b ∈ O∩NB×(O) be an element with b2 = m | disc(B) and m 6= 1. Write
F ⊂ O/2O for the subset centralized by the reduction of b in O/2O. Then F ' (Z/2Z)3 if
and only if 2 | disc(B) and m ≡ 3 mod 4. In that case F equals the subset of elements of
O/2O whose image under the ring homomorphism O/2O → F4 lands in F2.

Proof. Suppose F ' (Z/2Z)3. We first show that 2 | disc(B). If not, then m is odd by
Lemma 2.2.1, O/2O ' Mat2(F2) and F is the fixed points of conjugating by an element of
order dividing 2 in GL2(F2). Since there is only one involution in GL2(F2) up to conjugacy,
which we may calculate has centralizer (Z/2Z)2, this shows that 2 | disc(B). We now show
that 2 - m. If 2 | m, then since m is squarefree b is a 2-adic uniformizer of O ⊗ Z2. Then

there exists an unramified quadratic subring S ⊂ O ⊗ Z2 isomorphic to Z2

[
−1+

√
−3

2

]
such

that O ⊗ Z2 = S + S · b [Voi21, Theorem 13.3.11]. This shows that conjugation by b acts
via x + yb 7→ x̄ + ȳb. This map has 4 fixed points, hence we obtain a contradiction and
m is odd. It follows that F is given by the fixed points of conjugating by an element of
(O/2O)×. This element is trivial if and only if b ∈ 1 + 2O. Since O ⊗ Z2 consists of all
integral elements of B ⊗ Q2 [Voi21, Proposition 13.3.4] and since b ∈ O, this is equivalent
to (b − 1)/2 being integral at 2, that is to say to m ≡ 1 mod 4. This proves the forward
direction of the lemma. For the other direction, note that (O/2O)× (where O is ramified
at 2) has a unique involution up to conjugacy, which can be checked to have (Z/2Z)3 fixed
points in the presentation (6.1.1). �

Lemma 2.3.5. Let b ∈ O ∩ NB×(O) be an element with b2 = m | disc(B) and m 6= 1.
Suppose that the conjugation action of b on O/2O has fixed points ' (Z/2Z)3. Then there
exists no x ∈ O/4O with x ≡ 1 mod 2O and b−1xbx = −1.

Proof. Suppose that x ∈ O/4O is such an element. Let y = bx. Since mb−1 = b, multiplying
the equation b−1xbx = −1 by m shows that y2 = −m in O/4O. By Lemma 2.3.4, 2 | disc(B)
and m ≡ 3 mod 4, so y2 = 1 in O/4O. Since x ≡ 1 mod 2O, y = bx ≡ b mod 2O. We
may therefore write y = b+ 2z for some z ∈ O/4O. We compute, in O/4O, that

y2 = (b+ 2z)(b+ 2z) = b2 + 2(bz + zb) + 4z2 = m+ 2(bz + zb) = 3 + 2(bz + zb).

Since y2 = 1, this shows that 2(bz + zb) = 2. Write b̄ and z̄ for the mod 2 reductions of b
and z. Then the above identity implies that

b̄z̄ + z̄b̄ = 1.(2.3.6)
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Since 2 is ramified in B and O is maximal, there exists a surjective ring homomorphism
λ : O/2O → F4. Applying λ to (2.3.6) shows that λ(b̄)λ(z̄) + λ(z̄)λ(b̄) = λ(1) = 1. Since
F4 is commutative, the left hand side of this equation also equals 2λ(b̄)λ(z̄) = 0, which is a
contradiction. �

Recall from Lemma 2.2.2 that a subgroup G ≤ NB×(O) isomorphic to C2 × C2 can be
generated by elements i, j ∈ O with ij = −ji, i2 = m, j2 = n and m,n | disc(B).

Lemma 2.3.7. Let G ⊂ NB×(O) be a subgroup isomorphic to C2 × C2. Then (O/2O)G '
(Z/2Z)3 if and only if (in the above notation) 2 | disc(B) and m,n ≡ 3 mod 4.

Proof. Suppose first that (O/2O)G ' (Z/2Z)3. Then the conjugation involutions [i] and [j]
have both 23 or 24 fixed points on O/2O. At least one of them, say j, has 23 fixed points.
By Lemma 2.3.4, 2 | disc(B) and n ≡ 3 mod 4. If 2 | m, then i is a 2-adic uniformizer and
the action of i on O/2O would have 22 fixed points (by an argument similar to the proof
of Lemma 2.3.4). So m is odd. If m ≡ 1 mod 4, then the 2-adic Hilbert symbol of (m,n)

is trivial, contradicting the fact that 2 | disc(B) and B '
(
m,n
Q

)
. We conclude that m ≡ 3

mod 4. The converse follows from Lemma 2.3.4. �

3. Galois actions, polarizations and endomorphisms

This section collects some preliminaries concerning the arithmetic of PQM surfaces. In
particular, we study the Galois action on the endomorphism algebra, the set of polarizations,
the torsion points and the interaction between these. The most important subsection is §3.2,
where the endomorphism field of a PQM surface is introduced.

3.1. Abelian surfaces of GL2-type. Recall that an abelian surface A over a number field
F is said to be of GL2-type if End0(A) is a quadratic field extension of Q. We will show that
if A is geometrically simple and F admits a real place, then this field must be real quadratic.
(The geometrically simple hypothesis is necessary; for example, the simple modular abelian
surface J1(13) satisfies End0(J1(13)) ' Q(

√
−3).) This is well known over Q (see [Rot08,

Lemma 2.3]), which suffices for our purposes—but we also give an argument that works over
any field contained in R that might be of independent interest. (We thank Davide Lombardo
for suggesting it.)

Lemma 3.1.1. Let A/R be an abelian surface. Then rk NS(A) ≥ rk NS(AC)− 1.

Proof. There exists a two-dimensional R-vector space W , a lattice Λ ⊂ WC := W ⊗C stable
under the automorphism σ induced by complex conjugation on the second factor, and a
complex analytic isomorphism A(C) ' (WC)/Λ that intertwines complex conjugation on
A(C) with σ. Under this isomorphism, NS(AC) can be identified with the set of Z-bilinear
alternating forms E : Λ × Λ → Z with the property that the R-linear extension ER of E
to WC satisfies ER(iv, iw) = ER(v, w) for all v, w ∈ Λ ⊗ R = WC. By [Sil89, Chapter
IV, Theorem (3.4)] such an E lies in NS(A) if and only if the associated Hermitian form
ER(iv, w) + iER(v, w) is R-valued on W × W , that is to say ER(W,W ) = 0. Since the
intersection Λ′ = Λ ∩ W is a lattice in W , the condition ER(W,W ) = 0 is equivalent to
E(Λ′,Λ′) = 0. In conclusion, NS(A) = ker(NS(AC) → Hom(∧2(Λ′),Z)), where the map
sends E to its restriction to Λ′ × Λ′. Since the target of this map is isomorphic to Z, the
lemma is proved. �
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Proposition 3.1.2. Let A/R be a geometrically simple abelian surface. Then End(A) is
isomorphic to Z or an order in a real quadratic field.

Proof. By the classification of endomorphism algebras of complex abelian surfaces [BL04,
Proposition 5.5.7, Exercise 9.10(1) and Exercise 9.10(4)], End0(AC) is isomorphic to either
Q, a real quadratic field, a non-split indefinite quaternion algebra or a quartic CM field. The
proposition is clear in the first two cases, so we may assume that we are in one of the latter
two cases.

Since End0(A) acts on the Q-homology of A(R)◦ ' S1×S1, there is a (nonzero, hence in-
jective) map End0(A) ↪→ Mat2(Q). Since End0(AC) does not embed in Mat2(Q), End0(A) 6=
End0(AC) and so End0(A) is at most two-dimensional. It remains to exclude that End0(A) is
an imaginary quadratic field, so assume for contradiction that this is the case. If End0(AC)
is a quaternion algebra, Lemma 3.1.1 shows that rk(NS(A)) ≥ 3− 1 = 2, contradicting the
fact that End0(A) is imaginary quadratic. If End(AC) is a quartic CM field F , this CM field
has at least two quadratic subfields (namely its unique real quadratic subfield and End0(A))
so it must be a biquadratic extension of Q. A counting argument then shows that every
CM type of F is imprimitive. This implies [Lan83, Theorem 3.5] that AC is not simple. We
again obtain a contradiction and have completed all cases of the proof. �

3.2. The endomorphism field of a PQM surface. Let F be a field of characteristic zero
and A/F a PQM surface. The absolute Galois group GalF acts on End(AF̄ ) on the right by

ring automorphisms via φσ(a) = φ
(
aσ
−1
)σ

for σ ∈ GalF , φ ∈ End(AF̄ ) and a ∈ A(F̄ ). The

kernel of this action cuts out a Galois extension L/F over which all the endomorphisms of
AF̄ are defined. Following [GK17] we call L the endomorphism field of A. This determines an
injective map ρEnd : Gal(L/F ) → Aut(End(AF̄ )). We recall the results of [DR04] studying
this map which are relevant for our purposes. Write Cn (resp. Dn) for the cyclic (resp.
dihedral) group of order n (resp. 2n). Note the isomorphisms D1 ' C2 and D2 ' C2 × C2.

Proposition 3.2.1. Let A/F be a PQM surface with endomorphism field L and let G =
Gal(L/F ). Then G ' Cn or Dn for some n ∈ {1, 2, 3, 4, 6}. If F admits an embedding into
R, then G ' Dn for some n ∈ {1, 2, 3, 4, 6}.

Proof. The classification of finite subgroups of B×/Q× shows that G is isomorphic to Cn or
Dn for some n ∈ {1, 2, 3, 4, 6} [DR04, Proposition 2.1]. It therefore suffices to exclude that G
is isomorphic to C1, C3, C4 or C6 if there exists an embedding ι : F ↪→ R. If G is isomorphic
to one of these groups, then End0(A) is isomorphic to B (if G is trivial) or an imaginary
quadratic field [DR04, Theorem 3.4(C)]. This contradicts Proposition 3.1.2. �

Lemma 3.2.2. Let A be a PQM surface over a number field F admitting a real place. Then
A is of GL2-type if and only if the endomorphism field L/F is a quadratic extension.

Proof. By Proposition 3.1.2, A is of GL2-type if and only if End(A) 6= Z. By [DR04, Theorem
3.4(C)], End(A) 6= Z if and only if L is a cyclic extension of F . By Proposition 3.2.1, L/F
is cyclic if and only if it is a quadratic extension. �

Assume now that A is an O-PQM surface and fix an isomorphism End(AF̄ ) ' O. By
the Skolem–Noether theorem, every ring automorphism of O is of the form x 7→ b−1xb for
some b ∈ B× normalising O, and b is uniquely determined up to Q×-multiples. Therefore
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Aut(O) ' NB×(O)/Q× ⊂ B×/Q×, hence the map Gal(L/F ) → Aut(End(AF̄ )) can be
viewed as an injective homomorphism

ρEnd : Gal(L/F )→ Aut(O) ' NB×(O)/Q×(3.2.3)

whose image is isomorphic to Cn or Dn for some n ∈ {1, 2, 3, 4, 6} by Proposition 3.2.1.

Remark 3.2.4. The existence of a polarization of a certain type puts restrictions on the Galois
group of the endomorphism field, see [DR04, Theorem 3.4]. In particular, that theorem shows
that if an O-PQM surface A is principally polarized over F then this Galois group is {1},
C2 or C2 × C2.

For future reference we record the following result of Silverberg [Sil92, Proposition 2.2].

Proposition 3.2.5 (Silverberg). Let N ≥ 3 be an integer and suppose that the GalF -action
on A[N ] is trivial. Then L = F .

We also record the useful fact that the endomorphism field is preserved by quadratic twist.

Lemma 3.2.6. Let A/F be a PQM surface and M/F a quadratic extension. Let AM be the
quadratic twist of A along M/F . Then under the identification End(AF̄ ) = End((AM)F̄ ),
ρEnd,A = ρEnd,AM .

Proof. This follows from the fact that −1 is central in End(AF̄ ). �

3.3. Polarizations and positive involutions. Let A be an abelian surface over a field F
of characteristic zero. Recall that a polarization is an ample class L in NS(A). Such a class
gives rise to an isogeny λL : A→ A∨, and we frequently identify L with this isogeny. There
exists unique positive integers d1 | d2 such that ker(λL)(F̄ ) ' (Z/d1)2 × (Z/d2)2; the pair
(d1, d2) is called the type of the polarization and the integer deg(L) = d1d2 is called its degree.
We say two polarizations L and L′ are Q×-equivalent if there exist nonzero integers m,n such
that mL = nL′, and we call a Q×-equivalence class of polarizations a Q×-polarization. Every
Q×-polarization contains a unique polarization of type (1, d) for some d ≥ 1.

Recall that a positive involution of B is a Q-linear involution ι : B → B satisfying ι(ab) =
ι(b)ι(a) and trd(aι(a)) ∈ Q≥0 for all a, b ∈ B. By the Skolem–Noether theorem, every such
involution is of the form b 7→ µ−1b̄µ, where b̄ = trd(b) − b denotes the canonical involution
and µ ∈ B× is an element with µ2 ∈ Q<0. Two such elements µ, µ′ ∈ B× give rise to the
same involution if and only if µ is a Q×-multiple of µ′.

To combine these two notions, suppose that End(A) = End(AF̄ ) ' O; let us fix such an
isomorphism to identify End(A) with O. Given a polarization L of A, the Rosati involution
on End0(A), defined by f 7→ λ−1

L ◦ f∨ ◦ λL, corresponds to a positive involution ιL of B.

Proposition 3.3.1. The assignment L 7→ ιL induces a bijection between the set of Q×-
polarizations of A and the set of positive involutions of B. In addition, if L is a polarization
and µ ∈ B× is an element such that ιL is of the form b 7→ µ−1b̄µ, then

deg(L) ≡ disc(B) · nrd(µ) mod Q×2.(3.3.2)

Proof. This can be deduced from [DR04, Theorem 3.1], but can also be proved purely al-
gebraically as follows. Choose an element ν ∈ O with ν2 = − disc(B). Then it is well
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known [Voi21, Lemma 43.6.23] that A has a unique principal polarization M such that
ιM(b) = ν−1b̄ν for all b ∈ B. To determine all polarizations of A, consider the maps

(NS(A)⊗Q) \ {0} α−→ {x ∈ B× | ν−1x̄ν = x} β−→ {µ ∈ B× | µ̄ = −µ},

where α(L) = λ−1
M ◦ λL and β(x) = νx. Since L 7→ λL induces a bijection NS(A) ⊗ Q →

{f ∈ Hom(A,A∨) | f∨ = f}, α is a bijection. Moreover, β is a bijection by a direct
computation. In addition, one can also compute that the Rosati involution associated to
a Neron–Severi class L is given by conjugation by β(α(L)). Both (NS(A) ⊗ Q) \ {0} and
{µ ∈ B× | µ̄ = −µ} have evident Q×-actions, and their quotients are given by the set of
Q×-polarizations and the set of positive involutions on B respectively. Combining these
observations shows that L 7→ ιL is indeed a bijection between the set of Q×-polarizations
and the set of positive involutions. To check (3.3.2), we compute that for α(L) = x and
µ = νx: deg(L) = nrd(x) = nrd(µ)/ nrd(ν) ≡ disc(B) · nrd(µ) mod Q×2. �

Remark 3.3.3. If we want to avoid choosing an isomorphism End(A) ' O, we may rephrase
Proposition 3.3.1 as saying that there is a bijection between Q×-polarizations on A and
positive involutions on the quaternion algebra End0(A).

Now suppose that A/F is an abelian surface with End(AF̄ ) ' O. Recall from §3.2 that
GalF acts on End(AF̄ ) by ring automorphisms. If L is a polarization on AF̄ , the Rosati
involution associated to L is of the form b 7→ µ−1bµ for some µ ∈ End0(AF̄ ), uniquely
determined up to Q×-multiple.. Therefore the imaginary quadratic field Q(µ) ⊂ End0(AF̄ )
is independent of the choice of µ.

Corollary 3.3.4. The map L 7→ Q(µ) constructed above induces a bijection between Q×-
polarizations of AF̄ and imaginary quadratic fields contained in End0(AF̄ ). A polarization
descends to A if and only if the imaginary quadratic field is GalF -normalized.

Proof. The bijection part immediately follows from Proposition 3.3.1, together with the fact
that the set of positive involutions on End0(AF̄ ) is in bijection with the set of imaginary
quadratic subfields of End0(AF̄ ).

Since taking the Rosati involution is GalF -equivariant, this bijection preserves the Galois
action on both sides. This induces a bijection on the GalF -fixed points on both sides,
justifying the last sentence of the corollary. �

3.4. The distinguished quadratic subring. If A/Q is an O-PQM surface of GL2-type,
then the torsion groups A[n] are modules over S/nS, where S is the real quadratic ring
End(A). If A is not of GL2-type, then End(A) = Z, and so it may seem that there is no
structure to exploit. However, we have seen in Corollary 3.3.4 that any polarization of A
determines a GalQ-stable imaginary quadratic subring S ⊂ End(AQ).

Definition 3.4.1. Let A/Q be an O-PQM surface. If A is of GL2-type, let M = End0(A).
Otherwise, let M ⊂ End0(AQ) be the imaginary quadratic field corresponding to the unique

primitive polarization on A via Corollary 3.3.4. We call M ⊂ End0(AQ) the distinguished
quadratic subfield and S = M ∩ End(AQ) the distinguished quadratic subring of A.

The next proposition describes the distinguished quadratic subring more explicitly.
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Proposition 3.4.2. Let A/Q be an O-PQM surface and let S be its distinguished quadratic
subring, seen as a subring of O using an isomorphism O ' End(AQ). Let G be the Galois
group of the endomorphism field of A (as in §3.2).

(a) S is isomorphic to an order of Q(
√
m) containing Z[

√
m] for some m ∈ Z≥2 dividing

disc(B) if G = C2; to an order of Q(
√
−m) containing Z[

√
−m] for some m ∈ Z≥2

dividing disc(B) if G = D2; to Z[i] with i2 = −1 if G = D4; and to Z[ω] with ω3 = 1
if G = D3 or D6.

(b) S is an order in a quadratic field, maximal away from 2 and unramified away from
6 disc(B).

Proof. The description of S in the C2 case follows from Lemma 2.2.1. If G 6' C2 (in other
words, if A is not of GL2-type by Lemma 3.2.2), then Corollary 3.3.4 shows that S is the
unique imaginary quadratic subring of End(AQ) that is GalQ-stable and that is optimally
embedded, i.e. (S ⊗Q)∩O = S. So to prove (a) it suffices to find a subring of O satisfying
the stated conditions. This follows from the explicit description of the G-action given in
§2.2. Part (b) immediately follows from the first part. �

3.5. The enhanced Galois representation. Let A be an O-PQM surface over a field F of
characteristic zero, and fix an isomorphism O ' End(AF̄ ) so that O acts on AF̄ on the left.
In §3.2 we have described how GalF acts on the endomorphism ring O; this action is encoded
by the homomorphism ρEnd : GalF → Aut(O) of Equation 3.2.3. On the other hand GalF
acts on the torsion points of AF̄ . In this section we formalize the interaction of these two
GalF -actions using a homomorphism that we call the enhanced Galois representation. This
basic definition might be of independent interest and will be used in the proof of Theorem
1.4, more specifically to exclude (Z/2Z)3 in the GL2-type case in Proposition 5.3.8.

Let I ⊂ O be a GalF -stable two-sided ideal, for example I = N · O for some integer
N ≥ 1. The subgroup A[I](F̄ ) ⊂ A(F̄ ) of points killed by I is a GalF -module. Let GL(A[I])
be the group of Z-module automorphisms of A[I](F̄ ), seen as acting on A[I](F̄ ) on the right.
The GalF -action on A[I] is encoded in a homomorphism ρI : GalF → GL(A[I]). The left
O-action on AF̄ induces an O/I-action on A[I](F̄ ) such that

(a · P )σ = aσ · P σ(3.5.1)

for all P ∈ A[I](F̄ ), a ∈ O and σ ∈ GalF . Let Aut◦(A[I]) be the subgroup of pairs
(γ, ϕ) ∈ Aut(O)×GL(A[I]) such that (a ·P )ϕ = aγ ·Pϕ for all a ∈ O and P ∈ A[I](F̄ ). The
compatibility (3.5.1) implies that the product homomorphism ρEnd× ρI : GalF → Aut(O)×
GL(A[I]) lands in Aut◦(A[I]), so we obtain a homomorphism

ρ◦I : GalF → Aut◦(A[I]).(3.5.2)

We now identity Aut◦(A[I]) with an explicit semidirect product. Consider the group Aut(O)n
(O/I)×, where Aut(O) acts on (O/I)× via restricting the standard right Aut(O)-action on
O/I to (O/I)×. Multiplication in this group is given by (γ1, x1) · (γ2, x2) = (γ1γ2, x

γ2
1 x2).

The O/I-module A[I](F̄ ) is free of rank 1 [Oht74]. Let Q ∈ A[I](F̄ ) be an O/I-module gen-
erator. For every (γ, x) ∈ Aut(O) n (O/I)×, let ϕ(γ,x) be the element of GL(A[I]) sending
a ·Q to aγx ·Q for all a ∈ O/I.

Lemma 3.5.3. The map (γ, x) 7→ (γ, ϕ(γ,x)) induces an isomorphism Aut(O) n (O/I)×
∼−→

Aut◦(A[I]).
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Proof. This is a formal verification. The inverse of this isomorphism is given by sending
(γ, ϕ) to (γ, x), where x ∈ (O/I)× is the unique element with Qϕ = x ·Q. �

Using Lemma 3.5.3, we may view the homomorphism (3.5.2) as a homomorphism

ρ◦I : GalF → Aut(O) n (O/I)×.(3.5.4)

Definition 3.5.5. The homomorphism (3.5.2) or, after a choice of O/I-module generator of
A[I](F̄ ), the homomorphism (3.5.4), is called the enhanced Galois representation associated
to A and I.

Since Aut◦(A[I]) is a subgroup of Aut(O) × GL(A[I]), it comes equipped with projec-
tion homomorphisms π1 : Aut◦(A[I])→ Aut(O) and π2 : Aut◦(A[I])→ GL(A[I]) satisfying
ρEnd = π1 ◦ ρ◦I and ρI = π2 ◦ ρ◦I .
Remark 3.5.6. Suppose that ρEnd is trivial, in other words End(A) = End(AF̄ ) ' O. Then
the homomorphism (3.5.4) lands in the subgroup {1} n (O/I)× and hence simplifies to a
homomorphism GalF → (O/I)×. This recovers the well known description [Oht74] of the
Galois representation ρI in this case.

We show that usually, ρ◦I does not contain more information than ρI itself, using the
following well known lemma.

Lemma 3.5.7. Let G be a finite subgroup of GLn(Z) for some n ≥ 1 and let redN : G →
GLn(Z/NZ) be the restriction of the reduction map. Then redN is injective if N ≥ 3, and
every element of the kernel of red2 has order 1 or 2.

Proof. This is a classical result of Minkowski [Min87]; see [SZ95, Theorem 4.1] for an acces-
sible reference. �

Proposition 3.5.8. Supppose that I = N · O for some integer N ≥ 3. Then π2 is injective
on the image ρ◦I . Consequently, the image of ρ◦I is isomorphic to the image of ρI .

Proof. Choose a O/N -module generator Q ∈ A[N ](F̄ ). If (γ, ϕ) ∈ ker(π2), then ϕ = Id and
a · Q = aγ · Q for all a ∈ O/N . So a = aγ for all a ∈ O/N . Therefore γ ∈ ker(Aut(O) →
Aut(O/N)). By Lemma 3.5.7, this kernel does not contain any nontrivial element of finite
order. However, the image of ρEnd is finite (Proposition 3.2.1). We conclude that ker(π2) ∩
image(ρ◦I) = {1}. �

Remark 3.5.9. We can also define `-adic versions of the enhanced Galois representation: for
every prime ` this is a group homomorphism GalF → Aut(O) n (O ⊗ Z`)× encoding both
the GalF -action on O and on the `-adic Tate module of A.

4. PQM surfaces over local and finite fields

We collect some results about PQM surfaces A over local and finite fields, especially the
possible reduction types. The most important facts for our purposes are: a PQM surface
A/Q of GL2-type has totally additive reduction at every bad prime (Corollary 4.1.4); the
prime-to-p torsion in the totally additive case is controlled by the Néron component group
(Lemma 4.3.1); and the latter in turn is controlled by the smallest field extension over which
A acquires good reduction (Proposition 4.2.1).

For the remainder of this section, let R be a henselian discrete valuation ring with fraction
field F of characteristic zero and perfect residue field k of characteristic p ≥ 0.
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4.1. Néron models of PQM surfaces. We first recall some notions in the theory of Néron
models. Let A/F be an abelian variety with Néron model A/R. The special fiber Ak fits
into an exact sequence

0→ A◦k → Ak → Φ→ 0

where Φ is the component group of Ak, a finite étale k-group scheme. The identity component
A0
k fits into an exact sequence

0→ U × T → A0
k → B → 0(4.1.1)

where U is a unipotent group, T is a torus and B is an abelian variety over k. The dimensions
of U, T , and B, which we denote by u, t, and b, are called the unipotent, toric and abelian
ranks of A, respectively. We have u+ t+ b = dimA, and A has bad reduction if and only if
b < dimA. Similarly, A has potentially good reduction over F if and only if its toric rank is
0 over every finite extension of F .

Lemma 4.1.2. Suppose that A/F is an abelian surface such that End0(AF̄ ) contains a non-
split quaternion algebra. Then there exists a finite extension F ′/F such that AF ′ has good
reduction. If k is finite, we may take F ′ to be a totally ramified extension of F .

Proof. The fact that A has potentially good reduction is well known, see e.g. [CX08, p. 536].
It follows from the fact that a non-split quaternion algebra does not embed in Mat2(Q), and
hence does not embed in End(T )⊗Q for any torus T/k of dimension 1 or 2.

The last sentence of the lemma can be justified by taking a lift in GalF of the Frobenius
in Galk, in a manner analogous to [ST68, p. 498]. �

Proposition 4.1.3. Suppose that A/F is an abelian surface such that End0(AF̄ ) contains a
non-split quaternion algebra. Suppose that A has bad reduction. Then:

(a) t = 0.
(b) If End0(A) contains a real quadratic field, then u = dimA = 2.
(c) If u = 1, then AK has good reduction over any field extension K/F such that

End0(AK) contains a real quadratic field.

Proof. (a) follows from the fact that A has potentially good reduction and the fact that the
toric rank cannot decrease under extension of the base field [CX08, Proposition 2.4]. For
(b), we only need to exclude the possibility that u = b = 1, so suppose by contradiction that
it holds. Let E ⊂ End0(A) be a real quadratic subfield. Reducing endomorphisms in (4.1.1)
gives a (nonzero, hence injective) map E ↪→ End0(B). By assumption, B is an elliptic curve.
However, this contradicts the fact that the endomorphism algebra of an elliptic curve (over
any field) does not contain a real quadratic field. Finally, (c) follows from (b), since the
abelian rank cannot decrease after base change [CX08, Proposition 2.4]. �

When u = dimA one says that A has totally additive reduction.

Corollary 4.1.4. Let A/Q be a PQM surface and p a prime of bad reduction. Suppose that
A is of GL2-type. Then A has totally additive reduction at p.

Proof. This follows from Proposition 4.1.3(b) and the fact that End(A) is real quadratic by
Proposition 3.1.2. �
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Remark 4.1.5. One can show that if p ≥ 5 then the Prym variety of y3 = x4 + x2 + p (which
has PQM by [LS23]) has unipotent rank 1 over Qp. So the GL2-type hypothesis cannot be
dropped in general in Corollary 4.1.4.

Finally, we state Raynaud’s criterion for A/F to have semistable reduction, which in the
case of a PQM surface is necessarily good by Proposition 4.1.3.

Lemma 4.1.6. Let A/F be a PQM surface, n an integer not divisible by the residue char-
acteristic p and suppose that all points in A[n] are defined over an unramified extension of
F . Then

(a) if n = 2 then A has good reduction over every ramified quadratic extension of F ;
(b) if n ≥ 3 then A has good reduction over F .

Proof. See [SZ95, §7]. �

4.2. The good reduction field and component group of a PQM surface. Let A/F
be an abelian variety with potentially good reduction. If k is algebraically closed, there exists
a smallest field extension M/F such that AM has good reduction, called the good reduction
field of A. This is a Galois extension, equal to F (A[N ]) for every N ≥ 3 coprime to p [ST68,
§2, Corollary 3]. It is relevant for us because it controls the size of the component group, by
the following result [ELL96, Theorem 1].

Proposition 4.2.1. Suppose that k is algebraically closed. Let A/F be an abelian variety
with potentially good reduction and reduction field M/F . Then the Néron component group
Φ is killed by [M : F ].

The next lemma constrains the good reduction field of a PQM surface.

Lemma 4.2.2. Suppose that k is algebraically closed. Let A/F be a PQM surface with good
reduction field M/F . Then [M : F ] divides 242. In particular, [M : F ] is coprime to any
prime ` > 3.

Proof. Let L be the endomorphism field ofA/F (Section 3.2). By the Néron–Ogg–Shafarevich
criterion, all prime-to-p torsion is defined over M , hence L ⊂ M by a result of Silverberg
(Proposition 3.2.5). By Proposition 3.2.1, [L : F ] divides 24. By [JM94, Proposition 4.2]
and its proof (whose notation does not agree with ours), we have [M : L] | 24. We conclude
that [M : F ] = [M : L][L : F ] divides 242. �

Lemma 4.2.3. Let A/F be a PQM surface and let ` ≥ 5. Then the order of Φ is not
divisible by `.

Proof. Since formation of Néron models commutes with unramified base change, it is enough
to prove the lemma in the case where F has algebraically closed residue field. This then
follows from Proposition 4.2.1 and Lemma 4.2.2. �

We record the following technical lemma that will allow us to sometimes ‘quadratic twist
away’ bad primes. This will be useful in the proof of Proposition 5.2.1.

Lemma 4.2.4. Suppose that p 6= 2. Let A/F be an abelian variety with totally additive
reduction. Suppose that AM has good reduction for some quadratic extension M/F . Then
the quadratic twist AM of A by M has good reduction.
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Proof. Let IF and IM denote the inertia group of GalF and GalM respectively. Fix a prime
` 6= p. By the Néron–Ogg–Shafarevich criterion, the IF -action on the `-adic Tate module T`A
factors through a faithful IF/IM -action, so acts via an element σ ∈ GL(T`A) of order 2. Since
A has totally additive reduction, (T`A)IF = 0 and so σ = −1. Let χM : GalF → {±1} be the
character corresponding to the extension M/F . Then T`(A

M) ' T`A⊗χM as GalF -modules.
Therefore IF acts trivially on T`(A

M) and AM has good reduction. �

4.3. Component groups and torsion. The relevance of the component group is the fol-
lowing well-known fact, see for example [Lor93, Remark 1.3]. If G is an abelian group, write
G(p) for its subgroup of elements of finite order prime to p.

Lemma 4.3.1. If A/F is an abelian variety with totally additive reduction (i.e. u = dimA),

then A(F )
(p)
tors is isomorphic to a subgroup of Φ(k)(p), where Φ denotes the component group

of Ak.

Lorenzini has studied the component groups of general abelian surfaces with potentially
good reduction and totally additive reduction, which leads to the following severe constraint
on their torsion subgroups [Lor93, Corollary 3.25].

Theorem 4.3.2 (Lorenzini). Let A/F be an abelian surface with totally additive and poten-

tially good reduction. Then A(F )
(p)
tors is a subgroup of one of the following groups:

Z/5Z, (Z/3Z)2, (Z/2Z)4, Z/2Z× Z/4Z, Z/2Z× Z/6Z.

We can say more if A has totally additive reduction over any proper subextension of the
good reduction field. The following slight variant of [Lor93, Corollary 3.24] will be very
useful in classifying torsion in the GL2-type case.

Proposition 4.3.3. Suppose that the residue field of F is algebraically closed. Let A/F be
an abelian variety with bad and potentially good reduction. Let M/F be the good reduction
field of A. Suppose that AF ′ has totally additive reduction for every F ⊂ F ′ ( M . Suppose

that the prime-to-p torsion subgroup A(F )
(p)
tors of A(F ) is nontrivial. Then there exists a

prime number ` 6= p such that [M : F ] is a power of ` and A(F )
(p)
tors ' (Z/`Z)k for some

k ≥ 1.

Proof. Let G := Gal(M/F ). For every F ⊂ F ′ ( M , A(F )
(p)
tors ⊂ A(F ′)

(p)
tors is isomorphic to

a subgroup of the component group of AF ′ by Lemma 4.3.1, which is killed by [F : F ′] by

Proposition 4.2.1. By Galois theory, A(F )
(p)
tors is therefore killed by #H for every nontrivial

subgroup H ≤ G. The group A(F )
(p)
tors is nontrivial by assumption; let ` be a prime dividing

its order. We claim that this ` satisfies the conclusions of the proposition. Indeed, by

definition of A(F )
(p)
tors we have ` 6= p. Moreover if #G is divisible by another prime `′, then

by taking H a Sylow-`′ subgroup of G we get a contradiction, so #G = [M : F ] is a power

of `. By taking H to be an order ` subgroup of G, we see that A(F )
(p)
tors is killed by `, as

desired. �

In the general case (not necessarily totally additive reduction), we have the following
well-known result when F is a finite extension of Qp, which follows from formal group law
considerations [CX08, §2.5 and Proposition 3.1].
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Lemma 4.3.4. Suppose that F/Qp is a finite extension of ramification degree e. Let A/F be
an abelian variety with Néron model A/R. Let red: A(F ) = A(R)→ A(k) be the reduction
map.

(a) The restriction of red to prime-to-p part of A(F )tors is injective.
(b) If in addition e < p− 1, then red is injective on A(F )tors.

4.4. The conductor of a PQM surface. Recall that the conductor f(A) of an abelian
variety A/Q is a positive integer divisible exactly by the primes of bad reduction of A; see
[BK94] for a precise definition and more information. We may write f(A) =

∏
p p

fp(A), where

fp(A) denotes the conductor exponent at a prime p.

Lemma 4.4.1. Let A/Q be a PQM surface of GL2-type. Let p be a prime such that A has
bad reduction at p but acquires good reduction over a tame extension of Qp. Then fp(A) = 4.

Proof. In that case fp(A) equals the tame conductor exponent at p, which is 2×(unipotent rank)+
(toric rank). This equals 2× 2 + 0 = 4 by Proposition 4.1.3. �

Proposition 4.4.2. Let A/Q be a PQM surface of GL2-type. Then the conductor of A is
of the form 22i32jN4, where 0 ≤ i ≤ 10, 0 ≤ j ≤ 5, and N is squarefree and coprime to 6.

Proof. By Lemmas 4.2.2 and 4.4.1, fp(A) = 4 for every bad prime p ≥ 5. The bounds
f2(A) ≤ 20 and f3(A) ≤ 10 follow from a general result of Brumer–Kramer [BK94, Theorem
6.2]. The fact that f2(A) and f3(A) are even follows from the fact that End0(A) is a real
quadratic field (Proposition 3.1.2) and [Ser87, (4.7.2)]. �

4.5. Finite fields. Let k = Fq be a finite field of order pr. We will use the following two
statements, whose proof can be found in [Jor86, §2].

Lemma 4.5.1. Let A/k be an abelian surface such that End0(A) contains the quaternion
algebra B. Then the characteristic polynomial of Frobenius is of the form (T 2 + aT + q)2 for
some integer a ∈ Z satisfying |a| ≤ 2

√
q.

Proposition 4.5.2. Let A/k be an abelian surface such that End0(A) contains the quaternion
algebra B. If r is odd or p - disc(B), then A is isogenous to the square of an elliptic curve
over k. If r is even and p | disc(B), Ak̄ is isogenous to the square of a supersingular elliptic
curve over k̄.

5. Proof of Theorem 1.4: PQM surfaces of GL2-type

Before proving Theorems 1.1-1.3, it is useful to first prove Theorem 1.4, which classifies
torsion subgroups of O-PQM abelian surfaces A over Q which are of GL2-type. At a certain
point in the argument we make use of the modularity of abelian surfaces of GL2-type, which
we recall in §5.1 and classify PQM surfaces of GL2-type with good reduction outside 2 or 3.
In §5.2, we deduce that a general O-PQM surface cannot have a full level 2-structure over
Q. In §5.3, we prove Theorem 1.4.

5.1. Abelian surfaces of GL2-type and modular forms.

Theorem 5.1.1. Let A be an abelian surface such that End0(A) is a real quadratic field.
Then the conductor of A is of the form N2 for some positive integer N , and there exists
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a unique Galois orbit [fA] ⊂ S2(Γ0(N)) having coefficient field K ' End0(A) whose local
L-factors agree for each prime p:

(5.1.2) Lp(A, T ) =
∏

τ : K↪→C

Lp(τ(fA), T ) ∈ 1 + TZ[T ].

Moreover, we have [fA] = [fA′ ] if and only if A is isogenous to A′ (over Q).

Proof. As explained by Ribet [Rib04, Theorem (4.4)], the fact that A is of GL2-type over
Q implies that A is modular assuming Serre’s modularity conjecture [Ser87, §4.7, Theorem
5], which was proven by Khare–Wintenberger [KW09]. Thus the equality of L-series (5.1.2)
holds for some newform fA. Since End0(A) is real, the character of fA is trivial [Rib76,
Lemma (4.5.1)]. It follows from a theorem of Carayol [Car86, Theoreme (A)] (local-global
compatibility) that A has conductor equal to N2, where N is the level of fA. Finally, the
fact that the Galois orbit of fA characterizes A up to isogeny follows from the theorem of
Faltings. �

Recall that if f ∈ S2(Γ0(N)) is a newform and ψ a primitive Dirichlet character, there
exists a unique newform g = f ⊗ ψ, the twist of f by ψ, whose q-expansion satisfies an(g) =
an(f)ψ(n) for all n coprime to N and the conductor of ψ. If f = g, then g is called a
self-twist. If f and g are Galois conjugate, g is called an inner twist.

Proposition 5.1.3. Let A be an abelian surface over Q such that End0(A) ' Q(
√
m) with

m ≥ 2. Then A has PQM if and only if all of the following conditions hold:

(i) fA has no self-twists, equivalently fA is not CM;
(ii) fA has a nontrivial inner twist by a Dirichlet character associated to a quadratic field

Q(
√
d); and

(iii) The quaternion algebra Bd,m :=

(
d,m

Q

)
is a division algebra.

If all conditions (i)–(iii) hold, then in fact End0(AQ) ' Bd,m.

Proof. See Cremona [Cre92, §2]. �

This reduces the enumeration of isogeny classes of GL2-type PQM surfaces A over Q with
fixed conductor to a computation in a space of modular forms.

Corollary 5.1.4. There are no PQM surfaces A over Q of GL2-type with good reduction
outside {2}.

Proof. By Proposition 4.4.2, it is enough to check that there is no eigenform corresponding
to a PQM surface of level 2k for any k ≤ 10. This information is contained in the LMFDB
[LMF23] or [GG09, Table 1]. �

Corollary 5.1.5. There is exactly one isogeny class of PQM surfaces A over Q of GL2-type
with good reduction outside {3}: it has conductor 310, any abelian surface A in the isogeny
class satisfies A(Q)tors ≤ Z/3Z.

Proof. The fact that there is exactly one such isogeny class again follows from Proposition
4.4.2 and information in the LMFDB or [GG09, Table 1]. The corresponding Galois orbit
of weight two newforms has LMFDB label 243.2.a.d. From L2(1) = 3 and L13(1) = 225 we
conclude that #A(Q)tors | 3 for every A in this isogeny class. (In fact, the corresponding
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optimal quotient of J0(243) has Z/3Z torsion subgroup by considering the image of the
cuspidal subgroup of J0(243).) �

Remark 5.1.6. The isogeny class of Corollary 5.1.5 has minimal conductor among all PQM
surfaces A of GL2-type. It would be interesting to produce an explicit model over Q; see
also [LS23, Question 2].

Proposition 5.1.7. There are exactly 44 isogeny classes of PQM surfaces over Q of GL2-
type with good reduction outside {2, 3}.

Proof. Again we use Propositions 4.4.2 and 4.4.2 to reduce the question to computing the
number of Galois orbits of newforms in S2(Γ0(N)), where N | 21035, with quadratic Hecke
coefficient field, having an inner twist but no self-twist. However, here we need to do a
new computation in a large dimensional space. The code is available at https://github.

com/ciaran-schembri/QM-Mazur; we provide a few details to explain how we proceeded,
referring to the book by Stein [Ste07] on modular symbols and more broadly [BBB+21] for
a survey of methods to compute modular forms.

We work with modular symbols, and we loop over all possible (imaginary) quadratic char-
acters ψ supported at 2, 3, corresponding to inner twist. For each character ψ, of conductor
d:

• For a list of split primes p ≥ 5, we inductively compute the kernels of Tp − a where
|a| ≤ 2

√
p.

• For a list of inert primes p ≥ 5, we further inductively compute the kernels of T 2
p −db2

where db2 ≤ 4p.

The first bound holds since ψ(p) = 1 so ap(f)ψ(p) = τ(ap(f)) = ap(f) so ap(f) ∈ Z, and
the Ramanujan–Petersson bound holds; the second bound holds since ψ(p) = −1 now gives

τ(ap(f)) = −ap(f) so ap(f) =
√
db with again

√
d|b| ≤ 2

√
p. It is essential to compute the

split primes first, and only compute the induced action of Tp on the kernels computed in the
first step.

To simplify the linear algebra, we work modulo a large prime number q, checking that each
Hecke matrix Tp (having entries in Q) has no denominator divisible by q. The corresponding
decomposition gives us an ‘upper bound’: if we had the desired eigenspace for Tp, it reduces
modulo q, but a priori some of these spaces could accidentally coincide or the dimension
could go down (corresponding to a prime of norm q in the Hecke field). To certify the ‘lower
bound’, we compute a small linear combination of Hecke operators supported at split primes
and use the computed eigenvalues to recompute the kernel over Q working with divisors
N ′ | N , and when we find it we compute the dimension of the oldspace for the form at level
N ′ inside level N and confirm that it matches the dimension computed modulo q.

In fact, we find that N | 2835 or N | 21034. (Indeed, a careful analysis of the possible
endomorphism algebra can be used to show this a priori.)

To certify that the form is not PCM, we find a coefficient for an inert prime that is nonzero.
That the form has the correct inner twist by ψ is immediate: the form would again appear
somewhere in our list, so once we have identified the newforms uniquely with coefficients, the
inner twist must match, Sherlock Holmes-style. We similarly discard the forms with PCM.

Finally, we compute the split PQM forms by identifying the quaternion algebra above
using Proposition 5.1.3. �
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The complete data is available online (https://github.com/ciaran-schembri/QM-Mazur);
we give a summary in Table 1, listing forms in a fixed level, up to (quadratic) twist.

For example, Table 1 says that up to twist there are 3 newforms of level N = 20736 = 2834,
each having 4 Galois newform orbits for a total of 12 newform orbits.

Table 1: Twist classes of modular forms corresponding
to PQM abelian surfaces over Q of GL2-type with good
reduction outside {2, 3}

N ψ discB num LMFDB labels
243 = 35 −3 6 1 243.2.a.d

972 = 2235 −3 6 1 972.2.a.e
2592 = 2534 −4 6 2 2592.2.a.l, 2592.2.a.p
2592 = 2534 −4 6 2 2592.2.a.m, 2592.2.a.r
3888 = 2435 −3 6 2 3888.2.a.b, 3888.2.a.t
5184 = 2634 −4 6 2 5184.2.a.bl, 5184.2.a.bx
5184 = 2634 −4 6 2 5184.2.a.bk, 5184.2.a.bv
15552 = 2635 −3 6 2
15552 = 2635 −3 6 2
20736 = 2834 −4 6 4
20736 = 2834 −4 22 4
20736 = 2834 −8 10 4
62208 = 2835 −3 6 4
62208 = 2835 −3 6 4
82944 = 21034 −24 6 4
82944 = 21034 −24 6 4

Corollary 5.1.8. If A is a PQM abelian surface of GL2-type over Q with good reduction
outside {2, 3} and #A(Q)tors nontrivial, then A corresponds to either 243.2.a.d or 972.2.a.e.
In particular, #A(Q)tors ≤ 9.

Proof. Direct calculation as in Corollary 5.1.5. �

5.2. Full level 2-structure. Before imposing the GL2-type assumption in the next subsec-
tion, we show that O-PQM surfaces cannot have full level 2-structure over Q.

Proposition 5.2.1. Let A/Q be an O-PQM surface. Then A(Q)[2] 6' (Z/2Z)4.

Proof. Suppose A(Q)[2] ' (Z/2Z)4. Since A[2] is free of rank one as an O/2O-module and
contains a Q-rational generator, we have A[2] ' O/2O as GalQ-modules. By Theorem 2.3.1
and Proposition 3.2.1, this implies that the endomorphism field L/Q is quadratic, so that A
has GL2-type by Lemma 3.2.2.

Let K be a quadratic field ramified at all primes p ≥ 3 of bad reduction of A and unramified
at all primes p ≥ 3 of good reduction. Corollary 4.1.4 and Lemmas 4.1.6(a), 4.2.4 and 3.2.6
show that the quadratic twist of A by K is an O-PQM surface of GL2-type with good
reduction outside {2}. But by Corollary 5.1.4, no such surface exists. �
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5.3. Torsion classification in the GL2-type case. Now we assume A/Q is a PQM surface
of GL2-type. By Lemma 3.2.2, there exists a quadratic extension L/Q (the endomorphism
field) such that End(AL) = End(AQ).

Lemma 5.3.1. If ` is a prime such that A[`](Q) 6= 0, then ` ≤ 7.

Proof. By Lemma 4.1.2, there exists a finite extension L′/L that is totally ramified at 2 and
such that AL′ has good reduction. Let q be a prime in L′ above 2 and let k be its residue
field. Since L/Q is quadratic, k is isomorphic to F2 or F4. Therefore the reduction of AL′ at
q is an abelian surface B over k such that End0(B) contains End0(AL). By Lemma 4.3.4,
B[`](k) 6= 0 and so ` divides #B(F4). On the other hand, Lemma 4.5.1 shows that the
L-polynomial of BF4 is of the form (T 2 + aT + 4)2 with a ∈ Z satisfying |a| ≤ 2

√
4 = 4.

Therefore ` divides (1 + a+ 4)2, hence ` divides (1 + a+ 4) ≤ 9, hence ` ≤ 9. �

Lemma 5.3.2. If ` ≥ 5 is a prime such that A[`](Q) 6= 0, then A/Q has good reduction
away from `.

Proof. Let p be a prime of bad reduction of A. Since A is of GL2-type, the algebra End0(A)
is a quadratic field; it is real quadratic by Proposition 3.1.2. Proposition 4.1.3(c) implies
that A has totally additive reduction at p. By Lemmas 4.2.3 and 4.3.1, we must have p = `.
We conclude that A has good reduction outside {`}. �

Proposition 5.3.3. If ` is a prime such that A[`](Q) 6= 0, then ` ∈ {2, 3}.

Proof. Suppose that ` ≥ 5. By Proposition 3.1.2, the quadratic extension L/Q is imaginary
quadratic. Moreover, by a result of Silverberg [Sil92, Theorem 4.2], the surface A has bad
reduction at all primes ramifying in L. By Lemma 5.3.2, L is therefore only ramified at `. If
` = 5, this is already a contradiction since there are no imaginary quadratic fields ramified
only at 5. If ` = 7, then we conclude that L = Q(

√
−7). Since 2 splits in L, this means

that the residue field in the proof of Lemma 5.3.1 is equal to F2. Continuing with the proof
there, we deduce the stronger inequality |a| ≤ 2

√
2, and we find that ` divides 1 + a+ 2 < 6,

which is a contradiction. �

Remark 5.3.4. We can also deduce Proposition 5.3.3 from Lemma 5.3.2 by invoking modular-
ity (Proposition 5.1.3), the fact that such an abelian surface must have conductor `4 (Propo-
sition 4.4.2) and the fact that there are no PQM eigenforms in S2(Γ0(25)) or S2(Γ0(49)). We
also note that Schoof has proven that there are no abelian varieties with everywhere good
reduction over Q(ζ`) for various small `, including 5 and 7 [Sch03].

Proposition 5.3.5. Either A(Q)tors ⊂ (Z/2Z)3 or A(Q)tors ⊂ (Z/3Z)2.

Proof. By Proposition 5.3.3, A(Q)tors is a group of order 2i3j. We may assume thatA(Q)tors 6=
0; let ` ∈ {2, 3} be such that A[`](Q) 6= 0.

Suppose there exists a prime p ≥ 5 of bad reduction. Then A has totally additive reduc-
tion over every finite extension F/Qp over which it has bad reduction by Proposition 4.1.3.
Therefore the assumptions of Proposition 4.3.3 apply for F = Qnr

p (the maximal unramified

extension of Qp), and so A(Q)tors = A(Q)
(p)
tors ⊂ A(Qnr

p )
(p)
tors ' (Z/`Z)k for some 1 ≤ k ≤ 4. If

` = 2, then k ≤ 3 by Proposition 5.2.1. If ` = 3, then k ≤ 2, since A(Q)
(2)
tors ↪→ A2(F2) for

some abelian surface A2/F2 (using Lemmas 4.1.2 and 4.3.4) and #A2(F2) ≤ 25 for all such
surfaces. We conclude A(Q)tors ⊂ (Z/2Z)3 or A(Q)tors ⊂ (Z/3Z)2, as desired.
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It remains to consider the case that A has good reduction outside {2, 3}. A computa-
tion with modular forms of level dividing 210 · 35 shows that #A(Q)tors | 9 for such sur-
faces by Corollary 5.1.8, but we give an argument that only involves computing modular
forms of much smaller level. We may assume A has bad reduction at both of these primes
by Corollaries 5.1.4 and 5.1.5. If A[2](Q) = 0, then Proposition 4.3.3 shows again that

A(Q)tors = A(Q)
(2)
tors ⊂ A(Qnr

2 )
(2)
tors ⊂ (Z/3Z)2. Similarly A(Q)tors ⊂ (Z/2Z)3 if A[3](Q) = 0.

Thus, it remains to rule out the possibility that A(Q) contains a point of order 6. In that
case, Proposition 4.3.3 shows that the extensions M2/Qnr

2 and M3/Qnr
3 over which A attains

good reduction have degrees that are powers of 3 and 2 respectively, and hence are tamely
ramified. Hence A has conductor 2434 by Lemma 4.4.1 and corresponds to an eigenform
of level 2232 = 36, by Theorem 5.1.1. However, there are no PQM eigenforms of level 36
[GG09, Table 1]. �

Next we constrain the torsion even further and show that (Z/2Z)3 does not occur. For
this, we combine a cute fact from linear algebra with a purely local proposition that makes
use of the enhanced Galois representation of §3.5.

Lemma 5.3.6. Let k be a field and V ⊂ Ok := O ⊗Z k a 3-dimensional k-subspace. Then
V contains an Ok-module generator of Ok.

Proof. If Ok is a division algebra, every nonzero element of V is an Ok-generator. If the
characteristic of k divides disc(B), the lemma follows from Lemma 6.1.3 and the fact that the
ideal J described there is 2-dimensional. It suffices to consider the case when Ok ' Mat2(k)
and to prove that in this case V contains an invertible matrix. (This is well known, we
give a quick proof here.) Suppose otherwise. If k admits a quadratic field extension k′,
then embedding k′ ⊂ Mat2(k), we compute dim(V + k′) = dimV + dim k′ − dim(V ∩ k′) =
3 + 2− 0 = 5, which is a contradiction. In general, the subspace V is defined over a subfield
k′′ of k which is finitely generated over its prime field. The previous argument then applies
over k′′. �

Recall that Qnr
p denotes the maximal unramified extension of Qp.

Proposition 5.3.7. Let p be an odd prime, F a finite extension of Qnr
p and A/F an O−PQM

surface with (Z/2Z)3 ⊂ A[2](F ). Then A acquires good reduction over every quadratic
extension of F .

Proof. If A[2](F ) ' (Z/2Z)4, this immediately follows from Raynaud’s criterion (Lemma
4.1.6(a)), so assume that A[2](F ) ' (Z/2Z)3. By Lemma 5.3.6, there exists an F -rational
O/2O-generator P ∈ A[2](F ), and hence A[2] ' O/2O as GalF -modules.

Let L/F be the endomorphism field of AF and let M/F be the smallest field over which
AF acquires good reduction. By the Néron-Ogg-Shafarevich criterion, M = F (A[4]). By
Proposition 3.2.5, L ⊂M . Since A[2] ' O/2O as GalQ-modules, F (A[2]) ⊂ L. We therefore
have a chain of inclusions F ⊂ F (A[2]) ⊂ L ⊂ M = F (A[4]). Since A[2](Q) ' (Z/2Z)3,
F (A[2])/F is a (2, 2, . . . , 2)-extension. The same is true for F (A[4])/F (A[2]). Since p is
odd and the residue field is algebraically closed, both these extensions are cyclic, so at most
quadratic. Therefore F (A[2])/F is a quadratic extension. If L 6= F (A[2]), then L/F would
be cyclic of order 4, and there would be an order 4 element g ∈ Aut(O) whose fixed points
on O/2O is (Z/2Z)3. A calculation similar to the proof of the D4 case in Theorem 2.3.1
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shows that this is not possible. We conclude that L = F (A[2]) and that M/L is at most
quadratic.

To prove the proposition, it suffices to prove that M/F is quadratic, so assume by
contradiction that this is not the case. Then M/L and L/F are both quadratic and
Gal(M/F ) = {1, g, g2, g3} is cyclic of order 4.

Consider the mod 4 Galois representation ρ : GalF → GL(A[4]), which factors through
GalF → Gal(M/F ). Let Q ∈ A[4](M) be a lift of the O/2O-generator P ∈ A[2](F ).
Then Q is an O/4O-generator for A[4], and hence by the enhanced Galois representation
construction, we know that ρ ' ρ◦4 lands in Gal(L/F ) n (O/4O)× (see §3.5 and Proposition
3.5.8). The situation can be summarized as follows:

Gal(M/L) (O/4O)×

Gal(M/F ) Gal(L/F ) n (O/4O)×

Gal(L/F ) Gal(L/F ) n (O/2O)×

ρ◦4

ρ◦2

ρ◦4|GalL

The horizontal maps are the enhanced Galois representations for L mod 4, F mod 4 and F
mod 2 respectively. Write Gal(L/F ) = {1, σ}. Since P is F -rational, the bottom map sends σ
to (σ, 1). By commutativity of the bottom square, ρ◦4(g) = (σ, x), where x ∈ (O/4O) satisfies
x ≡ 1 mod 2O. Since AL has bad and hence totally additive reduction by Proposition 4.1.3,
the nontrivial element of Gal(M/L) maps to −1 in (O/4O)×. (In fact, the generator of
Gal(M/L) even maps to −1 in GL(T2A) by an argument identical to the proof of Lemma
4.2.4.) By the commutativity of the top diagram, (σ, x)2 = (1,−1). The involution σ acts
on (O/4O)× by conjugating by an element b ∈ O ∩ NB×(O) whose fixed points on O/2O
are (Z/2Z)3. Therefore (σ, x)2 = (1,−1) is equivalent to b−1xbx = −1. By Lemma 2.3.5, no
such x exists, obtaining the desired contradiction. �

Proposition 5.3.8. Let A/Q be an O-PQM surface of GL2-type. Then (Z/2Z)3 6⊂ A(Q)[2].

Proof. Let K be a quadratic field ramified at all primes p ≥ 3 of bad reduction of A and
unramified at all primes p ≥ 3 of good reduction. Corollary 4.1.4, Proposition 5.3.7 and
Lemmas 4.2.4 and 3.2.6 show that the quadratic twist of A by K is an O-PQM surface of
GL2-type with good reduction outside {2}. But no such O-PQM surface exists by Corollary
5.1.4. �

We are finally ready to prove our classification result for torsion subgroups of O-PQM
surfaces of GL2-type.

Proof of Theorem 1.4. By Propositions 5.3.5 and 5.3.8, we have ruled out all groups aside
from those listed in the theorem. It remains to exhibit infinitely many abelian surfaces A/Q
of GL2-type with torsion subgroups isomorphic to each of the groups

{0},Z/2Z,Z/3Z, (Z/2Z)2, (Z/3Z)2.

Let O6 be the maximal quaternion order of reduced discriminant 6 (unique up to isomor-
phism). In [LS23, §9], one-parameter families of GL2-type O6-PQM surfaces with generic
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torsion subgroups {0},Z/2Z, Z/3Z and (Z/3Z)2 are given among Prym surfaces of biellip-
tic Picard curves. In Proposition 5.3.9 below, we give a one-parameter family of GL2-type
O6-PQM Jacobians J with (Z/2Z)2 ⊂ J(Q)tors. �

To state the next result, we define the rational functions

j(T ) =
(−64T 20 + 256T 16 − 384T 12 + 256T 8 − 64T 4)

(T 24 + 42T 20 + 591T 16 + 2828T 12 + 591T 8 + 42T 4 + 1)
;

J2(T ) = 12(j + 1);

J4(T ) = 6(j2 + j + 1);

J6(T ) = 4(j3 − 2j2 + 1);

J8(T ) = (J2J6 − J2
4 )/4;

J10(T ) = j3.

Proposition 5.3.9. For all but finitely many t ∈ Q, there exists a genus two curve Ct/Q
with Igusa invariants (J2(t) : J4(t) : J6(t) : J8(t) : J10(t)), whose Jacobian Jt/Q is an
O6-PQM surface of GL2-type and satisfies Jt(Q)tors ⊃ (Z/2Z)2.

Proof. In [BG08, p.742], the authors have an expression for Igusa-Clebsch invariants (which
we have translated to Igusa invariants) of genus 2 curves defining O-PQM surfaces for every
value of a parameter j (which is a coordinate on the full Atkin-Lehner quotient of the discrim-

inant 6 Shimura curve). The field of moduli for kR3 , in their notation, is Q(
√
−27− 16j−1)

and the obstruction for these genus 2 curves to be defined over Q is given by the Mestre

obstruction
(
−6j,−2(27j+16)

Q

)
. A short computation for the family j(T ) shows that −27−16j−1

is a square in Q(T )×, and hence kR3 = Q for all non-singular specializations. Furthermore,
one checks that the Mestre obstruction also vanishes for all such t. Thus, the Igusa invari-
ants in the statement of the proposition give an infinite family of O-PQM Jacobians J/Q
of GL2-type with End0(J) ' Q(

√
3). (Only finitely many j ∈ Q correspond to CM points

[BG08, §5, Table 1], so J is geometrically simple for all but finitely many t ∈ Q.)
Using Magma, one can write down an explicit sextic polynomial fT (x) such that Ct has

model y2 = ft(x). The coefficients of fT (x) are too large to include here, but we have posted
them here. We find that there is a factoriztion

fT (x) = q1,T (x)q2,T (x)q3,T (x)

where each qi,T is a quadratic polynomial in Q(T )[x]. From this we see that for all but
finitely many t, the group (Z/2Z)2 is a subgroup of Jt(Q)tors. Indeed, Jt = Pic0(Ct) and for
each i ∈ {1, 2, 3}, the divisor class (α, 0)− (α′, 0), where qi,t(x) = (x− α)(x− α′), is defined
over Q and has order 2. In future work, we will explain how the special family j(T ) was
found using the arithmetic of Shimura curves. �

6. Proof of Theorem 1.1: reduction to GL2-type

In this section, we prove Theorem 1.1. By Theorem 1.4, it is enough to prove:

Theorem 6.0.1. Let A/Q be an O-PQM surface, and let ` ≥ 5 be a prime number such
that A[`](Q) 6= 0. Then A is of GL2-type.
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Theorem 6.0.1 follows from combining Propositions 6.2.5 and 6.2.7 below. The proofs
consist mostly of careful semi-linear algebra over non-commutative rings, combined with a
small drop of global arithmetic input.

6.1. Linear algebra. Let ` be a prime andO` := O⊗F`. If ` - disc(B), thenO` ' Mat2(F`),
sinceO is maximal. If ` | disc(B), then O` is isomorphic to the nonsemisimple algebra [Jor86,
§4] {(

α β
0 α`

)
| α, β ∈ F`2

}
⊂ Mat2(F`2).(6.1.1)

In both cases, we will describe all left ideals of O`. Equivalently, given a left O`-module M ,
free of rank one, we will describe all its (left) O`-submodules.

First we suppose that ` - disc(B); fix an isomorphism O` ' Mat2(F`) and a free rank one
left O`-module M . Let e1, e2, w be the elements of O` corresponding to the matrices(

1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
1 0

)
respectively. Then e1,e2 are idempotents satisfying e1e2 = 0, e1 + e2 = 1 and e1w = we2.
Set Mi = ker(ei : M → M) ⊂ M . Then M = M1 ⊕M2 and w induces mutually inverse
bijections M1 →M2 and M2 →M1. Given an O`-submodule N ⊂M , define Ni := N ∩Mi.
Since N is O`-stable, N = N1 ⊕N2 and w(N1) = N2.

Lemma 6.1.2 (Unramified case). The map N 7→ (N1, N2) induces a bijection between left
O`-submodules of M and pairs of F`-subspaces (N1 ⊂M1, N2 ⊂M2) satisfying w(N1) = N2.

Proof. This is elementary, using the fact that O` is generated (as a ring) by e1, e2 and w. �

Next suppose that ` divides disc(B) and fix an isomorphism between O` and the ring
described in (6.1.1). The set of strictly upper triangular matrices is a two-sided ideal J ⊂ O`
that satisfies O`/J ' F`2 . The following lemma is easily verified [Jor86, §4].

Lemma 6.1.3 (Ramified case). The only proper left ideal of O` is J . Consequently, the only
proper O`-submodule of M is M [J ] = {m ∈M | j ·m = 0 for all j ∈ J}.
6.2. The subgroup generated by a torsion point. Let A/Q be an O-PQM surface and
` be a prime number. Let O` := O ⊗ F` and M := A[`](Q̄). Then M is a free O`-module
of rank one, and GalQ acts on O` by ring automorphisms (as studied in §3.2) and on M by
F`-linear automorphisms. These actions satisfy (a ·m)σ = aσ ·mσ for all σ ∈ GalQ, a ∈ O`
and m ∈M .

Lemma 6.2.1. Suppose that the GalQ-modules O` and M are isomorphic. Then ` ≤ 3.

Proof. This follows by comparing determinants. On one hand, the GalQ-action on O` has
determinant 1. Indeed, the determinant of left/right multiplication by b ∈ B acting on B is
the square of the reduced norm, so conjugation has determinant 1. On the other hand, the
determinant of the GalQ-action on M is the square of the mod ` cyclotomic character χ̄`.
This implies that χ̄2

` = 1, so Q(ζ` + ζ−1
` ) = Q, so ` ≤ 3. �

Remark 6.2.2. When ` = 3, we know of no examples of O-PQM surfaces over Q with O` 'M
as GalQ-modules. Such examples do exist for ` = 2; see [LS23, Corollary 7.5].

Lemma 6.2.3. If m ∈MGalQ is nonzero and ` ≥ 5, then O` ·m ⊂M has order `2.
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Proof. By Lemmas 6.1.2 and 6.1.3, it suffices to show that O` ·m 6= M . But if O` ·m = M ,
then O` →M,x 7→ x ·m is an isomorphism, contradicting Lemma 6.2.1. �

To analyze the case ` | disc(B), we use the following theorem attributed to Ohta.

Theorem 6.2.4. Let F be a number field and let A/F be an abelian variety with End(A) '
O. Suppose O is ramified at a prime ` and let J ⊂ O be the maximal ideal above `. Then the
composition of the Galois representation GalF → AutF`2

A[J ] ' F×`2 with the norm F×`2 → F×`
is equal to the mod ` cyclotomic character GalF → Aut(µ`) ' F×` .

Proof. See [Jor86, Proposition 4.6]. �

Proposition 6.2.5. If ` | disc(B) and MGalQ 6= 0, then ` ≤ 3.

Proof. Choose a nonzero m ∈ MGalQ and suppose that ` ≥ 5. By the previous lemma,
O` ·m is a proper submodule of M . Therefore O` ·m = M [J ] by Lemma 6.1.3. Let L/Q
be the endomorphism field of A. Then the GalQ-action on M restricts to a GalL-action
on M [J ] through elements of F×`2 (after choosing an isomorphism O`/J ' F`2), giving a
homomorphism ε : GalL → F×`2 . Since m is GalQ-invariant, the GalL-action on M [J ] is
trivial, so ε is trivial. On the other hand, the composition NF`2/F`

◦ ε : GalL → F×` equals the
mod ` cyclotomic character χ̄`, by Theorem 6.2.4. It follows that χ̄`|GalL = 1, or in other
words Q(ζ`) ⊂ L. Thus Gal(L/Q) surjects onto Gal(Q(ζ`)/Q) ' (Z/`Z)× ' Z/(` − 1)Z.
Since Gal(L/Q) is dihedral (Proposition 3.2.1), every nontrivial cyclic quotient of Gal(L/Q)
has order 2, and we conclude that ` ≤ 3. �

We now treat the unramified case, using the following key linear-algebraic lemma, which
we call the ‘torus trick’.

Lemma 6.2.6. Suppose that ` - disc(B). Let S ⊂ O` be a 2-dimensional semisimple com-
mutative GalQ-stable subalgebra such that S ·m = O` ·m for some nonzero m ∈MGalQ. Then
every σ ∈ GalQ acting trivially on S also acts trivially on O`.

Proof. Let σ ∈ GalQ be an element acting trivially on S and let m ∈ MGalQ \ {0} be an
element such that S ·m = O` ·m. Let k = F̄`. It suffices to prove that σ acts trivially on
Ok := O` ⊗F`

k. The assumptions imply that Sk ' k × k, and we may fix an isomorphism
Ok ' Mat2(k) of k-algebras such that Sk is identified with the subalgebra of diagonal matrices
of Mat2(k). Lemma 6.1.2 and the fact that Sk is 2-dimensional shows that dimk(Sk ·m) =
dimk(Ok ·m) = 2. Let I = {x ∈ Ok | x ·m = 0} be the annihilator of m, an ideal of Ok of
dimension 2. Using the analogue of Lemma 6.1.2 over k, such an ideal is necessarily of the
form {(

ax bx
ay by

)
| x, y ∈ k

}
for some a, b ∈ k which are not both zero. The assumption that S ·m = O` ·m implies that
Sk ∩ I = 0. It follows that a and b must be nonzero and Ok = Sk ⊕ I as GalQ-modules. Let
N ⊂ Ok be the subspace normalising but not centralising Sk. Then the above calculation
also shows that N ∩ I = 0. Moreover N is GalQ-stable since S is. The relation Ok = Sk ⊕ I
shows that σ(x)− x ∈ I for all x ∈ Ok. It follows that σ(x)− x ∈ I ∩N = 0 for all x ∈ N .
Since Ok is spanned by Sk and N , the claim follows. �
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Proposition 6.2.7. Suppose that ` - disc(B) and MGalQ 6= 0 and ` ≥ 5. Then A is of
GL2-type.

Proof. We apply the torus trick using the distinguished quadratic subring S ⊂ O of A
(Definition 3.4.1). Write S` = S⊗ZF`. Then S` ⊂ O` is a commutative semisimple subalgebra
since S is unramified at ` by Proposition 3.4.2. Suppose that A is not of GL2-type. Then
GalQ acts nontrivially on S since End(A) = Z; let K/Q be the quadratic extension splitting
this action. We claim that the GalK-action on O` is trivial. Indeed, let m ∈ MGalQ be a
nonzero element. By Lemma 6.2.6 it suffices to prove that S` · m = O` · m. But the set
{x ∈ S` | x ·m = 0} is a proper GalQ-invariant ideal of S`. Since the only such ideal is 0
(using the fact that the GalQ-action on S is nontrivial and ` 6= 2), the map S ·m → O ·m
is injective and hence by dimension reasons (and Lemma 6.2.3) it must be surjective. This
proves that the GalK-action on O` is trivial. By Lemma 3.5.7, this even implies that that
GalK-action on O is trivial. We conclude that the quadratic field K is the endomorphism
field of A, hence A is of GL2-type by Lemma 3.2.2, contradiction. �

7. Proof of Theorems 1.2 and 1.3: eliminating groups of order 2i3j

Let A/Q be an O-PQM surface. By Theorem 1.1, we have #A(Q)tors = 2i3j for some
i, j ≥ 0. Since A has potentially good reduction, local methods show that 2i3j ≤ 72 [CX08,
Theorem 1.4]. In this section, we will improve this bound and constrain the group structure
of A(Q)tors as much as possible using the O-action on AQ. We may assume A is not of
GL2-type since we have already proven Theorem 1.4.

For each prime p, there exists a totally ramified extension K/Qp such that AK has good
reduction (Lemma 4.1.2). The special fiber of the Néron model of AK is an abelian surface
over Fp which we denote by Ap. We call Ap the good reduction of A at p, though it is only
uniquely determined up to twists (since a different choice of totally ramified extension K ′

would give rise to a possibly non-isomorphic twist of Ap).
Lemma 4.3.4 shows that the prime-to-p subgroup of A(Q)tors injects into Ap(Fp). Moreover

End(AQ) ⊂ End(AF̄p
) hence Ap is F̄p-isogenous to the square of an elliptic curve E/F̄p by

Proposition 4.5.2, so its isogeny class is rather constrained. This leads to the following slight
strengthening of [CX08, Theorem 1.4] in our case:

Proposition 7.0.1. We have #A(Q)tors = 2i3j for some i ∈ {0, 1, 2, 3, 4} and j ∈ {0, 1, 2}.
Moreover, #A(Q)tors ≤ 48.

Proof. By the above remarks, to bound the prime-to-2 (resp. prime-to-3) torsion, it is enough
to bound X(F2)[3∞] (resp. X(F3)[2∞]), as X varies over all abelian surfaces over F2 (resp.
F3) that are geometrically isogenous to the square of an elliptic curve. For this it is enough to
compute maxX gcd(fX(1), 3100) (resp. maxX gcd(fX(1), 2100)), where fX is the L-polynomial
of X and the maximum is over all the aforementioned isogeny classes. This computation is
easily done with the help of the LMFDB’s database of isogeny classes of abelian varieties
over finite fields [LMF23], and the conclusion is the first sentence of the proposition.

The second sentence is equivalent to the claim that #A(Q)tors cannot equal 144 nor 72.
We cannot have 144 since #A5(F5) ≤ 100, and we cannot have 72 since the only isogeny
class of abelian surfaces X/F5 with 72 | #X(F5) (which has LMFDB label 2.5.fq) is not
geometrically isogenous to a square of an elliptic curve. �
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The remainder of the proof of Theorems 1.2 and 1.3 will be similar (but more difficult) to
that of 7.0.1, using the good reduction model Ap at various primes p and the O-action. In
what follows, we will freely use the Honda-Tate computations conveniently recorded in the
LMFDB [LMF23], so the careful reader will want to follow along in a web browser. We use
the LMFDB’s method of labeling isogeny classes, e.g. 2.5.de is an isogeny class of abelian
surfaces over F5 with label de.

7.1. Torsion constraints arising from the endomorphism field. Before analyzing spe-
cific groups, we state the following useful proposition, which uses techniques similar to the
proof of Theorem 6.0.1, including the torus trick.

Proposition 7.1.1. Let G be the Galois group of the endomorphism field L/Q.

(a) If G ' D3 or D6, then A[2](Q) ⊂ Z/2Z. If in addition A[2](Q) = Z/2Z, then
A[2] ' O/2O as GalQ-modules or 2 | disc(B).

(b) If G ' D2 or D4, then A[3](Q) ⊂ Z/3Z. If in addition A[3](Q) = Z/3Z, then
A[3] ' O/3O as GalQ-modules or 3 | disc(B).

Proof. (a) Let S ⊂ O be the distinguished quadratic subring of A (Definition 3.4.1).
By Proposition 3.4.2, S ' Z[ω] where ω2 + ω + 1 = 0. Let K/Q be the quadratic
field trivializing the Galois action on S, so End(AK) = S. Let S2 := S ⊗ F2 and
O2 := O ⊗ F2. If A[2] ' O2 as GalQ-modules, then A[2](Q) ' (O/2O)GalQ is
isomorphic to Z/2Z by Theorem 2.3.1, so indeed A[2](Q) ⊂ Z/2Z in this case. We
may therefore assume that A[2](Q) 6' O2 in what follows.

It suffices to show that if there exists a nonzero m ∈ A[2](Q), then A[2](Q) has
order 2. By the classification of O2-submodules of A[2] of §6.1 and the fact that O2

is not isomorphic to A[2], the submodule O2 ·m ⊂ A[2] has order 4. Since S2 ' F4

has no GalQ-stable nonzero proper ideals, the map S2 → A[2], x 7→ x ·m is injective,
hence S2 ·m ⊂ O2 ·m has order 4 too. Therefore S2 ·m = O2 ·m. Suppose first that
2 - disc(B). We can then apply Lemma 6.2.6 to conclude that GalK acts trivially
on O2. Since GalK acts on O2 through Gal(L/K) ' C3 or C6, this contradicts
Lemma 3.5.7 and proves the second claim of (a). It remains to consider the case
2 | disc(B). In that case there exists a unique proper nonzero left ideal J of O2, and
A[J ] is the unique nonzero proper O2-submodule of A[2] (Lemma 6.1.3). It follows
that S2 · m = O2 · m = A[J ]. Since A[2] 6' O2 as GalQ-modules, no element of
A[2](Q) is an O2-generator, so A[2](Q) = A[J ](Q). On the other hand, the equality
S2 ·m = A[J ] shows that S2 ' A[J ] as GalQ-modules. Since GalQ acts nontrivially
on S2 = F4, A[J ](Q) = A[2](Q) has order 2.

(b) The argument is very similar to the proof of (a), using that in the D4 case, the
distinguished quadratic subring Z[i] is unramified at 3. In the D2 case, the distin-
guished quadratic subring might be ramified at 3, but by Lemma 2.2.2 there exist
three squarefree integers m,n, t and embeddings of Z[

√
m], Z[

√
n] and Z[

√
t] into

GalQ whose image is GalQ-stable. Since t = −mn up to squares, at least one of these
three subrings is unramified at 3, and the argument of (a) can be carried out using
this subring.

�

7.2. Groups of order 48.
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Lemma 7.2.1. Let E be an elliptic curve over the finite field Fpn, and assume either that
E is ordinary or that n = 1. Then any abelian surface X/F isogenous to E2 is isomorphic
to a product of elliptic curves over F.

Proof. Let π ∈ End(E) be the Frobenius. Replacing E by an isogenous elliptic curve, we
may assume that End(E) = Z[π] [JKP+18, §7.2-7.3]. By [JKP+18, Theorem 1.1], the functor
X 7→ Hom(X,E) is an equivalence between the category of abelian varieties isogenous to a
power of E and isomorphism classes of finitely generated torsion-free End(E)-modules. Since
End(E) is an order in a quadratic field, any finitely generated torsion-free End(E)-module
is a direct sum of rank 1 modules [JKP+18, Theorem 3.2], so the lemma follows. �

Lemma 7.2.2. If G ⊂ A(Q)tors is a subgroup of order 16, then G is isomorphic to (Z/4Z)2

or (Z/2Z)2 × Z/4Z.

Proof. There is a unique isogeny class of abelian surfacesX over F3 with 16 | #X(F3), namely
the square of the elliptic curve E/F3 with EndFp(E) ' Z[

√
−3] and #E(F3) = 4. By Lemma

7.2.1, Ap is isomorphic to a product of two elliptic curves both of which have four F3-rational
points. Since such an elliptic curve has its group of F3-points isomorphic to either Z/4Z or
(Z/2Z)2, Ap(F3) is isomorphic to (Z/4Z)2 or (Z/4Z)× (Z/2Z)2 or (Z/2Z)4. By Proposition
5.2.1, the latter cannot happen. The lemma now follows since A(Q)[16] ↪→ Ap(F3). �

Proposition 7.2.3. #A(Q)tors < 48.

Proof. By Proposition 7.0.1 it is enough to show that A(Q)tors 6= 48. Assume for the sake
of contradiction that #A(Q)tors = 48. The reduction A5/F5 must then be in the isogeny
class 2.5.de. We see that End0((Ap)F5n

) contains a quaternion algebra if and only if 3 divides
n. Therefore the Galois group of the endomorphism field of A has order divisible by 3, so
by Proposition 3.2.1 must be D3 or D6. Proposition 7.1.1 then implies A[2](Q) ⊂ Z/2Z,
contradicting the fact that A[2](Q) has size ≥ 4 (Lemma 7.2.2). �

7.3. Groups of order 36.

Lemma 7.3.1. If 36 | #A(Q)tors, then A(Q)tors ' (Z/6Z)2.

Proof. Over F5 there is exactly one isogeny class of abelian surface X with 36 | #X(F5)
and whose geometric endomorphism algebra contains a quaternion algebra, namely 2.5.ak,
which is isogenous to the square of an elliptic curve. Thus the reduction A5 is isomorphic
to a product of two elliptic curves (Lemma 7.2.1). Every elliptic curve in this isogeny class
has E(F5) ' Z/6Z, hence A5(F5) ' (Z/6Z)2. �

Proposition 7.3.2. #A(Q)tors < 36.

Proof. By Proposition 7.2.3 and Proposition 7.0.1, it is enough to show that A(Q)tors does not
have order 36. By Lemma 7.3.1 such an A would have A(Q)tors ' (Z/6Z)2. By Proposition
7.1.1, A cannot have endomorphism field Dn for every n ∈ {2, 3, 4, 6} so A has GL2-type,
which we have also already ruled out. �

It follows that #A(Q)tors ≤ 24. Before we show that this inequality is strict, we rule out
the existence of rational points of order 9 and 8.
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7.4. Rational points of order 9.

Proposition 7.4.1. A(Q)tors contains no elements of order 9.

Proof. Suppose A(Q) has a point of order 9. Then the reduction A2/F2 must live in the
isogeny class 2.2.ae or 2.2.bb. The latter has commutative geometric endomorphism algebra,
so cannot be the reduction of a O-PQM surface by Proposition 4.5.2. The former is the
isogeny class of the square of an elliptic curve E over F2 with #E(F2) = 3, so by Lemma
7.2.1 we have A2(F2) ' (Z/3Z)2. �

7.5. Rational points of order 8.

Proposition 7.5.1. A(Q)tors contains no elements of order 8.

Proof. Suppose otherwise. The reduction A3/F3 must be in the isogeny class 2.3.ac, which is
simple with endomorphism algebra Q(ζ8) = Q(

√
2,
√
−2). (It cannot be in the isogeny class

2.3.ag by the proof of Lemma 7.2.2.) Since #A3(F3) = 8, we must have A3(F3) = Z/8Z.
This eliminates the possibility that A(Q) contains a prime-to-3 subgroup any larger than
Z/8Z. Note also that #A3(F9) = 64 and A is isomorphic to a product of ordinary elliptic
curves over F9 by Lemma 7.2.1, at least one of which has E(F9) ' Z/8Z. It follows that the
F2-dimension of A3[2](F9) is at most 3, and in particular not all 2-torsion points are defined
over F9. On the other hand, all endomorphisms of (A3)F̄3

are defined over F9, so we conclude
by Lemmas 6.1.2 and 6.1.3 that the O/2O-module generated by any F9-rational point of
order 2 has order 4.

Suppose first that 2 divides disc(B). Then the aforementioned O-module must be A[J ],
where J is the ideal in O such that J2 = 2O (see §6.1). Let t ∈ J be any element not in 2O.
Then over F9 we have an exact sequence

0→ A3[J ]→ A3[2]→ A3[J ]→ 0

with the last map being multiplication by t. Let P ∈ A3[4](F9) be a point of order 4.
Without loss of generality we may assume Q = tP has order 2 (if not, just replace P by tP )
and Q /∈ A3[J ]. Then we’ve seen that O · Q 6= A3[2], so O · Q = A3[J ] but this contradicts
Q /∈ A3[J ].

Now suppose that 2 does not divide disc(B) so that O ' Mat2(F2). Let L/Q be the
endomorphism field. If Gal(L/Q) ' D2 then at least one of the quadratic subfields of L
is not inert at 3. So EndF3(A3) must contain a quadratic order S in Z[i] or Z[

√
2] or in

Z[
√
−2]. But we saw in Lemma 2.2.1 that S contains Z[

√
m] with m squarefree. So S is

Z[i] or Z[
√

2] or Z[
√
−2]. In all cases there exists t ∈ S such that t2S = 2S, and so we have

an endomorphism (defined over F3) which behaves like
√

2 on A3[2]. But we also have a
rational point P of order 4. Without loss of generality the orders of tP and t2P are both
2. But t2P 6= tP , so dimF2 A3[2](F3) > 1, which contradicts A3(F3) ' Z/8Z. The case
Gal(L/Q) = D4 does not happen when disc(B) is odd by Lemma 2.2.3, so we consider the
case where Gal(L/Q) is D3 or D6. By Proposition 7.1.1(a), A[2] ' O/2O as GalQ-modules.
But then A3[2] ' O/2O as GalF3-modules, contradicting the fact that A3[2](F3) contains no
O/2O-generator.

We are left to consider the case Gal(L/Q) = D1 = C2, i.e. the GL2-type case, which we
have already treated in Proposition 5.3.5. �
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7.6. Groups of order 24. If A(Q)tors has order 24, then by Proposition 7.5.1, the group
structure is either (Z/2Z)3 × Z/3Z or Z/2Z × Z/4Z × Z/3Z. We show below that in fact
neither can occur. First we gather some facts common to both cases.

Lemma 7.6.1. Suppose #A(Q)tors = 24, and let L/Q be the endomorphism field of A. Then

(a) Gal(L/Q) is isomorphic to D2 or D4,
(b) Q(ζ3) ⊂ L, and
(c) if Gal(L/Q) 6' D4 then A has unipotent rank 1 over Q3 (in the terminology of §4.1).

Proof. Since A is not of GL2-type, Proposition 7.1.1 implies that Gal(L/Q) is isomorphic to
D2 or D4, proving (a).

Checking isogeny classes over F5, we see that the reduction A5 is in the isogeny class
2.5aac; the isogeny class 2.5de is ruled out since it only acquires QM over F53 , which is not
compatible with (a). The fact that #A5(F25)[3∞] = 9 shows that the point of order 3 in
A(Q) is not an O-module generator of A[3] (since the O-action on A5 is defined over F25). By
Proposition 7.1.1, we deduce that the quaternion algebra B is ramified at 3. Since A[3](Q)
has a rational point, it follows from Theorem 6.2.4 that Q(

√
−3) = Q(ζ3) ⊂ L, proving (b).

Since 3 ramifies in L, A has bad reduction over Q3 by Proposition 3.2.5. If A[2](Q) '
(Z/2Z)3 then A achieves good reduction over every ramified quadratic extension of Q3 by
Proposition 5.3.7. If A/Q3 has totally additive reduction, then the quadratic twist of A by
Q(
√

3), say, will have good reduction at 3 by Lemma 4.2.4. But quadratic twisting does
not change the endomorphism field by Lemma 3.2.6, so any quadratic twist of A must have
endomorphism field which contains Q(

√
−3) and hence must have bad reduction at 3. We

conclude that A must have unipotent rank 1 over Q3 by Proposition 4.1.3.
If A[2](Q) ' (Z/2Z)2 and Gal(L/Q) 6' D4, then Gal(L/Q) ' D2 and so L/Q is a

biquadratic field containing Q(ζ3). It follows that A has all of its endomorphisms defined
over Qnr

3 (ζ3). If A still has bad reduction over Q3(ζ3), then it must have totally additive
bad reduction (since it has QM after enlarging the residue field) by Proposition 4.1.3, and
we obtain a contradiction with Proposition 4.3.3 and the fact that A has a point of order 4.
Thus, A attains good reduction over Q3(ζ3), and arguing as above, we conclude that A has
unipotent rank 1 over Q3. �

Proposition 7.6.2. A(Q)tors 6' (Z/2Z)3 × Z/3Z.

Proof. Assume otherwise. Theorem 2.3.1 and Lemma 5.3.6 show that the endomorphism
field L/Q has Galois group Gal(L/Q) ' D2.

First assume there exists a prime p > 3 of bad reduction for A. By Theorem 4.3.2, A must
have unipotent rank 1 over Qp, and hence p must ramify in L by Proposition 4.1.3. Next,
recall that there are three GalQ-stable quadratic subfields of B, one of which is imaginary.
Let L1, L2, and L3 be the corresponding quadratic subfields of L, labeled so that BGalL1 is
imaginary quadratic. Since L is biquadratic, exactly one of the Li must be unramified over
Qp. Since A has unipotent rank 1, it must be L1 (by Proposition 4.1.3). But by Lemma
7.6.1(b) we have Q(ζ3) ⊂ L and Q(ζ3) is also unramified at p, so L1 = Q(

√
−3). Now,

A/Q3 has unipotent rank 1 by Lemma 7.6.1(c). As above, Proposition 4.1.3 implies that the
unique sub-extension Li unramified at 3 must be L1. This contradicts L1 = Q(

√
−3).

Thus, it remains to consider the possibility that A has good reduction outside {2, 3}. This
forces the endomorphism field to be unramified outside {2, 3}. Moreover, A has unipotent
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rank 1 reduction over Q3, so L must contain an imaginary quadratic subfield that is un-
ramified at 3. Hence L is isomorphic to Q(

√
−3, i) or Q(

√
−3,
√
−2). We also know that

BGalQ(
√
−3) is a real quadratic field, and L1 is either Q(i) or Q(

√
−2).

Over F7, there are two possible isogeny classes: 2.7aac and 2.7ibe. Since 7 is inert in
L1, L does not split completely at 7. The isogeny class is therefore not 2.7ibe, since all its
endomorphisms are defined over F7, hence the isogeny class is 2.7aac. Thus End0(A7) '
Q(
√
−3) × Q(

√
−3). Since 7 splits in Q(

√
−3), we see that BGalQ(

√
−3) = Q(

√
−3), which

shows that L1 = Q(
√
−3), contradicting what was said above. �

Proposition 7.6.3. If A(Q)tors 6' (Z/2Z)× (Z/4Z)× (Z/3Z).

Proof. First suppose G ' D4, so that the distinguished subring S of Definition §3.4.1 is
isomorphic to Z[i]. Then 2 | disc(B) by Lemma 2.2.3. Since B is ramified at 2 and 3 and
A(Q) contains points of order 4 and 3, we see that L contains both Q(i) and Q(ζ3), by
Theorem 6.2.4. Over one of these two quadratic subfields, the GalQ-action on S = Z[i]
trivializes. Indeed, the GalQ-action on Z[i] cannot be trivialized by the third quadratic

subfield Q(
√

3) of L, by Proposition 3.1.2. Looking over F5 we see that Q(i) could only
trivialize a ring isomorphic to Z[

√
3]. Looking over F7 we see that Q(ζ3) could only trivialize

a ring isomorphic to Z[
√
−3]. So neither trivialize Z[i], and we have a contradiction.

So we may now assume that G ' D2. Arguing as above, we may also assume that L does
not contain Q(i). We know A has unipotent rank 1 reduction over Q3 by Lemma 7.6.1(c).
It also has unipotent rank 1 reduction at all bad primes p > 3, by Theorem 4.3.2. By
Proposition 4.1.3, the imaginary quadratic subfield L1 ⊂ L that trivializes the distinguished
imaginary quadratic subring of O is unramified outside {2}. Since L1 6= Q(i), we must
have L1 = Q(

√
−2), but this field does not embed in B (which is ramified at 3), giving a

contradiction. �

As a corollary, we are now able to finish the proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Propositions 7.5.1, 7.6.2, and 7.6.3 show that #A(Q)tors < 24. Hence
#A(Q)tors ≤ 18. �

By the results of this section and the previous one, the group A(Q)tors has order 2i3j ≤ 18
and does not contain any subgroup of the form Z/8Z, Z/9Z, or (Z/2Z)4. We deduce the
following result, which is equivalent to Theorem 1.3.

Theorem 7.6.4. Let A/Q be an abelian surface such that End(AQ) is a maximal order in
a non-split quaternion algebra. Then A(Q)tors = A[12](Q) and #A(Q)tors ≤ 18. Moreover,
A(Q)tors does not contain a subgroup isomorphic to (Z/2Z)4. In other words, A(Q)tors is
isomorphic to one of the groups

{1},Z/2,Z/3,Z/4, (Z/2Z)2,Z/6, (Z/2Z)3,Z/2Z× Z/4Z, (Z/3Z)2,

Z/12,Z/2Z× Z/6Z, (Z/2Z)2 × Z/4Z, (Z/4Z)2,Z/3Z× Z/6Z.
Not all of the groups above are known to be realized as A(Q)tors for some O-PQM surface

A/Q. However, all groups that have been realized (including the largest one of order 18) have
been realized in the family of bielliptic Picard Prym surfaces [LS23]. It would be interesting
to systematically analyze rational points on Shimura curves of small discriminant and with
small level structure, to try to find more examples. It would also be interesting to see which
groups can be realized by Jacobians, which is the topic we turn to next.
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8. Proof of Theorem 1.5: PQM Jacobians

In this section, we consider O-PQM surfaces A/Q equipped with a principal polarization.
Since A is geometrically simple, there exists an isomorphism of polarized surfaces A '
Jac(C), where C is a smooth projective genus two curve over Q [Sek82, Theorem 3.1]. To
emphasize this, we use the letter J instead of A. The goal of this section to prove some
additional constraints on the torsion group J(Q)tors, i.e. we prove Theorem 1.5.

Lemma 8.0.1. Let M be the imaginary quadratic subfield of End0(AQ̄) corresponding to a

principal polarization on J under Corollary 3.3.4. Then M ' Q(
√
−D), where D = disc(B).

Proof. This is a direct consequence of the relation (3.3.2) of Proposition 3.3.1. �

Lemma 8.0.2. The endomorphism field L/Q has Galois group D1 = C2 or D2 = C2 × C2.

Proof. See [DR04, Theorem 3.4 A(1)]. �

Proposition 8.0.3. #J(Q)tors < 18.

Proof. By Theorem 1.3, we need only exclude (Z/2Z) × (Z/3Z)2. By Proposition 7.1.1(b)
and Lemma 8.0.2, the endomorphism field of A would be a C2-extension. In other words, A
is of GL2-type, but this contradicts Theorem 1.4. �

Finally, we rule out the group (Z/2Z)3 from appearing in J [2](Q). We have already
proven this when J is of GL2-type (Proposition 5.3.8), so it remains to consider the case
Gal(L/Q) ' C2 × C2. We deduce this from the following more general result.

Proposition 8.0.4. Suppose that A/Q is O-PQM, has C2 × C2 endomorphism field and
has A[2](Q) ' (Z/2Z)3. Let d be the degree of the unique primitive polarization of A. Then
2 | disc(B) and there exists an integer m ≡ 1 mod 4 such that disc(B) and dm agree up to
squares. In particular, d is even and A is not a Jacobian.

Proof. Let L/Q be the endomorphism field of A with Galois group G. By Lemma 5.3.6, there
exists an Q-rational O/2O-generator P ∈ A[2](Q), hence A[2] ' O/2O as GalQ-modules.
Therfore the G-action on O/2O has (Z/2Z)3 fixed points. By Lemma 2.3.7, 2 | disc(B) and
there exist positive integers m,n with m ≡ 1 mod 4 and n ≡ 3 mod 4 such that the three
GalQ-stable quadratic subfields of B are Q(

√
−m),Q(

√
n) and Q(

√
mn). Under Corollary

3.3.4, the unique primitive polarization of A corresponds to the subfield Q(
√
−m), and the

relation (3.3.2) of Proposition 3.3.1 shows that d disc(B) and m agree up to squares. In other
words, disc(B) and dm agree up to squares. Since disc(B) is even and squarefree and m is
odd, d must be even too. �

Proof of Theorem 1.5. Combine Theorem 1.3 and Propositions 8.0.3 and 8.0.4. �

In Table 2 we give some examples of Jacobians with non-trivial torsion subgroups and
OD-PQM, where OD is a maximal quaternion order of discriminant D. These were found
by computing the relevant covers of Shimura curves of level 1 and their full Atkin-Lehner
quotients and then substituting into the Igusa-Clebsch invariants in [LY20, Appendix B].
The torsion and endomorphism data can be independently verified using MAGMA1.

1https://github.com/ciaran-schembri/QM-Mazur
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Table 2: O-PQM Jacobians J/Q with torsion

J(Q)tors D End(A)Q J = Jac(C : y2 = f(x))
(Z/2Z) 10 Q y2 = −145855x6 − 729275x5 + 2187825x3 − 1312695x

(Z/2Z)2 6 Q(
√

3) y2 = −180x6 − 159x5 + 894x4 + 1691x3 + 246x2 − 672x + 80

(Z/3Z) 15 Q y2 = 17095x6 +345930x5 +602160x4 +234260x3−43680x2−540930x−634465

(Z/3Z)2 6 Q(
√

2) y2 = −15x6 − 270x5 + 315x4 − 270x3 − 45x2 + 270x + 105

(Z/6Z) 6 Q y2 = 5x6 + 21x5 − 63x4 − 49x3 + 294x2 − 343
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160, 1993.

[LS23] Jef Laga and Ari Shnidman. The geometry and arithmetic of bielliptic Picard curves. Arxiv
preprint, 2023+.

[LY20] Yi-Hsuan Lin and Yifan Yang. Quaternionic loci in Siegel’s modular threefold. Math. Z., 295(1-
2):775–819, 2020.

[Maz77] B. Mazur. Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math., (47):33–
186 (1978), 1977. With an appendix by Mazur and M. Rapoport.

[Min87] Hermann Minkowski. Zur Theorie der positiven quadratischen Formen. J. Reine Angew. Math.,
101:196–202, 1887.

[Oht74] Masami Ohta. On l-adic representations of Galois groups obtained from certain two-dimensional
abelian varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 21:299–308, 1974.

[Rib76] Kenneth A. Ribet. Galois action on division points of Abelian varieties with real multiplications.
Amer. J. Math., 98(3):751–804, 1976.

[Rib04] Kenneth A. Ribet. Abelian varieties over Q and modular forms. In Modular curves and abelian
varieties, volume 224 of Progr. Math., pages 241–261. Birkhäuser, Basel, 2004.
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