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Preface

Goal

In the response to receiving the 1996 Steele Prize for Lifetime Achievement [Ste96],
Shimura describes a lecture given by Eichler:

[T]he fact that Eichler started with quaternion algebras determined his
course thereafter, which was vastly successful. In a lecture he gave in
Tokyo he drew a hexagon on the blackboard and called its vertices clock-
wise as follows: automorphic forms, modular forms, quadratic forms,
quaternion algebras, Riemann surfaces, and algebraic functions.

This book is an attempt to fill in the hexagon sketched by Eichler and to augment
it further with the vertices and edges that represent the work of many algebraists,
geometers, and number theorists in the last 50 years.

Quaternion algebras sit prominently at the intersection of many mathematical
subjects. They capture essential features of noncommutative ring theory, number the-
ory, K-theory, group theory, geometric topology, Lie theory, functions of a complex
variable, spectral theory of Riemannian manifolds, arithmetic geometry, representa-
tion theory, the Langlands program—and the list goes on. Quaternion algebras are
especially fruitful to study because they often reflect some of the general aspects of
these subjects, while at the same time they remain amenable to concrete argumenta-
tion.

With this in mind, we have two goals in writing this text. First, we hope to in-
troduce a large subset of the above topics to graduate students interested in algebra,
geometry, and number theory. We assume that students have been exposed to some
algebraic number theory (e.g., quadratic fields), commutative algebra (e.g., module
theory, localization, and tensor products), as well as the basics of linear algebra,
topology, and complex analysis. For certain sections, further experience with objects
in arithmetic geometry, such as elliptic curves, is useful; however, we have endeav-
ored to present the material in a way that is motivated and full of rich interconnections
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and examples, so that the reader will be encouraged to review any prerequisites with
these examples in mind and solidify their understanding in this way. At the moment,
one can find introductions for aspects of quaternion algebras taken individually, but
there is no text that brings them together in one place and that draws the connections
between them; we have tried to fill this gap. Second, we have written this text for
researchers in these areas: we have collected results otherwise scattered in the liter-
ature, provide some clarifications and corrections and complete proofs in the hopes
that this text will provide a convenient reference in the future.

In order to combine these features, we have opted for an organizational pattern
that is “horizontal” rather than “vertical”: the text has many chapters, each represent-
ing a different slice of the theory. Each chapter could be used in a (long) seminar
afternoon or could fill a few hours of a semester course. To the extent possible,
we have tried to make the chapters stand on their own (with explicit references to
results used from previous chapters) so that they can be read based on the reader’s
interests—hopefully the interdependence of the material will draw the reader in more
deeply! The introductory section of each chapter contains motivation and a summary
of the results contained therein, and we often restrict the level of generality and make
simplifying hypotheses so that the main ideas are made plain. Hopefully the reader
who is new to the subject will find these helpful as way to dive in.

This book has three other features. First, as is becoming more common these
days, paragraphs are numbered when they contain results that are referenced later
on; we have opted not to put these always in a labelled environment (definition, theo-
rem, proof, etc.) to facilitate the expositional flow of ideas, while at the same time we
wished to remain precise about where and how results are used. Second, we have in-
cluded in each chapter a section on “extensions and further reading”, where we have
indicated some of the ways in which the author’s (personal) choice of presentation
of the material naturally connects with the rest of the mathematical landscape. Our
general rule (except the historical expository in Chapter 1) has been to cite specific
results and proofs in the text where they occur, but to otherwise exercise restraint
until this final section where we give tangential remarks, more general results, ad-
ditional references, etc. Finally, in many chapters we have also included a section
on algorithmic aspects, for those who want to pursue the computational side of the
theory. And as usual, each section also contains a number of exercises at the end,
ranging from checking basic facts used in a proof to more difficult problems that
stretch the reader. For many of these exercises, there are hints at the end of the book;
for any result that is used later, a complete argument is given.
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Algebra

1





Chapter 1

Introduction

In this chapter, we give an overview of the topics contained in this book. We follow
the historical arc of quaternion algebras and see in broad stroke how they have im-
pacted the development of many areas of mathematics. This account is selective and
is mostly culled from existing historical surveys; two very nice surveys of quaternion
algebras and their impact on the development of algebra are those by Lam [Lam03]
and Lewis [Lew06].

1.1 Hamilton’s quaternions

In perhaps the most famous act of mathematical vandalism, on October 16, 1843, Sir
William Rowan Hamilton carved the following equations into the Brougham Bridge
(now Broomebridge) in Dublin:

i2 = j2 = k2 = i jk = −1. (1.1.1)

His discovery of these multiplication laws was a defining moment in the history of
algebra.

For at least ten years, Hamilton had been attempting to model three-dimensional
space with a structure like the complex numbers, whose addition and multiplica-
tion model two-dimensional space. Just like the complex numbers had a “real” and
“imaginary” part, so too did Hamilton hope to find an algebraic system whose ele-
ments had a “real” and two-dimensional “imaginary” part. His son William Edward
Hamilton, while still very young, would pester his father [Ham67, p. xv]: “Well,
papa, can you multiply triplets?” To which Hamilton would reply, with a sad shake
of the head, “No, I can only add and subtract them.” (For a history of the “multiplying
triplets” problem—the nonexistence of division algebra over the reals of dimension
3—see May [May66, p. 290].)

3
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Figure 1.1: Sir William Rowan Hamilton (1805–1865)

Then, on this dramatic day in 1843, Hamilton’s had a flash of insight [Ham67,
p. xx–xxvi]:

On the 16th day of [October]—which happened to be a Monday, and
a Council day of the Royal Irish Academy—I was walking in to attend
and preside, and your mother was walking with me, along the Royal
Canal, to which she had perhaps driven; and although she talked with
me now and then, yet an under-current of thought was going on in my
mind, which gave at last a result, whereof it is not too much to say that
I felt at once the importance. An electric circuit seemed to close; and
a spark flashed forth, the herald (as I foresaw, immediately) of many
long years to come of definitely directed thought and work, by myself if
spared, and at all events on the part of others, if I should even be allowed
to live long enough distinctly to communicate the discovery. Nor could
I resist the impulse—unphilosophical as it may have been—to cut with
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a knife on a stone of Brougham Bridge, as we passed it, the fundamental
formula with the symbols, i, j, k; namely,

i2 = j2 = k2 = i jk = −1

which contains the Solution of the Problem.

In this moment, Hamilton realized that he needed a fourth dimension, and so he
coined the term quaternions for the real space spanned by the elements 1, i, j, k, sub-
ject to his multiplication laws 1.1.1. He presented this theory to the Royal Irish
Academy in a paper entitled “On a new Species of Imaginary Quantities connected
with a theory of Quaternions” [Ham1843]. For more, there are several extensive, de-
tailed accounts of this history of quaternions [Dic19, vdW76]. Although his carvings
have long since worn away, a plaque on the bridge now commemorates this histori-
cally significant event. This magnificent story remains in the popular consciousness,
and to commemorate Hamilton’s discovery of the quaternions, there is an annual
“Hamilton walk” in Dublin [ÓCa10].

Although Hamilton was undoubtedly responsible for advancing the theory of
quaternion algebras, there are several precursors to his discovery that bear mention-
ing. First, the quaternion multiplication laws are already implicitly present in the
four-square identity of Leonhard Euler:

(a2
1 + a2

2 + a2
3 + a2

4)(b2
1 + b2

2 + b2
3 + b2

4) = c2
1 + c2

2 + c2
3 + c2

4 =

(a1b1 − a2b2 − a3b3 − a4b4)2 + (a1b2 + a2b1 + a3b4 − a4b3)2

+ (a1b3 − a2b4 + a3b1 + a4b2)2 + (a1b4 + a2b3 − a3b2 + a4b1)2.

(1.1.2)

Indeed, the multiplication law in the quaternion reads precisely

(a1 + a2i + a3 j + a4k)(b1 + b2i + b3 j + b4k) = c1 + c2i + c3 j + c4k.

It was perhaps Carl Friedrich Gauss who first observed this connection. In a note
dated around 1819 [Gau00], he interpreted the formula (1.1.2) as a way of composing
real quadruples: to the quadruples (a1, a2, a3, a4) and (b1, b2, b3, b4) in R4, he defined
the composite tuple (c1, c2, c3, c4) and noted the noncommutativity of this operation.
Gauss elected not to publish these findings, as he was afraid of the unwelcome re-
ception that the idea might receive. (In letters to De Morgan [Grav1885, Grav1889,
p. 330, p. 490], Hamilton attacks the allegation that Gauss had discovered quater-
nions first.) Finally, Olinde Rodrigues (1795–1851) (of the Rodrigues formula for
Legendre polynomials) gave a formula for the angle and axis of a rotation in R3 ob-
tained from two successive rotations—essentially giving a different parametrization
of the quaternions—but had left mathematics for banking long before the publica-
tion of his paper [Rod1840]. The story of Rodrigues and the quaternions is given by
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Altmann [Alt89] and Pujol [Puj12] and the fuller story of his life by Altmann–Ortiz
[AO05].

In any case, the quaternions consumed the rest of Hamilton’s academic life and
resulted in the publication of two treatises [Ham1853, Ham1866] (see also the re-
view [Ham1899]). Hamilton’s writing over these years became increasingly obscure,
and many found his books to be impenetrable. Nevertheless, many physicists used
quaternions extensively and for a long time in the mid-19th century, quaternions were
an essential notion in physics. Hamilton endeavored to set quaternions as the stan-
dard notion for vector operations in physics as an alternative to the more general dot
product and cross product introduced in 1881 by Willard Gibbs (1839–1903), build-
ing on remarkable but largely ignored work of Hermann Grassmann (1809–1877)
[Gras1862]. The two are related by the beautiful equality

vw = v · w + v× w (1.1.3)

for v, w ∈ Ri + R j + Rk, relating quaternionic multiplication to dot and cross prod-
ucts. This rivalry between physical notation flared into a war in the latter part of the
19th century between the ‘quaternionists’ and the ‘vectorists’, and for some the pref-
erence of one system versus the other became an almost partisan split. On the side of
quaternions, James Clerk Maxwell (1831–1879) (responsible for the equations which
describe electromagnetic fields) wrote [Max1869, p. 226]:

The invention of the calculus of quaternions is a step towards the knowl-
edge of quantities related to space which can only be compared, for its
importance, with the invention of triple coordinates by Descartes. The
ideas of this calculus, as distinguished from its operations and symbols,
are fitted to be of the greatest use in all parts of science.

And Peter Tait (1831–1901), one of Hamilton’s students, wrote in 1890 [Tai1890]:

Even Prof. Willard Gibbs must be ranked as one the retarders of quater-
nions progress, in virtue of his pamphlet on Vector Analysis, a sort of
hermaphrodite monster, compounded of the notation of Hamilton and
Grassman.

On the vectorist side, Lord Kelvin (a.k.a. William Thomson, who formulated of the
laws of thermodynamics), said in an 1892 letter to R. B. Hayward about his textbook
in algebra (quoted in Thompson [Tho10, p. 1070]):

Quaternions came from Hamilton after his really good work had been
done; and, though beautifully ingenious, have been an unmixed evil to
those who have touched them in any way, including Clerk Maxwell.
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160 BLBHENTS OF QUATBRNIOliS. (BOOK. U. 

the law of i, j, A agree with usual and algebraic law: namely~ 
in the A11ociative Property of Multiplication ; or in the pro­
perty that the new symbols always obey the a1sociative .for­
mula ( comp. 9 ), 

'.«A ... '" .~. 
whichever of them. may be substituted for c, for "• and for :\ ; 
in virtue of which equality of values we may omit tlte point, in 
any such symbol of a terMry product (whether of equal or of 
unequal factoni), and write it simply as c«A. In particular 
we have thus, 

i jl: D i o i - i'l - - J ; 

or briefly, 
ij.A=l:./e-l:'=-1; 

ij.4=-1. 
We may, therefore, by 182, establish the following important 
Formula: 

I"'J-i' ... "' = ijk .. - 1 ; (A) 
to which we shall occasionally refer, as to "Formula A," and 
which we shall find to contain (virtually) an the laws of the 
•ymbou ijk, and therefore to be a •u.fficient symbolical basil 
for the whole Calculu1 of Quaternioru :• because it will be 
shown that every quaternion can be reduced to the Quadrino­
mial Form, 

q=w+i~+j!J+kz, 

where w, ~. y, z compose a '1Jitem of four scalars, while i, j, l 
are the BIUDe tlcree rirfkt versor1 as above. 

(1.) A direct proof of the equation, ijl =-1, may be derived from thedeftDitlODs 
of the symbols in Art. 181. In fact, we have only to remember that thoee deftnl­

tions were- to give, 

• Thia formula (A),., .. accordingly made the bcui• of that Calculns In the lint 
communication on the subject, by tbe preeent writer, to the Royal lriah Aeademy in 
1848 ; and the !etten, i, j, I, coatinued to be, for some time, the ore~, pHtlliGr .,.. 
hl• of the c:aleulus In question. But it was gradually found to be nsefa1 to Incor­
porate with these a few other aotatiolu (auch as K and U, &c.), for rep~ntlag 
OportJtitnU 011 QuleMiiOfl•. It was aleo thought to be Instructive to eetablilh the 
priAeiplu or that Calculus, on a more !lft't11Mcal (or leu exeluaively ·~ 
f'*"datiora tban at first ; which was accordingly af'lerwards done, in the volume en­
titled: L«nru 011 QruJtmaiou (Dublin, 1858); and I• again attempted in the pre· 
eent work, although with many dilfereneea In the adopted plara of expoeltion1 and in 
the applictJtioro• brought forward, or suppreaeed. 

DUtized by Coogle Figure 1.2: A page from Hamilton’s Elements of quaternions
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Ultimately, the superiority of vector notation carried the day, and only certain useful
fragments of Hamilton’s quaternionic notation remain in modern usage. For more
on the history of quaternionic and vector calculus, see Crowe [Cro64] and Simons
[Sim10].

The debut of the quaternions by Hamilton was met with some resistance in the
mathematical world: it proposed a system of “numbers” that did not satisfy the usual
commutative rule of multiplication. Quaternions predated the notion of matrices,
introduced in 1855 by Arthur Cayley (1821-1895). Hamilton’s bold proposal of a
noncommutative multiplication law was the harbinger of an array of algebraic struc-
tures. In the words of J.J. Sylvester [Syl1883, pp. 271–272]:

In Quaternions (which, as will presently be seen, are but the simplest or-
der of matrices viewed under a particular aspect) the example had been
given of Algebra released from the yoke of the commutative principle
of multiplication—an emancipation somewhat akin to Lobachevsky’s
of Geometry from Euclid’s noted empirical axiom; and later on, the
Peirces, father and son (but subsequently to 1858) had prefigured the
universalization of Hamilton’s theory, and had emitted an opinion to the
effect that probably all systems of algebraical symbols subject to the
associative law of multiplication would be eventually found to be iden-
tical with linear transformations of schemata susceptible of matriculate
representation.

Indeed, with the introduction of the quaternions the floodgates of algebraic possi-
bilities had been opened. See Happel [Hap80] for the early development of algebra
following Hamilton’s quaternions.

1.2 Algebra after the quaternions

Soon after he discovered his quaternions, Hamilton sent a letter [Ham1844] describ-
ing them to his friend John T. Graves (1806-1870). Graves replied on October 26,
1843, with his complements, but added:

There is still something in the system which gravels me. I have not yet
any clear views as to the extent to which we are at liberty arbitrarily
to create imaginaries, and to endow them with supernatural properties.
. . . If with your alchemy you can make three pounds of gold, why should
you stop there?

Following this line of inquiry, on December 26, 1843, Graves wrote to Hamilton that
he had successfully generalized quaternions to the “octaves”, now called octonions
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O, an algebra in eight dimensions, with which he was able to prove that the product of
two sums of eight perfect squares is another sum of eight perfect squares, a formula
generalizing (1.1.2). In fact, Hamilton first invented the term associative in 1844,
around the time of his correspondence with Graves. Unfortunately for Graves, the
octonions were discovered independently and published already in 1845 by Cayley
[Cay1845], who often is credited for their discovery. (Even worse, the eight squares
identity was also previously discovered by C. F. Degen.) For a more complete ac-
count of this story and the relationships between quaternions and octonions, see the
survey article by Baez [Bae02], the article by van der Blij[vdB60], and the book by
Conway–Smith [CS03].

In this way, Cayley was able to reinterpret the quaternions as arising from a dou-
bling process, also called the Cayley–Dickson construction, which starting from R
produces C then H then O, taking the ordered, commutative, associative algebra R
and progressively deleting one adjective at a time. So algebras were first studied over
the real and complex numbers and were accordingly called hypercomplex numbers
in the late 19th and early 20th century. And this theory flourished. In 1878, Ferdinand
Frobenius (1849–1917) proved that the only finite-dimensional division associative
algebras over R are R, C, and H [Fro1878]. (This result was also proven indepen-
dently by C.S. Peirce, the son of Benjamin Peirce, below.) (Much later, work by
topologists culminated in the theorem of Bott–Milnor [BM58] and Kervaire [Ker58]:
the only finite-dimensional division (not-necessarily- associative) algebras have di-
mensions 1, 2, 4, 8. As a consequence, the sphere Sn−1 = {x ∈ Rn : ‖x‖2 = 1} has a
trivial tangent bundle only when n = 1, 2, 4, 8.)

In another attempt to seek a generalization of the quaternions to higher dimen-
sion, William Clifford (1845–1879) developed a way to build algebras from quadratic
forms in 1876 [Cli1878]. Clifford constructed what we now call a Clifford algebra
associated to V = Rn; it is an algebra of dimension 2n containing V with multiplica-
tion induced from the relation x2 = −‖x‖2 for all x ∈ V . We have C(R1) = C and
C(R2) = H, so the Hamilton quaternions arise as a Clifford algebra, but C(R3) is not
the octonions. Nevertheless, the theory of Clifford algebras is tightly connected to
the theory of normed division algebras. For more on the history of Clifford algebras,
see Diek–Kantowski [DK95].

The study of division algebras gradually evolved, including work by Benjamin
Peirce [Pei1882] originating from 1870 on linear associative algebra; therein, he
provides a decomposition of an algebra relative to an idempotent. The notion of a
simple algebra had been found and developed around this time by Élie Cartan (1869–
1951). But it was Joseph Henry Maclagan Wedderburn (1882–1948) who was the
first to find meaning in the structure of simple algebras over an arbitrary field, in
many ways leading the way forward. The jewel of his 1908 paper [Wed08] is still
foundational in the structure theory of algebras: a simple algebra (finite-dimensional
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over a field) is isomorphic to the matrix ring over a division ring. Wedderburn also
proved that a finite division ring is a field, a result that like his structure theorem
has inspired much mathematics. For more on the legacy of Wedderburn, see Artin
[Art50].

Around this time, other types of algebras over the real numbers were also being
investigated, the most significant of which were Lie algebras. In the seminal work
of Sophus Lie (1842–1899), group actions on manifolds were understood by looking
at this action infinitessimally; one thereby obtains a Lie algebra of vector fields that
determines the local group action. The simplest nontrivial example of a Lie algebra
is the cross product of two vectors, related to quaternion multiplication in (1.1.3): it
defines, in fact, give a binary operation on R3, but now

i× i = j× j = k × k = 0.

The Lie algebra “linearizes” the group action and is therefore more accessible. Wil-
helm Killing (1847–1923) initiated the study of the classification of Lie algebras in a
series of papers [Kil1888], and this work was completed by Cartan. For more on this
story, see Hawkins [Haw00].

The first definition of an algebra over an arbitrary field seems to have been given
by Leonard E. Dickson (1874–1954) [Dic03] (even though at first he still called the
resulting object a system of complex numbers and later adopting the name (linear)
algebra). In the early 1900s, Dickson developed this theory further and in particular
was the first to consider quaternion algebras over a general field. First, he consid-
ered algebras in which every element satisfies a quadratic equation [Dic12], lead-
ing to multiplication laws for what he later called a generalized quaternion algebra
[Dic14, Dic23]. Today, we no longer employ the adjective “generalized”, and we can
reinterpret this vein of Dickson’s work as showing that every 4-dimensional central
simple algebra is a quaternion algebra (over a field F with char F , 2).

At this time, Dickson [Dic19] (giving also a complete history) wrote on earlier
work of Hurwitz from 1888 [Hur1888], who asked for generalizations of the compo-
sition laws arising from sum of squares laws like that of Euler (1.1.2) for four squares
and Cayley for eight squares: for which n does there exist an identity

(a2
1 + · · · + a2

n)(b2
1 + · · · + b2

n) = c2
1 + · · · + c2

n

with ci bilinear in x and y? He showed they only exist for n = 1, 2, 4, 8 variables (so
in particular, there is no formula expressing the product of two sums of 16 squares as
the sum of 16 squares), the result being tied back to his theory of algebras.

Biquaternion (Albert) algebras. A. Adrian Albert.
Class field theory Hasse principle (1920s), class field theory, Noether, arithmetic

of hypercomplex number systems. Cyclic algebras, cyclic cross product.
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As “twisted forms” of 2 × 2-matrices, quaternion algebras in many ways are
like “noncommutative quadratic field extensions”, and just as the quadratic fields
Q(
√

d) are wonderously rich, so too are their noncommutative analogues. In this
way, quaternion algebras provide a natural place to do noncommutative algebraic
number theory. A more general study would look at central simple algebras (see
Reiner).

Fuchsian groups The quotient gives rise to a Riemann surface. Riemann.
Hypergeometric functions also give examples. Fuchs and his differential equa-

tions.
After all, how do you get discrete groups? Start with real matrices, go to rational

matrices, then to integral matrices, then make a group. Allow yourself entries in a
number field, consider the algebra generated, take integral elements, make the group.
When is this discrete? Something like 4-dimensional object gives you quaternion
algebras.

Modular forms. The basic example being the group SL2(Z). Quaternion algebras
give rise therefore to objects of interest in geometry and low-dimensional topology.
Classical modular forms.

discovered by Deuring.
Especially Jacobi and the sums of 4 squares, something that also can be seen us-

ing quaternion algebras. How often is an integer a sum of squares, or more generally,
represented by a quadratic form in 4 variables? The generating function is a modular
form.

Automorphic forms. Then discovery by Poincaré “when he was walking on a
cliff,” apparently in 1886, as he reminisced in his Science et Méthode. Holomor-
phic (complex analytic) functions that are invariant with respect to these groups are
very interesting to study (“automorphic functions”). Set of matrices that preserve a
quadratic form.

Soon after, this was followed by Fricke and Klein, who were interested in sub-
groups of PGL2(R) that act discretely on the upper half-plane, such as the group
generated by the matrices(

0 1
−1 0

)
and

( √
2 1 +

√
3

1−
√

3
√

2

)
.

They still used the language of quadratic forms? In this way, quaternion algebras are
useful in group theory.

Then other groups, Hilbert modular forms.

1.3 Modern theory

Composition laws Picking up again, work of Brandt.
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Hecke operators, the basis problem, and the trace formula

Then Eichler: theory of Hecke operators in the 1950s. Selberg and trace formula.
Basis problem.

Modularity and elliptic curves

Work of Shimura: find examples of zeta functions that could be given. Theory of
complex multiplication and modularity of elliptic curves. Galois representations

Abelian varieties. Quaternion algebras arise also as the endomorphism rings of
elliptic curves, and indeed they are the only noncommutative endomorphism algebras
of simple abelian varieties over fields by Albert’s classification. So that justifies there
study already. The Rosati involution figures prominently in this classification.

Algebras with involution

Composition algebras. Algebras with involutions: Knus, etc. Connects back to
Lie theory.

Riemannian manifolds

Back to Riemann surfaces. Vignéras.
Three-dimensional groups, arithmetic, some results.
Algorithmic aspects. Computations and algorithms can be done; this gives mod-

ular symbols, Brandt matrices, and their generalizations.
Today, quaternions have seen a revival in computer modeling and animation as

well as in attitude control of aircraft and spacecraft [Han06]. A rotation in R3 about
an axis through the origin can be represented by a 3 × 3 orthogonal matrix with
determinant 1. However, the matrix representation is redundant, as there are only
four degrees of freedom in such a rotation (three for the axis and one for the angle).
Moreover, to compose two rotations requires the product of the two corresponding
matrices, which requires 27 multiplications and 18 additions in R. Quaternions,
on the other hand, represent this rotation with a 4-tuple, and multiplication of two
quaternions takes only 16 multiplications and 12 additions in R. (What about Euler
angles?)

In physics, quaternions yield elegant expression for the Lorentz transformations,
the basis of the modern theory of relativity. Originally Hamilton’s motivation, so we
have come full circle (with many loops in between). There has been renewed interest
by topologists in understanding quaternionic manifolds and by physicists who seek
a quaternionic quantum physics, and some physicists still hope they will obtain a
deeper understanding of physical principles in terms of quaternions.

And so although much of Hamilton’s quaternionic physics fell out of favor long
ago, we have somehow come full circle in our elongated historical arc. The enduring
role of quaternion algebras as a progenitor of a vast range of mathematics promises
a rewarding ride for years to come.
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1.4 Extensions and further reading

1.4.1. There are three main biographies written about the life of William Rowan
Hamilton, a man sometimes referred to as “Ireland’s greatest mathematician”, by
Graves [Grav1882, Grav1885, Grav1889] in three volumes, Hankins [Han80], and
O’Donnell [O’Do83]. Numerous other shorter biographies have been written [Lan67,
ÓCa00].

1.4.2. If B is an R-algebra of dimension 3, then either B is commutative or B is
isomorphic to the subring of upper triangular matrices in M2(R) (and consequently
has a standard involution; see Chapter 3). A similar statement holds for free R-
algebras of rank 3 over a (commutative) domain R; see Levin [Lev13].

1.4.3. [[Ways to visualize the spin group [HFK94].]]

Exercises

1.1. Hamilton originally sought an associative multiplication law on B = R + Ri +

R j � R3 where i2 = −1, so in particular C ⊂ B. Show that this is impossible.

1.2. Hamilton sought a multiplication ∗ : R3 × R3 → R3 that preserves length:

‖v‖2‖w‖2 = ‖v ∗ w‖2

for v, w ∈ R3. Expanding out in terms of coordinates, such a multiplication
would imply that the product of the sum of three squares over R is again the
sum of three squares in R. (Such a law holds for the sum of two squares,
corresponding to the multiplication law in R2 � C: we have

(x2 + y2)(u2 + v2) = (xu− yv)2 + (xv + yu)2.)

However, show that such a formula for three squares is impossible, as it would
imply an identity in the polynomial ring in 6 variables over Z. [Hint: Find a
natural number that is the product of two sums of three squares which is not
itself the sum of three squares.]

1.3. Show that there is no way to give R3 the structure of a ring (with 1) in which
multiplication distributes over scalar multiplication by R and every nonzero
element has a (two-sided) inverse, as follows.

a) Suppose otherwise, and R3 = D is equipped with a multiplication law.
Show that every x ∈ D satisfies a polynomial of degree at most 3 with
coefficients in R.
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b) By consideration of irreducible factors, show that every x ∈ D satisfies a
(minimal) polynomial of degree 1.

c) Derive a contradiction from the fact that every nonzero element has a
(two-sided) inverse.



Chapter 2

Beginnings

In this chapter, we define quaternion algebras over fields by giving a multiplication
table, following Hamilton; we then consider the classical application of understand-
ing rotations in R3.

2.1 Conventions

Throughout this chapter, let F be a field with char F , 2; the case char F = 2 is
considered in detail in Chapter 5.

We assume throughout the text (unless otherwise stated) that all rings are asso-
ciative, not necessarily commutative, with 1, and that ring homomorphisms preserve
1. An algebra over the field F is a ring B equipped with a homomorphism F → B
such that the image of F lies in the center of B. If B is not the zero ring, then this map
is necessarily injective and we identify F with its image. Equivalently, an F-algebra
is an F-vector space that is also compatibly a ring.

A homomorphism of F-algebras is a ring homomorphism which restricts to the
identity on F. An F-algebra homomorphism is necessarily F-linear. The dimen-
sion dimF B of an F-algebra B is its dimension as an F-vector space. If B is an
F-algebra then we denote by EndF(B) the endomorphism ring of all F-linear homo-
morphisms B → B (where ring multiplication is given by functional composition)
and by AutF(B) the automorphism group of all F-algebra isomorphisms B ∼−→ B.

2.2 Quaternion algebras

In this section, we define quaternion algebras by giving a set of generators and rela-
tions.

15
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Definition 2.2.1. An algebra B over F (with char F , 2) is a quaternion algebra if
there is an F-basis 1, i, j, k for B such that

i2 = a, j2 = b, and k = i j = − ji (2.2.2)

for some a, b ∈ F×.

The multiplication table for a quaternion algebra B is determined by the multi-
plication rules (2.2.2): for example, we have that

k2 = (i j)2 = (i j)(i j) = i( ji) j = i(−i j) j = −ab

and j(i j) = (−i j) j = −bi. This multiplication table is associative (Exercise 2.1), and
we have dimF B = 4.

It will be useful to have a symbol for quaternion algebras. For a, b ∈ F×, we

define
(a, b

F

)
to be the algebra over F with basis 1, i, j, k subject to the multiplication

rules 2.2.2. Thus an F-algebra B is a quaternion algebra over F if and only if B is

isomorphic (as an F-algebra) to
(a, b

F

)
for some a, b.

The map which interchanges i and j gives an isomorphism
(a, b

F

)
�

(b, a
F

)
, so

Definition 2.2.1 is symmetric in a, b. (See also Exercise 2.4.)
If K ⊇ F is a field extension of F, then we have a canonical isomorphism(a, b

F

)
⊗F K �

(a, b
K

)
so Definition 2.2.1 is functorial in F (with respect to inclusion of fields).

Example 2.2.3. TheR-algebraH =

(−1,−1
R

)
is the ring of quaternions over the real

numbers, discovered by Hamilton; we call H the ring of Hamiltonians.

Example 2.2.4. The ring M2(F) of 2× 2-matrices with coefficients in F is a quater-

nion algebra over F: indeed, there is an isomorphism
(1, 1

F

)
∼−→ M2(F) of F-algebras

induced by

i 7→
(
1 0
0 −1

)
, j 7→

(
0 1
1 0

)
.

Indeed, if F = F is algebraically closed and B is a quaternion algebra over F,
then necessarily B � M2(F) (Exercise 2.4).
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A quaternion algebra B is generated by the elements i, j by definition (2.2.2).
However, exhibiting an algebra by generators and relations can be subtle, as the di-
mension of such an algebra is not a priori clear. But working with presentations is
quite useful, so we consider the following lemma.

Lemma 2.2.5. An F-algebra B is a quaternion algebra if and only if there exist
generators i, j ∈ B (as an F-algebra) satisfying

i2 = a, j2 = b, and i j = − ji (2.2.6)

with a, b ∈ F×.

In other words, once the relations (2.2.6) are satisfied for generators i, j, then
automatically B has dimension 4 as an F-vector space.

Proof. It is necessary and sufficient to prove that the elements 1, i, j, i j are linearly
independent. So suppose that t + xi + y j + zi j = 0 with t, x, y, z ∈ F not all zero. The
map i 7→ −i (and j 7→ j) is an automorphism of B as an F-algebra, since it preserves
the relations 2.2.6. Applying this automorphism, we obtain t − xi + y j − zi j = 0,
and adding we get 2(t + y j) = 0. Since char F , 2, this gives t + y j = 0. If y , 0,
then j ∈ F so lies in the center, contradicting i j = − ji; so y = 0. In a similar way,
the automorphism j 7→ − j yields t + xi = 0 so x = 0, and their composition gives
t + zi j = 0 so z = 0. Thus t = 0 as well.

Accordingly, we will call elements i, j ∈ B satisfying (2.2.6) standard generators
for a quaternion algebra B.

Remark 2.2.7. Invertibility of both a and b in F is needed for Lemma 2.2.5: the
commutative algebra B = F[i, j]/(i, j)2 is generated by the elements i, j that satisfy
i2 = j2 = i j = − ji = 0 but B is not a quaternion algebra.

2.2.8. Every quaternion algebra B =

(a, b
F

)
can be viewed as a subalgebra of 2 × 2-

matrices, as follows.
Let

K = F[i] = F ⊕ Fi � F[x]/(x2 − a)

be the (commutative) F-algebra generated by i. Suppose that K is a field: then
K � F(

√
a) is a quadratic field extension of F. (We relax this assumption be-

low; alternatively, replace “vector space” with “free module” in the argument that
follows.)

The algebra B has the structure of a left K-vector space of dimension 2, with
basis 1, j: explicitly, we have

α = t + xi + y j + zi j = (t + xi) + (y + zi) j ∈ K ⊕ K j
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for all α ∈ B. We then define the right regular representation over K

ρ : B→ EndK(B)

α 7→ ρα

by mapping an element α ∈ B to the map ρα given by right multiplication by α. Each
map ρα is indeed a K-linear endomorphism in B (considered as a left K-vector space)
by associativity in B: we have

(wβ)ρα = (wβ)α = w(βα) = w(β)ρα

for all α, β ∈ B and w ∈ K. Note here that we adopt the convention that endomor-
phisms act on the right, so ρα · ρβ means first ρα then ρβ. A similar argument shows
that ρ is further an F-algebra homomorphism.

In the basis 1, j we have EndK(B) � M2(K), and ρ is given by

i 7→ ρi =

(
i 0
0 −i

)
, j 7→ ρ j =

(
0 1
b 0

)
. (2.2.9)

By our convention, the matrices above act on row vectors on the right.
The map ρ is injective (ρ is a faithful representation) since ρα = 0 implies ρα(1) =

α = 0.
In particular, we have that

B �

{(
t + xi y + zi

b(y− zi) t − xi

)
: t, x, y, z ∈ F

}
⊂ M2(K). (2.2.10)

Now—even if K is not a field—we verify by definition that the F-subalgebra gener-
ated by the matrices ρi, ρ j in (2.2.9) is a quaternion algebra using Lemma 2.2.5, so
that the isomorphism (2.2.10) holds in all cases.

Here, B acts on rows on the right; if instead, one wishes to have B act on the left
on columns, give B the structure of a right K-vector space and use the left regular
representation instead.

This is not the only way to embed B as a subalgebra of 2×2-matrices; indeed, the
“splitting” of quaternion algebras in this way is a theme that will reappear throughout
this text.

2.3 Rotations

From Paragraph 2.2.8, we see that the Hamiltonians H have the structure of a left
C-vector space with basis 1, j; the right regular representation (2.2.10) then yields an
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R-algebra embedding

ρ : H ↪→ EndC(H) � M2(C)

t + xi + y j + zi j 7→
(

t + xi y + zi
−(y− zi) t − xi

)
=

(
u v

−v u

) (2.3.1)

where u = t + xi and v = y + zi and denotes complex conjugation. Note that

det
(

u v

−v u

)
= |u|2 + |v|2 = t2 + x2 + y2 + z2.

It follows that H× = H \ {0} and the subgroup of unit Hamiltonians

H×1 = {t + xi + y j + zk ∈ H : t2 + x2 + y2 + z2 = 1},

which as a set is identified with the 3-sphere in R4, is isomorphic as a group to

H×1 � SU(2) =

{(
u v

−v u

)
∈ M2(C) : |u|2 + |v|2 = 1

}
= {A ∈ SL2(C) : A∗ = A−1}
= {A ∈ SL2(C) : JA = AJ}

where A∗ = A
t

is the complex conjugate transpose of A and J =

(
0 −1
1 0

)
.

To conclude this chapter, we return to Hamilton’s original design: quaternions
model rotations in 3-dimensional space. This development is important not only his-
torically important but it also previews many aspects of the general theory of quater-
nion algebras over fields.

Definition 2.3.2. α ∈ H is real if α ∈ R and pure (or imaginary ) if α ∈ Ri+R j+Ri j.

Therefore, just like over the complex numbers, every element of H is the sum
of its real part and its pure (imaginary) part. And just like complex conjugation, we
define a conjugation map

: H→ H
α = t + (xi + y j + zk) 7→ α = t − (xi + y j + zk)

(2.3.3)

by negating the imaginary part. We compute that

α + α = 2t and αα = ‖α‖2 = t2 + x2 + y2 + z2.
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The conjugate transpose map on M2(C) restricts to conjugation on the image of H in
2.3.1. Thus the elements of H which are Hermitian matrices are the scalar matrices
and those that are skew-Hermitian are exactly the pure quaternions. The conjugation
map is the subject of the next chapter (Chapter 3), and we discuss it more generally
there.

Let
H0 = {v = xi + y j + zk ∈ H : x, y, z ∈ R} ∈ R3

be the set of pure Hamiltonians, the three-dimensional real space on which the (unit)
Hamiltonians will act by rotations. For v ∈ H0 � R3, we have

‖v‖2 = x2 + y2 + z2 = det(ρ(v)), (2.3.4)

and from (2.3.1), we have

H0 = {v ∈ H : Tr(ρ(v)) = v + v = 0}.

Consequently for v ∈ H0 we again see that v = −v.
The set H0 is not closed under multiplication: if v, w ∈ H0 we have

vw = −v · w + v× w (2.3.5)

where v · w is the dot product on R3 and v× w is the cross product on R3, defined as
the determinant

v× w =

∣∣∣∣∣∣∣∣∣
i j k
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣∣∣∣
where v = v1i + v2 j + v3k and w = w1i + w2 j + w3k, so

v · w = v1w1 + v2w2 + v3w3

and
v× w = (v2w3 − v3w2)i + (v3w1 − v1w3) j + (v1w2 − v2w1)k.

The formula (2.3.5) is striking: it contains three different kinds of multiplications!

2.3.6. The following statements follow directly from (2.3.5).

(a) If v, w ∈ H0, then vw ∈ H0 if and only if v, w are orthogonal.

(b) v2 = −‖v‖2 ∈ R for all v ∈ H0.

(c) wv = −vw if v, w ∈ H0 are orthogonal.
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The group H×1 acts on our three-dimensional space H0 (on the left) by conjuga-
tion:

H×1 � H
0 → H0 � R3

v 7→ αvα−1;
(2.3.7)

indeed, Tr(ρ(αvα−1)) = Tr(ρ(v)) = 0 by properties of the trace, so αvα−1 ∈ H0. Or,
we have

H0 = {v ∈ H : v2 ≤ 0}

and this latter set is visibly stable under conjugation. The representation (2.3.7) is
called the adjoint representation.

Let α ∈ H×1 \ {±1}. Then there exists θ ∈ R such that

α = t + xi + y j + zk = cos θ + (sin θ)I(α) (2.3.8)

and ‖I(α)‖ = 1: we take θ = cos−1 t and

I(α) =
xi + y j + zk
|sin θ|

,

since otherwise α = ±1. We call I(α) as in (2.3.8) the axis of α.

Remark 2.3.9. In analogy with Euler’s formula, we can write (2.3.8) as

α = exp(I(α)θ).

Proposition 2.3.10. H×1 acts by rotation on R3 via conjugation: specifically, α acts
by rotation through the angle 2θ about the axis I(α).

Proof. Let α ∈ H×1 \ {±1}. Then for all v ∈ H0, we have

‖αvα−1‖2 = ‖v‖2

by (2.3.4), so at least α acts by an orthogonal matrix

O(3) = {A ∈ M3(R) : AAt = 1}.

Let 0 , j′ ∈ H0 be a unit vector orthogonal to i′ = I(α). Then (i′)2 = ( j′)2 = −1
by 2.3.6(b) and j′i′ = −i′ j′ by 2.3.6(c), so (applying an automorphism of H) without
loss of generality we may assume that I(α) = i and j′ = j.

Thus α = t + xi with t2 + x2 = cos2 θ + sin2 θ = 1, and α−1 = t − xi. We have

αiα−1 = i
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(computing in C), and

α jα−1 = (t + xi) j(t − xi) = (t + xi)(t + xi) j

= ((t2 − x2) + 2txi) j = (cos 2θ) j + (sin 2θ)k

by the double angle formula. Consequently,

αkα−1 = i(α jα−1) = (− sin 2θ) j + (cos 2θ)k

so the matrix of α in the basis 1, i, j is

A =

1 0 0
0 cos 2θ sin 2θ
0 − sin 2θ cos 2θ

 ,
a (counterclockwise) rotation (determinant 1) through the angle 2θ about i as desired.

Corollary 2.3.11. We have an exact sequence

1→ {±1} → H×1 → SO(3)→ 1

where
SO(3) = {A ∈ M3(R) : AAt = AtA = 1 and det(A) = 1}

is the group of rotations of R3.

In particular, since S3 � SU(2) � H×1 we have SO(3) � SU(2)/{±1} � RP3 is
topologically real projective space.

Proof. The map H×1 → SO(3) is surjective, since every element of SO(3) is rotation
about some axis. If α belongs to the kernel, then α = cos θ + (sin θ)I(α) must have
sin θ = 0 so α = ±1.

2.3.12. We conclude with one final observation, returning to the formula (2.3.5).
There is another way to mix the dot product and cross product in H: we define the
scalar triple product

H×H×H→ R
(u, v, w) 7→ u · (v× w).

(2.3.13)

Amusingly, this gives a way to “multiply” triples of triples: in fact, the map (2.3.13)
is an alternating, trilinear form (Exercise 2.14). If u, v, w ∈ H0, then the scalar triple
product is a determinant

u · (v× w) =

∣∣∣∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣∣∣∣
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so |u · (v× w)| is the volume of a parallelepiped in R3 whose sides are given by
u, v, w.

2.4 Extensions and further reading

2.4.1. The main reference for quaternion algebras, which can serve as companions to
the material in this book is the book by Vignéras [Vig80]. Maclachlan–Reid [MR03]
also gives an overview of the subject with an eye toward the manifestation of quater-
nion algebras in the theory of Fuchsian and Kleinian groups.

An overview of the subject of associative algebras is given by Pierce [Pie82].

2.4.2. The matrix representation of H ⊗R C in section 2.3, and its connections to
unitary matrices, is still used in phisics. In the embedding with

i 7→
(
i 0
0 −i

)
, j 7→

(
0 1
−1 0

)
, k 7→

(
0 i
i 0

)
whose images are unitary matrices, we multiply by i to obtain Hermitian matrices

σz =

(
1 0
0 −1

)
, σy =

(
0 −i
i 0

)
, σz =

(
0 1
1 0

)
which are the famous Pauli spin matrices. [[cites]].

Exercises

Let F be a field with char F , 2.

2.1. Show that a (not necessarily associative) F-algebra is associative if and only if
the associative law holds on a basis, and thereby check that the multiplication
table implied by (2.2.2) is associative.

2.2. Show that if B is an F-algebra generated by i, j ∈ B and 1, i, j are linearly
dependent, then B is commutative.

2.3. Verify directly that the map
(1, 1

F

)
∼−→ M2(F) in Example 2.2.4 is an isomor-

phism of F-algebras.

2.4. Let a, b ∈ F×.

a) Show that
(a, b

F

)
�

(a,−ab
F

)
�

(b,−ab
F

)
.
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b) Show that if c, d ∈ F× then
(a, b

F

)
�

(ac2, bd2

F

)
. Conclude that if

F×/F×2 is finite, then there are only finitely many isomorphism classes
of quaternion algebras over F, and in particular that if F×2 = F× then

there is only one isomorphism class
(1, 1

F

)
� M2(F).

c) Let B be a quaternion algebra over F. Show that B⊗F F � M2(F), where
F is an algebraic closure of F.

d) Refine part (c) as follows. A field K ⊇ F is a splitting field for B if
B⊗F K � M2(K). Show that B has a splitting field K with [K : F] ≤ 2.

2.5. Recall that a division ring is a ring R in which every nonzero element has a
(two-sided) inverse, i.e., R \ {0} is a group under multiplication.

Show that if B is a division quaternion algebra over R then B � H.

2.6. Use the quaternion algebra B =

(−1,−1
F

)
, multiplicativity of the determinant,

and the left regular representation (2.2.10) to show that if two elements of F
can be written as the sum of four squares, then so too can their product (a
discovery of Euler in 1748).

2.7. Let B be an F-algebra. The center of B is

Z(B) = {α ∈ B : αβ = βα for all β ∈ B}.

We say B is central if Z(B) = F. Show that if B is a quaternion algebra over
F, then B is central.

2.8. Prove the following partial generalization of Exercise 2.4(c). Let B be a finite-
dimensional algebra over F.

a) Show that every element α ∈ B satisfies a unique monic polynomial of
smallest degree with coefficients in F.

b) Suppose that B = D is a division algebra (cf. Exercise exc:BdivHH).
Show that the minimal polynomial of α ∈ D is irreducible over F. Con-
clude that if F = F is algebraically closed, then D = F.

2.9. Show explicitly that every quaternion algebra B over F is isomorphic to a sub-
algebra of M4(F) via the right regular representation over F. With respect to
a suitable such embedding for B = H, show that the quaternionic conjugation
map α 7→ α is the matrix transpose, and the matrix determinant is the square
of the norm ‖α‖2 = αα.



2.4. EXTENSIONS AND FURTHER READING 25

2.10. In Corollary 2.3.11, we showed that SU(2) � H×1 has a 2-to-1 map to SO(3),
where H×1 acts on H0 � R3 by conjugation: quaternions model rotations in
three-dimensional space, with a little bit of spin. They also do so in four-
dimensional space, as follows.

a) Show that the map

(H×1 ×H
×
1 ) � H→ H � R4

x 7→ αxβ−1 (2.4.3)

defines a (left) action of H×1 ×H
×
1 on H � R4, giving a group homomor-

phism
φ : H×1 ×H

×
1 → O(4).

b) Show that φ surjects onto SO(4) < O(4). [Hint: If A ∈ SO(4) fixes 1 ∈ H,
then A restricted toH0 is a rotation and so is given by conjugation. More
generally, if A · 1 = α, consider x 7→ α−1Ax.]

c) Show that the kernel of φ is ±1, so we have an exact sequence

1→ {±1} → SU(2)× SU(2)→ SO(4)→ 1.

2.11. a) Show that the rotation ρ(u, θ) : R3 → R3 counterclockwise by the angle
2θ about the axis u ∈ R3 � H0 is given by conjugation by the quaternion
α = cos(θ/2) + (sin(θ/2))u.

b) Prove Rodrigues’s rotation formula:

ρ(u, θ; v) = (cos θ)v + (sin θ)(u× v) + (1− cos θ)(u · v)u.

2.12. [[Do Hamilton’s rotation bit with B = M2(R) instead of B = H.]]

2.13. Let B be a quaternion algebra and let M2(B) be the ring of 2× 2-matrices over
B. (Be careful in the definition of matrix multiplication: B is noncommuta-
tive!)

a) By an explicit formula, show that M2(B) has a determinant map det :
M2(B)→ F that is multiplicative and left-B-multilinear in the rows of B.

b) Find a matrix A ∈ M2(H) that is invertible (i.e., having a two-sided in-
verse) but has det(A) = 0. Then find such an A with the further property
that its transpose is not invertible but has nonzero determinant.

Moral: be careful with matrix rings over noncommutative rings! [[Check, com-
pare with Dieudonné determinant, and give formula.]]

2.14. Verify that the map (2.3.13) is a trilinear, alternating form on H.





Chapter 3

Involutions

In this chapter, we define the standard involution (also called conjugation) on a
quaternion algebra. In this way, we characterize division quaternion algebras as non-
commutative division rings equipped with a standard involution.

3.1 Conjugation

The conjugation map (2.3.3) defined on the HamiltoniansH arises naturally from the
notion of real and imaginary parts, which Hamilton argued have a physical interpre-
tation. This involution played an essential role, and it has a natural generalization to

a quaternion algebra B =

(a, b
F

)
over a field F with char F , 2: we define

: B→ B

α = t + xi + y j + zi j 7→ α = t − (xi + y j + zi j)

Multiplying out, we can then verify directly in analogy that

‖α‖2 = αα = t2 − ax2 − by2 + abz2 ∈ F.

The way in which the cross terms cancel, because the basis elements i, j, i j skew
commute, is an enchanting calculation to perform every time!

But this definition seems to depend on a basis: it is not intrinsically defined.
What properties characterize it? Is it unique? We are looking for a good definition
of conjugation : B → B on an F-algebra B: we will call such a map a standard
involution.

The involutions we consider should have the basic linearity properties: they are
F-linear (with 1 = 1) and have order 2 as an F-linear map. An involution should also

27
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respect the multiplication structure on B, but we should not require that it be an F-
algebra isomorphism: instead, like the inverse map reverses order of multiplication,
we ask that αβ = β α for all α ∈ B. Finally, we want the standard involution to give
rise to a trace and norm (a measure of size), which is to say, we want α + α ∈ F and
αα = αα ∈ F for all α ∈ B. The precise (minimal) definition is given in Definition
3.2.1. These properties are rigid: if an algebra B has a standard involution, then it is
necessarily unique (Corollary 3.4.3).

The existence of a standard involution on B implies that every element of B sat-
isfies a quadratic equation: by direct substitution, we see that α ∈ B is a root of the
polynomial x2 − tx + n ∈ F[x] where t = α + α and n = αα, since then

α2 − (α + α)α + αα = 0

identically. This is already a strong condition on B: we say that B has degree 2 if
every element α ∈ B satisfies a (monic) polynomial in F[x] of degree 2 and, to avoid
trivialities, that B , F.

The main result of this section is that a division F-algebra of degree 2 over a field
F with char F , 2 is either a quadratic field extension of F or a division quaternion
algebra over F. As a consequence, a noncommutative division algebra with a stan-
dard involution is a quaternion algebra (and conversely). This gives our first intrinsic
characterization of (division) quaternion algebras, when char F , 2.

3.2 Involutions

Throughout this chapter, let B be an F-algebra. For the moment, we allow F to be of
arbitrary characteristic.

We begin by defining involutions on B.

Definition 3.2.1. An involution : B→ B is an F-linear map which satisfies:

(i) 1 = 1;

(ii) α = α for all α ∈ B; and

(iii) αβ = β α for all α, β ∈ B (the map is an anti-automorphism).

3.2.2. If Bop denotes the opposite algebra of B, so that Bop = B as abelian groups
but with multiplication α ·op β = β ·α, then one can equivalently define an involution
to be an F-algebra isomorphism B→ Bop whose underlying F-linear map has order
at most 2.
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Remark 3.2.3. What we have defined to be an involution is known in other contexts
as an involution of the first kind. An involution of the second kind is a map
which acts nontrivially when restricted to F, and hence is not F-linear; although these
involutions are interesting in other contexts, they will not figure in our discussion, as
one can always consider such an algebra over the fixed field of the involution.

Definition 3.2.4. An involution is standard if αα ∈ F for all α ∈ B.

3.2.5. If is a standard involution, so that αα ∈ F for all α ∈ B, then

(α + 1)(α + 1) = (α + 1)(α + 1) = αα + α + α + 1 ∈ F

and hence α + α ∈ F for all α ∈ B as well. It then also follows that αα = αα, since

(α + α)α = α(α + α).

Example 3.2.6. The R-algebra C has a standard involution, namely, complex conju-
gation.

Example 3.2.7. The adjoint map

A =

(
a b
c d

)
7→ A† =

(
d −b
−c a

)
is a standard involution on M2(F) since AA† = ad − bc = det A ∈ F.

Matrix transpose is an involution on Mn(F) but is a standard involution only if
n = 1.

3.2.8. Suppose char F , 2 and let B =

(a, b
F

)
be a quaternion algebra. Then the map

: B→ B

α = t + xi + y j + zi j 7→ α = 2t − α = t − xi− y j− zi j

defines a standard involution on B. The map is F-linear with 1 = 1 and α = α, so
properties (i) and (ii) hold. By F-linearity, it is enough to check property (iii) on a
basis (Exercise 3.1), and we verify e.g. that

i j = −i j = ji = (− j)(−i) = j i

(Exercise 3.2). Finally, the involution is standard because

(t + xi + y j + zi j)(t − xi− y j− zi j) = t2 − ax2 − by2 + abz2 ∈ F. (3.2.9)
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3.3 Reduced trace and reduced norm

Let : B→ B be a standard involution on B. We define the reduced trace on B by

trd : B→ F

α 7→ trd(α) = α + α

and similarly the reduced norm

nrd : B→ F

α 7→ nrd(α) = αα.

Example 3.3.1. For B = M2(F), equipped with the adjoint map as a standard involu-
tion as in Example 3.2.7, the reduced trace is the usual matrix trace and the reduced
norm is the determinant.

3.3.2. The reduced trace trd is an F-linear map, since this is true for the standard
involution:

trd(α + β) = (α + β) + (α + β) = (α + α) + (β + β) = trd(α) + trd(β)

for α, β ∈ B. The reduced norm nrd is multiplicative, since

nrd(αβ) = (αβ)(αβ) = αββα = α nrd(β)α = nrd(α) nrd(β)

for all α, β ∈ B.

Lemma 3.3.3. If B is not the zero ring, then α ∈ B is a unit (has a two-sided inverse)
if and only if nrd(α) , 0.

Proof. Exercise 3.4.

Lemma 3.3.4. For all α, β ∈ B, we have trd(βα) = trd(αβ).

Proof. We have

trd(αβ) = trd(α(trd(β)− β)) = trd(α) trd(β)− trd(αβ)

and yet

trd(αβ) = trd(αβ) = trd(βα) = trd(α) trd(β)− trd(βα)

so trd(αβ) = trd(βα).
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Remark 3.3.5. The maps trd and nrd are called reduced for the following reason.
Let A be a finite-dimensional F-algebra, and consider the right regular represen-

tation ρ : A ↪→ EndF(A) given by right-multiplication in A (cf. Paragraph 2.2.8). We
then have a trace map Tr : A → F and norm map N : A → F given by mapping
α ∈ B to the trace and determinant of the endomorphism ρ(α).

Now when A = M2(F), a direct calculation (Exercise 3.10) reveals that

Tr(α) = 2 trd(α) and N(α) = nrd(α)2 for all α ∈ A

whence the name reduced.

3.3.6. Since
α2 − (α + α)α + αα = 0 (3.3.7)

identically we see that α ∈ B is a root of the polynomial

x2 − trd(α)x + nrd(α) ∈ F[x] (3.3.8)

which we call the reduced characteristic polynomial of α. (We might call this state-
ment the reduced Cayley-Hamilton theorem for an algebra with standard involution.)

3.4 Uniqueness and degree

An F-algebra K with dimF K = 2 is called a quadratic algebra.

Lemma 3.4.1. Let K be a quadratic F-algebra. Then K is commutative and has a
unique standard involution.

Proof. Let α ∈ K \ F. Then K = F⊕ Fα = F[α], so in particular K is commutative.
Then α2 = tα − n for unique t, n ∈ F, since 1, α is a basis for K, and consequently
K � F[x]/(x2 − tx + n).

Now if : K → K is any standard involution, then from (3.3.7) and uniqueness
we have t = α + α (and n = αα), and so any involution must have α = t − α. And
indeed, the map α 7→ t−α extends to a unique involution of B because t−α is also a
root of x2− tx+n (and so (i)–(iii) hold in Definition 3.2.1), and it is standard because
α(t − α) = n ∈ F.

Remark 3.4.2. If K is a separable field extension of F, then the standard involution
is just the nontrivial element of Gal(K/F).

Corollary 3.4.3. If B has a standard involution, then this involution is unique.
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Proof. For any α ∈ B\F, we have from (3.3.7) that dimF F[α] = 2, so the restriction
of the standard involution to F[α] is unique. Therefore the standard involution on B
is itself unique.

We have seen that the equation (3.3.7), implying that if B has a standard involu-
tion then every α ∈ B satisfies a quadratic equation, has figured prominently in the
above proofs. To further clarify the relationship between these two notions, we make
the following definition.

Definition 3.4.4. The degree of B is the smallest integer m ∈ Z≥1 such that every
element α ∈ B satisfies a monic polynomial f (x) ∈ F[x] of degree m, if such an
integer exists.

If B has finite dimension n = dimF B < ∞, then every element of F satisfies a
polynomial of degree at most n: if α ∈ B then the elements 1, α, . . . , αn are linearly
dependent over F. Consequently, every finite-dimensional F-algebra has a well-
defined degree.

Example 3.4.5. If B has degree 1, then B = F. If B has a standard involution, then
either B = F or B has degree 2 by (3.3.8).

3.5 Quaternion algebras

We are now ready to characterize algebras of degree 2.

Theorem 3.5.1. Suppose char F , 2 and let B be a division F-algebra. Then B has
degree at most 2 if and only if one of the following hold:

(i) B = F;

(ii) B = K is a quadratic field extension of F; or

(iii) B is a division quaternion algebra over F.

Proof. From Example 3.4.5, we may assume B , F and B has degree 2.
Let i ∈ B \ F. Then F[i] = K is a (commutative) quadratic F-subalgebra of the

division ring B, so K = F(i) is a field. If K = B, we are done. Completing the square
(since char F , 2), we may suppose that i2 = a ∈ F×.

Let φ : B→ B be the map given by conjugation by i, i.e., φ(x) = i−1xi = a−1ixi.
Then φ is a K-linear endomorphism of B, thought of as a (left) K-vector space, and
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φ2 is the identity on B. Therefore φ is diagonalizable, so we may decompose B =

B+ ⊕ B− into eigenspaces for φ: explicitly, we can always write

α =
α + φ(α)

2
+
α− φ(α)

2
∈ B+ ⊕ B−.

We now prove dimK B+ = 1. Let α ∈ B+. Then L = F(α, i) is a field. Since
char F , 2, and L is a compositum of quadratic extensions of F, the primitive element
theorem implies that L = F(β) for some β ∈ L. But by hypothesis β satisfies a
quadratic equation so dimF L = 2 and hence L = K. (For an alternative direct proof
of this claim, see Exercise 3.8.)

Next, we prove that dimK B− = 1. If 0 , j ∈ B− then i−1 ji = − j, so i = − j−1i j
and hence all elements of B− conjugate i to −i. Thus if 0 , j1, j2 ∈ B− then j1 j2
centralizes i so j1 j2 ∈ B+ = K. Thus any two nonzero elements of B− are indeed
K-multiples of each other.

Finally, let j ∈ B− \ {0}, so ji = −i j. Both j and i−1 ji = − j satisfy the same
minimal polynomial of degree 2 and belong to F( j), so we must have j2 = b ∈ F×

and B is a quaternion algebra.

Remark 3.5.2. We need not assume in Theorem 3.5.1 that B is finite-dimensional;
somehow, it is a consequence, and every division algebra over F (with char F , 2)
of degree≤ 2 is finite-dimensional. By contrast, any boolean ring (see Exercise 3.9),
has degree 2 as an F2-algebra, and there are such rings of infinite dimension over
F2—such algebras are quite far from being division rings, of course.

Corollary 3.5.3. Let B be a division F-algebra with char F , 2. Then B has degree
at most 2 if and only if B has a standard involution.

Proof. In each of the cases (i)–(iii), B has a standard involution.

Recall that an F-algebra B is central if the center Z(B) = {α ∈ B : αβ =

βα for all β ∈ B} is Z(B) = F.

Corollary 3.5.4. Let B be a division F-algebra with char F , 2. Then B is a quater-
nion algebra if and only if B is noncommutative and has degree 2 if and only if B is
central and has degree 2.

An F-algebra B is algebraic if every α ∈ B is algebraic over F (satisfies a poly-
nomial with coefficients in F). If dimF B = n < ∞, then B is algebraic since for
every α ∈ B the elements 1, α, . . . , αn are linearly dependent over F.

Corollary 3.5.5 (Frobenius). Let B be an algebraic division algebra over R. Then
either B = R, B � C, or B � H.
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Proof. If α ∈ B \ R then R(α) � C, so α satisfies a polynomial of degree 2. Thus if
B , R then B has degree 2 and so either B � C or B is a division quaternion algebra
over R, and hence B � H by Exercise 2.5.

Example 3.5.6. Division algebras over R of infinite dimension abound. Transcen-
dental field extensions of R, for example R(x) or R((x)), are examples of infinite-
dimensional division algebras over R. The free algebra in two (noncommuting) vari-
ables is a subring of a division ring B with center R.

3.6 Extensions and further reading

3.6.1. The consideration of algebras by degree was initiated by Dickson [Dic12]
in the early 1900s. Dickson considered algebras in which every element satisfies a
quadratic equation over a field F with char F , 2, exhibited a diagonalized basis for
such an algebra, and considered when such an algebra can be a division algebra.

3.6.2. Algebras with involutions come from quadratic forms. More precisely, there
is a bijection between the set of isomorphism classes of finite-dimensional simple
F-algebras equipped with a F-linear involution and the set of similarity classes of
nonsingular quadratic forms on finite-dimensional F-vector spaces. More generally,
for involutions that act nontrivially on the base field, one looks at Hermitian forms.
Consequently, we have three broad types of involutions on central simple algebras,
depending on the associated quadratic or Hermitian form: orthogonal, symplectic and
unitary. Consequently, algebras with involutions can be classified by the invariants
of the associated form.

Associated with every quadratic form there is a central simple algebra with in-
volution. In this way the theory of quadratic forms belongs to the theory of algebras
with involution, which in turn is a part of the theory of linear algebraic groups.

3.6.3. Lam

3.6.4. The standard involution is also called conjugation on B, but in some circum-
stances this can be confused with conjugation by an element in B×. The terminology
standard is employed because conjugation on a quaternion algebra is the “standard”
example of such an involution.

Because of Corollary 3.4.3, a standard involution is often also called the canon-
ical involution; however, there are other circumstances where involutions can be
defined canonically that are not standard (like the map induced by g 7→ g−1 on the
group ring F[G]), so we resist this terminology.
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3.6.5. The proof of Theorem 3.5.1 has a bit of history, discussed by van Praag [vPr02]
(along with several proofs). Moore [1, Theorem 14.4] in 1915 studied algebra of
matrices over skew fields and in particular the role of involutions, and gives an ele-
mentary proof of this theorem (with the assumption char F , 2). Dieudonné [Die48,
Die53] gave another proof that relies on structure theory for finite-dimensional divi-
sion algebras.

Albert proved that a central simple algebra A over F admits an (F-linear) in-
volution if and only if A is isomorphic to its opposite algebra Aop. This is further
equivalent to A having order at most 2 in the Brauer group Br(F). Albert proved that
a central simple algebra of dimension 16 with an involution is a biquaternion algebra.

3.6.6. Algebras with involution play an important role in analysis, for example,

3.6.7. The statement of Corollary 3.5.3 holds more generally (even if B is not neces-
sarily a division ring). Let B be an F-algebra with char F , 2. Then B has a standard
involution if and only if B has degree at most 2 [Voi11b]. However, this is no longer
true in characteristic 2 (Exercise 3.9).

3.7 Algorithmic aspects

In this section, we exhibit an algorithm to determine if an algebra has a standard
involution (and, if so, to give it explicitly as a linear map).

First, some definitions.

Definition 3.7.1. A field F is computable if F comes equipped with a way of encod-
ing elements of F in bits (i.e. the elements of F are recursively enumerable, allowing
repetitions) along with deterministic algorithms to perform field operations in R (ad-
dition, subtraction, multiplication, and division by a nonzero element) and to test if
x = 0 ∈ F; a field is polynomial-time computable if these algorithms run in polyno-
mial time (in the bit size of the input).

For precise definitions and a thorough survey of the subject of computable rings
we refer to Stoltenberg-Hansen and Tucker [SHT99] and the references contained
therein.

Example 3.7.2. A field that is finitely generated over its prime ring is computable by
the theory of Gröbner bases [vzGG03].

Let B be a F-algebra with dimF B = n and basis e1, e2, . . . , en as an F-vector
space and suppose e1 = 1. A multiplication table for B is a system of n3 elements
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(ci jk)i, j,k=1,...,n of F, called structure constants , such that multiplication in B is given
by

eie j =

n∑
k=1

ci jkek

for i, j ∈ {1, . . . , n}.
An F-algebra B is represented in bits by a multiplication table and elements of B

are represented in the basis ei. Note that basis elements in B can be multiplied directly
by the multiplication table but multiplication of arbitrary elements in B requires O(n3)
arithmetic operations (additions and multiplications) in F; in either case, note the
output is of polynomial size in the input for fixed B.

We now exhibit an algorithm to test if an F-algebra B (of dimension n) has a
standard involution [Voi13, §2].

First, we note that if B has a standard involution : B→ B, then this involution
and hence also the reduced trace and norm can be computed efficiently. Indeed, let
{ei}i be a basis for B; then trd(ei) ∈ F is simply the coefficient of ei in e2

i , and so
ei = trd(ei)−ei for each i can be precomputed for B; one recovers the involution on B
for an arbitrary element of B by F-linearity. Therefore the involution and the reduced
trace can be computed using O(n) arithmetic operations in F and the reduced norm
using O(n2) operations in F.

Algorithm 3.7.3. Let B be an F-algebra given by a multiplication table in the basis
e1, . . . , en with e1 = 1. This algorithm returns true if and only if B has a standard
involution.

1. For i = 2, . . . , n, let ti ∈ F be the coefficient of ei in e2
i , and let ni = e2

i − tiei.
If some ni < F, return false.

2. For i = 2, . . . , n and j = i + 1, . . . , n, let ni j = (ei + e j)2 − (ti + t j)(ei + e j). If
some ni j < F, return false. Otherwise, return true.

Proof of correctness. Let F[x] = F[x1, . . . , xn] be the polynomial ring over F in n
variables, and let BF[x] = B ⊗F F[x]. Let ξ = x1 + x2e2 + · · · + xnen ∈ BF[x], and
define

tξ =

n∑
i=1

tixi

and

nξ =

n∑
i=1

nix2
i +

∑
1≤i< j≤n

(ni j − ni − n j)xix j.
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Let

ξ2 − tξξ + nξ =

n∑
i=1

ci(x1, . . . , xn)ei

with ci(x) ∈ F[x]. Each ci(x) is a homogeneous polynomial of degree 2. The algo-
rithm then verifies that ci(x) = 0 for x ∈ {ei}i∪{ei + e j}i, j, and this implies that each
ci(x) vanishes identically. Therefore, the specialization of the map ξ 7→ ξ = tξ − ξ is
the unique standard involution on B.

3.7.4. Algorithm 3.7.3 requires O(n) arithmetic operations in F, since e2
i can be

computed directly from the multiplication table and hence (ei + e j)2 = e2
i + eie j +

e jei + e2
j can be computed using O(4n) = O(n) operations.

Exercises

3.1. Let B be a F-algebra and let : B→ B be an F-linear map with 1 = 1. Show
that is an involution if and only if (ii)–(iii) in Definition 3.2.1 hold for a basis
of B (as an F-vector space).

3.2. Verify that the map in Example 3.2.8 is a standard involution.

3.3. Determine the standard involution on K = F × F.

3.4. Let B be an F-algebra with a standard involution. Show that 0 , x ∈ B is a
left zerodivisor if and only if x is a right zerodivisor if and only if nrd(x) = 0.
In particular, if B is not the zero ring, then α ∈ B is (left and right) invertible
if and only if nrd(α) , 0.

3.5. Let G be a finite group. Show that the F-linear map induced by g 7→ g−1

for g ∈ G is an involution on the group ring F[G] =
⊕

g∈G Fg. Under what
conditions is this map a standard involution?

3.6. Show that B = Mn(F) has a standard involution if and only if n ≤ 2.

3.7. In this exercise, we examine when the identity map yields a standard involution
on an F-algebra B.

a) Show that if char F , 2, then x ∈ B satisfies x = x if and only x ∈ F.

b) Suppose that dimF B < ∞. Show that the identity map is a standard
involution on B if and only if (i) B = F or (ii) char F = 2 and B is
a quotient of the commutative ring F[x1, . . . , xn]/(x2

1 − a1, . . . , x2
n − an)

with ai ∈ F.
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3.8. Suppose char F , 2. Let K be a field of degree 2 over F, i.e., suppose that
every element of K \ F satisfies a quadratic polynomial. Show directly that K
is a quadratic field extension of F.

3.9. In this exercise, we explore further the relationship between algebras of degree
2 and those with standard involutions (Paragraph 3.6.7).

a) Suppose char F , 2 and let B be a finite-dimensional F-algebra. Show
that B has a standard involution if and only if degF B ≤ 2.

b) Let F = F2 and let B be a Boolean ring, a ring such that x2 = x for all
x ∈ B. (Verify that 2 = 0 in B, so B is indeed an F2-algebra.) Prove that
B does not have a standard involution unless B = F2 or B = F2 × F2, but
nevertheless any Boolean ring has degree at most 2.

3.10. Let B = Mn(F), and consider the map ρ : B ↪→ EndF(B) given by right-
multiplication in B. Show that for all A ∈ Mn(F), the characteristic polynomial
of ρ(A) is the nth power of the characteristic polynomial of A. Conclude when
n = 2 that Tr(A) = 2 trd(A) and N(A) = nrd(M)2.

3.11. Let V be an F-vector space and let t : V → F be an F-linear map. Let
B = F⊕V and define the binary operation x ·y = t(x)y for x, y ∈ V . Show that
· induces a multiplication on B, and that the map x 7→ x = t(x) − x for x ∈ V
induces a standard involution on B. Such an algebra is called an exceptional
algebra [GL09, Voi11b]. Conclude that there exists a central F-algebra B with
a standard involution in any dimension n = dimF B.

3.12. In this exercise, we mimic the proof of Theorem 3.5.1 to prove that a quater-
nion algebra over a finite field is not a division ring, a special case of Wedder-
burn’s theorem.

Let B be a division quaternion algebra over F = Fq with q odd. Show that
for any i ∈ B \ F that the centralizer C(i) = {x ∈ B× : ix = xi} is given by
C(i) = F(i)×. Conclude that any noncentral conjugacy class in B× has order
q2 +1. Derive a contradiction from the class equation q4−1 = q−1+k(q2 +1)
(where k ∈ Z).

This argument can be generalized in a natural way to prove Wedderburn’s the-
orem in full: see Schue [Schu88], for example.

3.13. Derive Euler’s identity (1.1.2) that the product of the sum of four squares is
again the sum of four squares as follows. Let F = Q(x1, . . . , x4, y1, . . . , y4)
be a function field over Q in 8 variables and consider the quaternion algebra
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(−1,−1
F

)
. Show (by “universal formula”) that if R is any commutative ring

and x, y ∈ R are the sum of four squares in R, then xy is the sum of four
squares in R.

3.14. Suppose char F , 2. For an F-algebra B, let

V(B) = {α ∈ B \ F : α2 ∈ F} ∪ {0}.

Let B be a division ring. Show that V(B) is a vector space (closed under addi-
tion) if and only if B = F or B = K is a quadratic field extension of F or B is
a quaternion algebra over F. (Conclude that V(B) is a vector space if and only
if B has a standard involution.)





Chapter 4

Quadratic forms

Quaternion algebras, as algebras equipped with a standard involution, are intrinsi-
cally related to quadratic forms. We explore this connection in this section.

4.1 Norm form

Let F be a field with char F , 2 and let B =

(a, b
F

)
be a quaternion algebra over

F. We have seen (3.2.8) that B has a unique standard involution and consequently a
reduced norm map, with

nrd(t + xi + y j + zk) = t2 − ax2 − by2 + abz2 (4.1.1)

for t, x, y, z ∈ F. The reduced norm therefore defines a quadratic form, a homo-
geneous polynomial of degree 2 in F[t, x, y, z], with respect to the basis 1, i, j, k. It
should come as no surprise, then, that the structure of the quaternion algebra B is
related to properties of the quadratic form nrd.

A quadratic form (since char F , 2) can be diagonalized by a change of basis,
and such a form is nonsingular (or nondegenerate) if the product of these diagonal
entries is nonzero. The reduced norm quadratic form (4.1.1) is already diagonal in
the basis 1, i, j, k, and it is nonsingular because a, b , 0.

More generally, we have seen that any algebra with a standard involution has a
quadratic form nrd. We will show (Theorem 4.3.1) that this form is nonsingular if
and only if B is one of the following: F, a reduced quadratic algebra, or a quaternion
algebra. This gives another way of characterizing quaternion algebras more general
than Theorem 3.5.1: they are noncommutative algebras with a nonsingular standard
involution.

Implicitly, we are trying to compare the categories of quaternion algebras and
quadratic forms. From that point of view, the quadratic form (4.1.1) is a bit too big:

41
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after all, we know what it does when restricted to F. The form carries the same data
as when it is restricted to the orthogonal complement of F: this space is

B0 = {α ∈ B : trd(α) = 0}

and is spanned by i, j, i j. The quadratic form then becomes

nrd(xi + y j + zk) = −ax2 − by2 + abz2

for x, y, z ∈ F. The discriminant of such a diagonal form is just the square class of
the product of the diagonal entries (−a)(−b)(ab) = 1 ∈ F×/F×2.

We might now try to classify quaternion algebras over F up to isomorphism in
terms of this quadratic form. As it turns out, one needs to consider maps on quadratic
forms coming from not just an invertible change of basis (an isometry ) but allowing
also scaling of the quadratic form by a nonzero element of F. Then (Theorem 4.4.5)
the map B 7→ nrd |B0 gives a bijection

{ Quaternion algebras over F
up to isomorphism

}
←→


Nonsingular ternary

quadratic spaces over F
up to similarity

 .
The similarity class of a nonsingular ternary quadratic form also cuts out a unique
plane conic C ⊆ P2, so one also has a bijection between isomorphism classes of
quaternion algebras over F and isomorphism classes of conics over F.

The problem of classifying quaternion algebras over F is now rephrased in terms
of quadratic forms, and consequently the answer depends in an intrinsic way of the
field F. In this vein, the most basic question we can ask about a quaternion algebra
B is if it is isomorphic to the matrix ring B � M2(F): if so, we say that B is split over
F. Every quaternion algebra over C (or an algebraically closed field) is split, and a

quaternion algebra
(a, b
R

)
is split if and only if a > 0 or b > 0. Ultimately, we will

find six equivalent ways (Theorem 4.5.5) to check if a quaternion algebra B is split;
in the language of quadratic forms, B is split if and only if the quadratic form nrd |B0

is isotropic, meaning it represents 0 nontrivially (there exists α ∈ B0 \ {0} such that
nrd(α) = 0).

In later chapters, we will consider this problem as we gradually increase the
“arithmetic complexity” of the field F. We have our answer already for F = R,C;
the answer becomes more complex as we move to a finite field F = Fq, then to
nonarchimedean local fields (such as p-adic fields), and finally to global fields.

Before concluding this introductory section, we make one final connection to the
theory of quadratic forms. In Section 2.3, we say that the unit Hamiltonians H×1
act on the pure Hamiltonians H0 (Section 2.3) by rotations: the Euclidean quadratic
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form is preserved by conjugation. This generalizes in a natural way to an arbitrary
field, and so we can understand the group that preserves a ternary (or quaternary)
form in terms of the unit group of a quaternion algebra (Proposition 4.8.6).

4.2 Definitions

In this section, we give a brief summary of some basic definitions and notation in the
theory of quadratic forms over fields.

Definition 4.2.1. A quadratic form Q is a map Q : V → F on an F-vector space V
satisfying:

(i) Q(ax) = a2Q(x) for all a ∈ F and x ∈ V; and

(ii) The map T : V × V → F defined by

T (x, y) = Q(x + y)− Q(x)− Q(y)

is F-bilinear.

We call the pair (V,Q) a quadratic space and T the associated bilinear form.

We will often abbreviate (V,Q) by simply V .

Definition 4.2.2. A similarity of quadratic forms Q : V → F and Q′ : V ′ → F is an
F-linear isomorphism f : V → V ′ and u ∈ F× such that Q(x) = uQ′( f (x)) for all
x ∈ V , i.e., such that the diagram

V
Q //

fo
��

F

o u
��

V ′
Q′ // F

commutes.
An isometry of quadratic forms (or isomorphism of quadratic spaces) is a simi-

larity with u = 1; we write in this case Q � Q′.

Remark 4.2.3. A similarity allows isomorphisms of the target F (as a one-dimensional
F-vector space). The notion of “isometry” comes from the connection with measur-
ing lengths, when working with the usual Euclidean norm form on a vector space
over R: similarity allows these lengths to scale uniformly.
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If Q is a quadratic form then the associated bilinear form T satisfies T (x, y) =

T (y, x) for all x, y ∈ V , i.e., T is symmetric. Conversely, given a symmetric bilinear
form T , if char F , 2 then the map Q : V → F defined by Q(x) = T (x, x)/2 is a
quadratic form whose associated bilinear form is T , and so there is an equivalence of
categories between quadratic forms and symmetric bilinear forms over F.

Definition 4.2.4. A symmetric bilinear form T : V×V → F is nondegenerate if for
all 0 , x ∈ V , the linear functional Tx : V → F by Tx(y) = T (x, y) is nonzero.

A quadratic form Q (or quadratic space V) is nondegenerate (or nonsingular or
regular ) if the associated bilinear form T is nondegenerate.

A quadratic space is nondegenerate if and only if the map V → Hom(V, F) given
by x 7→ (y 7→ T (x, y)) is injective (and hence an isomorphism if dimF V <∞).

4.2.5. Let B be an algebra over F with a standard involution. Then nrd : B→ F is a
quadratic form on B. We have nrd(ax) = a2α for all α ∈ B, and the map T given by

T (α, β) = (α + β)(α + β)− αα− ββ = αβ + βα = αβ + αβ = trd(αβ) (4.2.6)

for α, β ∈ B is indeed bilinear.
In particular, we have T (1, α) = trd(α) and

αβ + βα = trd(β)α + trd(α)β− T (α, β). (4.2.7)

If nrd is nonsingular, then we say the standard involution on B is nonsingular.

From now on, let Q : V → F be a quadratic form with n = dimF V <∞.
If Q : V → F is a quadratic form, then a basis e1, . . . , en for V gives an isomor-

phism V � Fn in which Q can be written

Q(x) = Q(x1e1 + · · · + xnen) =
∑

i

Q(ei)x2
i +

∑
i< j

T (ei, e j)xix j.

Let e1, . . . , en ∈ V . We define

d(e1, . . . , en) = det(T (ei, e j))i, j

where (T (ei, e j))i, j ∈ Mn(F) is the (symmetric) matrix whose (i, j)th entry is equal
to T (ei, e j), called the Gram matrix of the quadratic form. If A ∈ Mn(F) is a matrix
such that Aei = e′i, then

d(e′1, . . . , e
′
n) = det(T (Aei, Ae j))i, j = det(A)2 det(T (ei, e j))i, j

= det(A)2d(e1, . . . , en).
(4.2.8)
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If n is odd, then working with a generic quadratic form t11x2
1 + · · · + tnnx2

n over
the field Q(t11, . . . , tnn) with ti j transcendental, we find that d(e1, . . . , en) is divisible
by 2 as an element of Z[t11, . . . , tnn]; let d/2 denote this polynomial divided by 2.

Definition 4.2.9. The discriminant disc(Q) ∈ F/F×2 of Q is

disc(Q) =

d(e1, . . . , en) ∈ F/F×2, if n is even;
(d/2)(e1, . . . , en) ∈ F/F×2, if n is odd;

where e1, . . . , en is any basis for V .

In odd dimension, the discriminant is sometimes called the half-discriminant .
The discriminant is well defined by (4.2.8). In particular, note that Q is nonsingu-

lar if and only if disc(Q) ∈ F×/F×2 (Exercise 4.1). When it will cause no confusion,
we will represent the class of the discriminant in F/F×2 simply by a representative
element in F.

Let T : V × V → F be the symmetric bilinear form associated to Q.

Definition 4.2.10. We say that x ∈ V is orthogonal to y ∈ V (with respect to Q) if
T (x, y) = 0.

Since T is symmetric, x is orthogonal to y if and only if y is orthogonal to x for
x, y ∈ V , and so we simply say x, y are orthogonal. If S ⊆ V is a subset, we write

S⊥ = {x ∈ V : T (v, x) = 0 for all v ∈ S }

for the subspace of V which is orthogonal to (the span of) S .

4.2.11. If B is an F-algebra with a standard involution (cf. Paragraph 4.2.5), then α, β
are orthogonal with respect to nrd if and only if

trd(αβ) = αβ + βα = 0.

Let Q : V → F and Q′ : V ′ → F be quadratic forms. We define the orthogonal
sum Q ⊥ Q′ on V ⊕ V ′, with associated bilinear pairing T ⊥ T ′, by the conditions

(T ⊥ T ′)(x + x′, y + y′) = T (x, y) + T (x′, y′)

(Q ⊥ Q′)(x + x′) = Q(x) + Q(x′)

for all x, y ∈ V and x′, y′ ∈ V ′; the latter follows from the former when char F , 2.
By definition, V ′ ⊆ V⊥ (and V ⊆ (V ′)⊥). We similarly define the tensor product
Q⊗ Q′ on V ⊗ V ′ by

(T ⊗ T ′)(x⊗ x′, y⊗ y′) = T (x, y)T ′(x′, y′)

(Q⊗ Q′)(x⊗ x′) = Q(x)Q(x′).
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4.2.12. To some extent, one can often restrict to the case where a quadratic form Q
is nondegenerate by splitting off the radical, as follows. We define the radical to be

rad(Q) = V⊥ ∩ {v ∈ V : Q(v) = 0}.

If char F , 2, then any v ∈ V⊥ has Q(v) = T (v, v)/2 = 0, so the second term is
unnecessary. The map Q on V⊥ is an additive map (Q(v + w) = Q(v) + Q(w)), so
we could also write the radical as ker Q|V⊥ (the kernel taken as an abelian group).
Consequently, we have rad(Q) ⊂ V is an F-subspace, so completing a basis we can
write V = rad(Q) ⊥ W—the direct sum is an orthogonal direct sum by definition of
the radical. Now Q|rad(Q) is identically zero and Q|W is nondegenerate.

We now define several quadratic forms on Fn. For a ∈ F, the quadratic form
Q(x) = ax2 on F is denoted 〈a〉; for a1, . . . , an ∈ F, we abbreviate

〈a1〉 ⊥ · · · ⊥ 〈an〉 = 〈a1, . . . , an〉

for the quadratic form on Fn.
The following result is a standard application of orthogonalization (Exercise 4.2)

and can be proven by induction. Here is the first time where we assume that char F ,

2.

Lemma 4.2.13. Suppose char F , 2, and let Q : V → F be a quadratic form with
dimF V <∞. Then there exists a basis of V such that Q � 〈a1, . . . , an〉 with ai ∈ F.

A form presented with a basis as in Lemma 4.2.13 is called normalized (or diag-
onal). For the modifications required when char F = 2, we refer to Chapter 5.

Example 4.2.14. A normalized quadratic form 〈a1, . . . , an〉 has discriminant d =

a1 · · · an ∈ F/F×2 and hence is nonsingular if and only if a1 · · · an , 0 (Exercise
4.1).

Example 4.2.15. Let B =

(a, b
F

)
be a quaternion algebra. Then by Paragraph 3.2.8,

the quadratic form nrd : B → F is normalized with respect to the basis 1, i, j, i j.
Indeed, we have

nrd � 〈1,−a,−b, ab〉 � 〈1,−a〉 ⊗ 〈1,−b〉.

To conclude, we state and prove an important foundational result, due to Witt.

Proposition 4.2.16 (Witt cancellation). Let Q � Q′ be nondegenerate quadratic
forms such that Q � Q1 ⊥ Q2 and Q′ � Q1 ⊥ Q′2. Then Q2 � Q′2.

Proof. Induction on the number of variables.
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4.3 Nonsingular standard involutions

In this section, we follow Theorem 3.5.1 with a characterization of quaternion alge-
bras beyond division algebras by the nonsingularity of the standard involution (see
Paragraph 4.2.5).

Theorem 4.3.1. Suppose char F , 2 and let B be an F-algebra. Then B has a
nonsingular standard involution if and only if one of the following holds:

(i) B = F;

(ii) B = K is a quadratic F-algebra with either K a field or K � F × F; or

(iii) B is a quaternion algebra over F.

By Exercise 3.11, there exist F-algebras with standard involution having arbitrary
dimension, so it is remarkable that the additional requirement that the standard invo-
lution be nonsingular gives such a tidy result. Case (ii) in Theorem 4.3.1 is equivalent
to requiring that K be a quadratic F-algebra that is reduced (has no nonzero nilpotent
elements).

Proof. If B = F, then the standard involution is the identity and nrd is nonsingular. If
dimF K = 2, then after completing the square we have K � F[x]/(x2 − a) and in the
basis 1, x we have nrd � 〈1, a〉. By Example 4.2.14, nrd is nonsingular if and only if
a ∈ F× if and only if K is a quadratic field extension of F or K � F × F.

So suppose that dimF B > 2. Let 1, i, j be a part of a normalized basis for B with
respect to the quadratic form nrd. Then we have T (1, i) = trd(i) = 0, so i2 = a ∈ F×,
since nrd is nonsingular. Note in particular that i = −i. Similarly we have j2 = b ∈
F×, and by (4.2.7) we have trd(i j) = i j + ji = 0. We have T (1, i j) = trd(i j) = 0,
and T (i j, i) = trd(i(i j)) = a trd( j) = 0 and similarly T (i j, j) = 0, so i j ∈ {1, i, j}⊥.
If i j = 0 then i(i j) = a j = 0 so j = 0, a contradiction. Since nrd is nonsingular, it
follows then that the set 1, i, j, i j is linearly independent.

Therefore, the subalgebra A of B generated by i, j satisfies A �
(a, b

F

)
, so if

dimF B = 4 we are done. So let k ∈ A⊥, so in particular trd(k) = 0 and k2 = c ∈ F×.
Thus k ∈ B×, with k−1 = c−1k. By Paragraph 4.2.11 we have kα = αk for any α ∈ A
since k = −k. But then

k(i j) = (i j)k = j ik = jki = k( ji). (4.3.2)

But k ∈ B× so i j = ji = −i j, and this is a contradiction.

Corollary 4.3.3. Let B be an F-algebra with char F , 2. Then B is a quaternion al-
gebra if and only if B is noncommutative and has a nonsingular standard involution.
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4.4 Isomorphism classes of quaternion algebras

In Section 2.3, we found that the unit Hamiltonians act by conjugation on the pure
quaternions H0 � R3 as rotations, preserving the standard inner product. In this sec-
tion, we return to the theme suggested by this line of inquiry for a general quaternion
algebra, and we characterize isomorphism classes of quaternion algebras as isometry
classes of ternary quadratic forms.

Let B be a quaternion algebra over F.

Definition 4.4.1. α ∈ B is scalar if α ∈ F and pure if trd(α) = 0.

4.4.2. Let
B0 = {α ∈ B : trd(α) = 0} = {1}⊥

be the F-vector space of pure elements of B. The standard involution restricted to B0

is given by α 7→ −α for α ∈ B0. For B =

(a, b
F

)
, we have B0 = Fi⊕ F j⊕ Fi j and in

this basis
nrd |B0 � 〈−a,−b, ab〉 (4.4.3)

so that disc(nrd |B0) = (ab)2 = 1 ∈ F×/F×2.

Proposition 4.4.4. Let A and B be quaternion algebras over F. Then the following
are equivalent.

(i) A � B as F-algebras;

(ii) A � B as quadratic spaces; and

(iii) A0 � B0 as quadratic spaces.

Proof. The implication (i)⇒ (ii) follows from the fact that the standard involution on
an algebra is unique and the reduced norm is determined by this standard involution,
so the reduced norm on A corresponds to the reduced norm on B. The implication
(ii)⇒ (iii) follows since A0 and B0 are defined as the spaces orthogonal to 1 and so
are preserved by an isometry of quadratic spaces.

So finally we prove (iii)⇒ (i). Let f : A0 → B0 be an isomorphism of quadratic
spaces. Then f extends in the natural way to an F-linear map f : A→ B by mapping
1 7→ 1. We need to show that f is a homomorphism (hence isomorphism) of F-

algebras. Suppose A �
(a, b

F

)
. Then we have nrd( f (i)) = nrd(i) = −a and

nrd( f (i)) = f (i) f (i) = − f (i)2
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so f (i)2 = a. Similarly we have f ( j)2 = b. Finally, we have ji = −i j since i, j
are orthogonal (as in the proof of Theorem 4.3.1), but then f (i), f ( j) are orthogonal
as well and so f ( j) f (i) = − f (i) f ( j). [[Redefine f (i j) = f (i) f ( j) to obtain a ring

homomorphism.]] Together, these imply that B �
(a, b

F

)
� A.

Theorem 4.4.5. Let F be a field with char F , 2. Then the map B 7→ nrd |B0 yields a
bijection

{Quaternion algebras over F
up to isomorphism

}
←→


Nonsingular ternary quadratic spaces
over F with discriminant 1 ∈ F×/F×2

up to isometry


←→


Nonsingular ternary

quadratic spaces over F
up to similarity


that is functorial with respect to F.

By the expression functorial with respect to F, we simply mean that this bijection
respects (is compatible with) field extensions. Explicitly, if F ↪→ F′ is an inclusion
of fields, and B is a quaternion algebra associated to the ternary quadratic space
Q : B0 → F, then B′ = B⊗F F′ is associated to the extension B0 ⊗F F′ → F′ to F′;
this boils down to the fact that (B′)0 = (B⊗F F′)0 = B0 ⊗F F′.

Proof. The association B 7→ nrd |B0 gives a well-defined functor from quaternion
algebras to nonsingular ternary quadratic spaces with discriminant 1, by Paragraph
4.4.2; the map sends isomorphisms to isometries and vice versa by Proposition 4.4.4.
To conclude, show that the functor is essentially surjective. Let V be a nonsingular
ternary quadratic space with discriminant 1 ∈ F×2. Choose a normalized basis for
V , so that Q � 〈−a,−b, c〉 with a, b, c ∈ F×. We have disc(Q) = abc ∈ F×2, so
rescaling the third basis vector we may assume c = ab. We then associate to V the

isomorphism class of the quaternion algebra
(a, b

F

)
. The result follows.

For the second equivalence, we examine the natural map from isometry classes
to similarity classes. Every ternary quadratic form (indeed, any quadratic form in
odd dimension) is similar to a unique isometry class of quadratic forms with trivial
discriminant: if Q = 〈a, b, c〉 with a, b, c ∈ F×, then

Q = 〈a, b, c〉 ∼ (abc)〈a, b, c〉 = 〈a2bc, ab2c, abc2〉 � 〈bc, ac, ab〉

and disc(〈bc, ac, ab〉) = (abc)2 = 1 ∈ F×/F×2. Therefore the map is essentially sur-
jective, and a similarity between quadratic spaces yields an isometry of the associated
spaces with trivial discriminant.
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Remark 4.4.6. In fact, Proposition 4.4.4 and Theorem 4.4.5 can be understood more
conceptually via the Clifford algebra of a quadratic form (Exercise 4.5); the inverse
functor is called the even Clifford functor. See Paragraph 4.10.2.

Corollary 4.4.7. There is a functorial bijection between the set of isomorphism
classes of quaternion algebras over F and the set of nonsingular ternary quadratic
spaces over F.

Therefore, the problem of classifying quaternion algebras depends on the theory
of quadratic forms over that field. As fields increase in arithmetic complexity, the
latter becomes increasingly difficult.

4.5 Splitting

With Proposition 4.4.4 in hand, we are now ready to characterize the matrix ring and
division rings among quaternion algebras.

Let Q : V → F be a quadratic form. We say that Q represents an element a ∈ F
if there exists x ∈ V such that Q(x) = a.

Definition 4.5.1. Q (or V) is isotropic if Q represents 0 nontrivially (there exists
0 , x ∈ V such that Q(x) = 0) and otherwise Q is anisotropic.

Definition 4.5.2. A quadratic form Q is a hyperbolic plane if Q � H where H :
F2 → F is defined by H(x, y) = xy.

When char F , 2, a hyperbolic plane is isometric to the form 〈1,−1〉. Clearly, a
hyperbolic plane H represents every element of F; we say H is universal.

Lemma 4.5.3. Suppose Q is nonsingular. Then Q is isotropic if and only if Q � H ⊥
Q′ with H a hyperbolic plane.

Proof. Exercise 4.4.

Lemma 4.5.4. Suppose Q is nonsingular and let a ∈ F×. Then the following are
equivalent.

(i) Q represents a;

(ii) Q � 〈a〉 ⊥ Q′;

(iii) 〈−a〉Q is isotropic.
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Proof. For (i) ⇒ (ii), we take Q′ = Q|W and W = {v}⊥ ⊂ V . For (ii) ⇒ (iii), we
note that 〈−a〉 ⊥ Q � 〈a,−a〉 ⊥ Q′ is isotropic. For (iii)⇒ (i), suppose Q(v) = ax2

with v ∈ V and x ∈ F. If x = 0, then Q is isotropic, so by Lemma 4.5.3 represents a;
if x , 0, then by homogeneity Q(v/x) = a and again Q represents a.

From now on, we assume that char F , 2.

Theorem 4.5.5. Let B =

(a, b
F

)
be a quaternion algebra over F (with char F , 2).

Then the following are equivalent:

(i) B �
(1, 1

F

)
� M2(F);

(ii) B is not a division ring;

(iii) The quadratic form nrd is isotropic;

(iv) The quadratic form nrd |B0 is isotropic;

(v) The binary form 〈a, b〉 represents 1; and

(vi) b ∈ NK/F(K×) where K = F[i].

In (vi), if K is not a field then K � F × F and NK/F(K×) = nrd(K×) = F×.

Proof. The isomorphism
(1, 1

F

)
� M2(F) in (i) follows from Example 2.2.4. The

implication (i)⇒ (ii) is clear. The equivalence (ii)⇔ (iii) follows from the fact that
α ∈ B× if and only if nrd(α) ∈ F× (Exercise 3.4).

We now prove (iii)⇒ (iv). Let 0 , α ∈ B be such that nrd(α) = 0. If trd(α) = 0,
then we are done. Otherwise, we have trd(α) , 0. Let β be orthogonal to 1, α, so that
trd(αβ) = 0. We cannot have both αβ = 0 and αβ = (trd(α) − α)β = 0, so we may
assume αβ , 0. But then nrd(αβ) = nrd(α) nrd(β) = 0 as desired.

To complete the equivalence of the first four we prove (iv) ⇒ (i). Let β ∈ B0

satisfy nrd(β) = 0. Since nrd |B0 is nonsingular, there exists 0 , α ∈ B0 such that
trd(αβ) , 0. Therefore, the restriction of nrd to Fα⊕Fβ is nonsingular and isotropic.
By Lemma 4.5.3, we conclude there exists a basis for B0 such that nrd � 〈1,−1〉 ⊥
〈c〉 = 〈1,−1, c〉; but disc(nrd |B0) = −c = 1 ∈ F×/F×2 by Paragraph 4.4.2 so

rescaling we may assume c = −1. But then by Proposition 4.4.4 we have B �
(1, 1

F

)
.

Now we show (iv)⇒ (v). For α ∈ B0, we have

nrd(α) = nrd(xi + y j + zi j) = −ax2 − by2 + abz2
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as in Paragraph 4.4.2. Suppose nrd(α) = 0. If z = 0, then the binary form 〈a, b〉 is
isotropic so is a hyperbolic plane by Lemma 4.5.3 and thus represents 1. If z , 0
then

a
( x
az

)2
+ b

( y
bz

)2
= 1.

Next we prove (v)⇒ (vi). If a ∈ F×2 then K � F×F and NK/F(K×) = F× 3 b.
If a < F×2, then given ax2 + by2 = 1 we must have y , 0 so(

1
y

)2

− a
(

x
y

)2

= NK/F

(
1− x

√
a

y

)
= b.

To conclude, we prove (vi) ⇒ (iii). If b = NK/F(K×) = x2 − ay2, then α =

x + yi + j , 0 has nrd(α) = x2 − ay2 − b = 0.

We give a name to the equivalent conditions in Theorem 4.5.5.

Definition 4.5.6. A quaternion algebra B over F is split if B � M2(F). A field K
containing F is a splitting field for B if B⊗F K is split.

Lemma 4.5.7. Let K ⊃ F be a quadratic extension of fields with char F , 2. Then K
is a splitting field for B if and only if there is an injective F-algebra homomorphism
K ↪→ B.

Proof. First, suppose ι : K ↪→ B. We may assume that K = F(
√

d) with d ∈ F×.
Let µ = ι(

√
d). Then 1⊗

√
d − µ⊗ 1 is a zerodivisor in B⊗F K:

(1⊗
√

d − µ⊗ 1)(1⊗
√

d + µ⊗ 1) = 1⊗
√

d2 − µ2 ⊗ 1 = 1⊗ d − d ⊗ 1 = 0.

By Theorem 4.5.5, we have B⊗F K � M2(K).
Conversely, suppose B ⊗F K � M2(K). Consider the standard involution on K,

which we denote for emphasis by σ. Then σ acts as an F-linear involution on B⊗F K
by σ(α⊗ a) = α⊗ σ(a), and so σ(α⊗ a) = α⊗ a if and only if a ∈ F.

If B � M2(F) already, then any quadratic field K embeds in B (take a matrix
in rational normal form) and indeed B ⊗F K � M2(K) for any K. So by Theorem
4.5.5, we may suppose B is a division ring. Let K = F(

√
d). We have B ⊗F K �

M2(K) if and only if 〈−a,−b, ab〉 is isotropic over K, which is to say there exist
x, y, z, u, v, w ∈ F such that

− a(x + u
√

d)2 − b(y + v
√

d)2 + ab(z + w
√

d)2 = 0. (4.5.8)

Let α = xi + y j + zi j and β = ui + v j + wi j. Then trd(α) = trd(β) = 0. Expansion
of (4.5.8) (Exercise 4.15) shows that α is orthogonal to β, so trd(αβ) = 0, and that
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nrd(α) + d nrd(β) = 0. Since B is a division ring, if nrd(β) = c = 0 then β = 0
so nrd(α) = 0 as well and α = 0, a contradiction. So nrd(β) , 0, and the element
γ = αβ−1 = c−1αβ ∈ B has nrd(γ) = −d and trd(γ) = c−1 trd(αβ) = 0 so γ2 = d as
desired.

4.6 Conics

Following Theorem 4.4.5, we are led to consider the zero locus of the quadratic form
nrd |B0 up to scaling; this gives a geometric way to view the precedings results.

Definition 4.6.1. A conic C ⊂ P2 over F is a nonsingular projective plane curve of
degree 2. Two conics C,C′ are isomorphic over F if there exists a linear change of
variables f ∈ PGL3(F) such that f (C) = C′.

If we identify

P(B0) = (B0 \ {(0, 0, 0)}/F×

with the points of the projective plane P2(F) over F, then the vanishing locus C =

V(nrd |B0) of nrd |B0 defines a conic over F: here, nonsingularity of the quadratic
form implies nonsingularity of the associated plane curve (Exercise 4.12). As above,
if we take the basis i, j, i j for B0, then the conic C is defined by the vanishing of the
equation nrd(xi + y j + zi j) = −ax2 − by2 + abz2 = 0.

The following corollary is then simply a rephrasing of Theorem 4.4.5.

Corollary 4.6.2. The map B 7→ C = V(nrd |B0) yields a bijection{Quaternion algebras over F
up to isomorphism

}
←→

{ Conics over F
up to isomorphism

}
that is functorial with respect to F.

Theorem 4.5.5 also extends to this context.

Theorem 4.6.3. The following are equivalent:

(i) B � M2(F);

(vii) The conic C associated to B has an F-rational point.
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4.7 Hilbert symbol

Theorem 4.5.5(v) is called Hilbert’s criterion for the splitting of a quaternion algebra:

the quaternion algebra
(a, b

F

)
is split if and only if the Hilbert equation ax2 +by2 = 1

has a solution with x, y ∈ F.

Definition 4.7.1. We define the Hilbert symbol

F× × F× → {±1}
(a, b) 7→ (a, b)F

by the condition that (a, b)F = 1 if and only if the quaternion algebra
(a, b

F

)
is split.

The similarity between the symbols (a, b)F and
(a, b

F

)
is intentional. The Hilbert

symbol is in fact well defined as a map F×/F×2 × F×/F×2 → {±1} by Exercise
2.4.

Lemma 4.7.2. Let a ∈ F×. Then the following statements hold:

(a) (1, a)F = (a,−a)F = 1.

(b) (a, 1− a)F = 1 if a , 1.

Proof. For (a), the Hilbert equation x2 + ay2 = 1 has the obvious solution (x, y) =

(1, 0). And 〈a,−a〉 is isotropic (taking (x, y) = (1, 1)) so is a hyperbolic plane so
represents 1, as in the proof of Theorem 4.5.5, or we argue

(a,−a)F = (a, a2)F = (a, 1)F = (1, a)F = 1

by Exercise 2.4. Finally, part (c): we have (a, 1− a)F = 1 since ax2 + (1− a)y2 = 1
has the solution (x, y) = (1, 1).

The study of symbols like the Hilbert symbol leads naturally to the definition of
K2 of a field (see Paragraph 4.10.5).

4.8 Orthogonal groups

In this section, we revisit the original motivation of Hamilton (Section 2.3) in a more
general context, relating quaternions to the orthogonal group of a quadratic form.

Let Q be a nonsingular quadratic form on the finite-dimensional F-vector space
V .
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Definition 4.8.1. The orthogonal group of Q is the group of isometries of Q, i.e.,

O(Q) = { f ∈ AutF(V) : Q( f (x)) = Q(x) for all x ∈ V}.

One can understand this orthogonal group quite concretely as follows. Choose a
basis e1, . . . , en for V � Fn and let A = (T (ei, e j))i, j=1,...,n be the Gram matrix of Q
with respect to this basis, so that

Q(x) = xtAx and T (x, y) = xtAy.

Then AutF(V) � GLn(F), and so M ∈ GLn(F) belongs to O(Q) if and only if

Q(Mx) = (Mx)tA(Mx) = xt MtAMx = xtAx = Q(x)

for all x ∈ V � Fn, so

O(Q) = {M ∈ GLn(F) : MtAM = A}. (4.8.2)

There is a natural map
det : O(Q)→ F×;

the image of det is img det = {±1} by (4.8.2).

Definition 4.8.3. An isometry f ∈ O(Q) is special if it has det f = 1. The special
orthogonal group of Q is the group of special isometries of Q:

SO(Q) = ker det = { f ∈ O(Q) : det( f ) = 1}.

The subgroup SO(Q) ≤ O(Q) is a (normal) subgroup of index 2.

Example 4.8.4. If V = Rn and Q is the usual norm on V , then

O(Q) = O(n) = {A ∈ GLn(R) : AAt = 1}

and SO(Q) is the usual group of rotations of V . In particular, SO(2) � S1 is the circle
group.

In general, the structure of the orthogonal group of a quadratic form can be quite
interesting and complicated. However, a classical theorem of Cartan and Dieudonné
at least tells us that the orthogonal group is generated by reflections, as follows.

Theorem 4.8.5 (Cartan–Dieudonné). Let (V,Q) be a nonsingular quadratic space
with dimF V = n. Then every isometry f ∈ O(Q) is a product of at most n reflections.
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Let B0 = {x ∈ B : trd(B) = 0}. Then we have a (left) action B× � B0 defined by
x 7→ αxα−1, since trd(αxα−1) = trd(x) = 0. Moreover, let Q0 = nrd |B0 is the restric-
tion of the reduced norm to B0 then B× acts by isometries, since by multiplicativity

nrd(αxα−1) = nrd(x)

for all α ∈ B and x ∈ B0. The kernel of the action is given by those α ∈ B× with
αxα−1 = x for all x ∈ B0, and this implies that α ∈ F×.

Proposition 4.8.6. The sequences

1→ F× → B× → SO(Q0)→ 1

is exact. If nrd(B×) ⊆ F×2, then the sequence

1→ {±1} → B×1 → SO(Q0)→ 1

is exact.

Example 4.8.7. If B � M2(F), then nrd = det, so det0 � 〈1,−1,−1〉 and PGL2(F) �
SO(〈1,−1,−1〉).

If F = R and B = H, then det(H) = R>0 = R×2, and the second exact sequence
is Hamilton’s (Section 2.3).

4.9 Equivalence of categories

Definition 4.9.1. A quadratic space is oriented with a choice of isomorphism

i : det(V) =
∧n(V)→ F,

and a similarity or isometry is oriented if [[finish]].

One can beef up the set-theoretic bijection to a full equivalence of categories by
putting in an orientation.

4.10 Extensions and further reading

4.10.1. The terminology isotropic is as least as old as Eichler [Eic53, p. 3], and goes
perhaps back to Witt. The word can be used to mean “having properties that are
identical in all directions”, and so the motivation for this language probably comes
from physics: the second fundamental form associated to a parametrized surface
z = f (x, y) in R3 is a quadratic form, and (roughly speaking) this quadratic form
defines the curvature at a given point. In this sense, if the quadratic form vanishes,
then the curvature is zero, and indeed things look the same in all directions.
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4.10.2. Proposition 4.4.4 is just about the even Clifford algebra.

4.10.3. Lemma 4.5.7 requires a calculation; but for a general central simple algebra,
there is no short proof, since one only knows in the hard direction that B is Brauer
equivalent to an algebra where K embeds.

4.10.4. Brauer-Severi varieties.

4.10.5. Algebraic K-theory (K for the German “Klasse”, following Grothendieck
[Kar10]), in its various formulations, seeks to understand certain functors from rings
to abelian groups. For a field F, the lower K-groups are trivial: K0 = {1} and
K1(F) = F×; however, by a theorem of Matsumoto [Mat69], the group K2(F) is the
universal domain for symbols over F:

K2(F) = F× ⊗Z F×/〈a⊗ (1− a) : a , 0, 1〉.

The map a ⊗ b 7→ (a, b)F extends to a map K2(F) → {±1}, a Steinberg symbol, a
homomorphism from K2(F) to a multiplicative abelian group. The higher K-groups
are related to deeper arithmetic of commutative rings. For an introduction, see Weibel
[Wei13].

4.11 Algorithmic aspects

Diagonalization of quadratic forms, making the equivalences algorithmic.
Recognizing quaternion algebras.

Exercises

4.1. Show that a quadratic form Q on a finite-dimensional space is nonsingular if
and only if it has nonzero discriminant d(Q) ∈ F×/F×2.

4.2. Prove that every (finite-dimensional) quadratic space has a normalized basis
(Lemma 4.2.13).

4.3. Let B be a quaternion algebra over F. Let N : B → F and ∆ : B → F be
defined by N(x) = trd(x2) and ∆(x) = trd(x)2 − 4 nrd(x). Show that N,∆ are
quadratic forms on B, describe their associated bilinear forms, and compute a
normalized form (and basis) for each.

4.4. Prove Lemma 4.5.3: if V is a nonsingular quadratic space that is isotropic, then
V contains a hyperbolic plane.
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4.5. Let Q : V → F be a nonsingular ternary quadratic form. In this exercise, we
construct directly the even Clifford algebra of Q and show that it is a quaternion
algebra. This gives another proof of the results of section 4.4.

Let M be the F-vector space F ⊕ (V ⊗ V) and let C be the quotient of M by
the subspace of elements x⊗ x− Q(x) for x ∈ V .

a) Show that the relation x⊗ y + y⊗ x = T (x, y) holds in B for all x, y ∈ V .
Conclude that dimF C = 4.

b) Show that ⊗ yields a multiplication law on C. [Hint: Choose a normal-
ized basis for V.] We call C the even Clifford algebra of Q.

c) Show that the map x⊗y 7→ T (x, y)− x⊗y defines a nonsingular standard
involution on C. (In particular, note that if T (x, y) = 0 then the involution
is x⊗ y 7→ y⊗ x.) Conclude that C is a quaternion algebra over F.

4.6. Let Q : V → F be quadratic form with dimF V = n < ∞. A subspace
W ⊆ V is totally isotropic if Q|W = 0 is identically zero. The Witt index of
a quadratic form ν(V) = ν(Q) is the maximal dimension of a totally isotropic
subspace.

a) Show that if ν(V) = m then 2m ≤ n.

b) [[Isotropy of Pfister forms]].

c) Suppose that Q is an isotropic Pfister form. Let W ⊂ V be a subspace
of dimension n − 1. Show that Q|W is isotropic, giving another proof of
Theorem 4.5.5 (iii)⇒ (iv).

4.7. Recall Remark 3.3.5. Let B be a finite-dimensional F-algebra (not necessarily
a quaternion algebra), and let Tr : B→ F be the (right) algebra trace.

a) Show that the map B→ F defined by x 7→ Tr(x2) is a quadratic form on
B; this form is called the (right) trace form on B.

b) Compute the trace form of A× B and A⊗F B in terms of the trace form
of A and B.

c) Show that if K/F is a finite inseparable field extension (with [K : F] <
∞) then the trace form on K (as an F-algebra) is identically zero. On the
other hand, show that if K/F is a finite separable field extension (with
char F , 2) then the trace form is nonsingular.

d) Compute the trace form on Q(
√

5) and Q(α) where α = 2 cos(2π/7), so
that α3 + α2 − 2α− 1 = 0.
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4.8. Show that the reduced norm is the unique nonzero quadratic form Q on B that
is multiplicative , i.e., Q(αβ) = Q(α)Q(β) for all α, β ∈ B.

4.9. Use Theorem 4.5.5(vi) to give another proof that there is no division quaternion
algebra B over a finite field F = Fq (with q odd).

4.10. Let a, b, c ∈ F×. Show that(a, b
F

)
⊗F

(a, c
F

)
� D⊗F

(c,−c
F

)
� M2(D)

where D =

(a, bc
F

)
.

4.11. Show that (−1, 10)Q = 1.

4.12. Show that if Q is a nonsingular quadratic form on a vector space V with
dimF V = n, then the equation Q(x) = 0 defines a nonsingular projective
variety in Pn of degree 2, called a quadric.

4.13. Show that (−2,−3
Q

)
�

(−1,−1
Q

)
but that

(−2,−5
Q

)
�

(−1,−1
Q

)
(cf. Lam [Lam05, Examples III.2.12–13]). [Hint: In the first case, show that
the quadratic forms are isometric directly; in the second case, note that the
quadratic form 〈2, 5, 10〉 represents 7 but 〈1, 1, 1〉 does not.]

4.14. Let p be prime. Show that
(−1, p
Q

)
� M2(Q) if and only if p = 2 or p ≡ 1

(mod 4).

4.15. Expand (4.5.8) and prove that if α = xi + y j + zi j and β = ui + v j + wi j, then α
is orthogonal to β, so trd(αβ) = 0, and that nrd(α) + d nrd(β) = 0.

4.16. Let a ∈ Q× \Q×2.

a) Show that there are infinitely many distinct isomorphism classes of con-
ics x2 − ay2 = bz2 for b ∈ Q×.

b) Show that

lim
X→∞

#{p < X : p prime, x2 − ay2 = pz2 has no Q-rational points}
#{p < X : p prime}

=
1
2
.



60 CHAPTER 4. QUADRATIC FORMS

c) Generalize (b) to all integers.

d) What is the probability that a random conic in P2, ordered by height, has
a rational point? What is the probability that a random quaternion algebra(a, b
Q

)
with a, b ∈ Q× is split?



Chapter 5

Quaternion algebras in
characteristic 2

In this chapter, we extend the results from the previous three chapters to the neglected
case where the base field has characteristic 2. Throughout this chapter, let F be a field
with algebraic closure F.

5.1 Separability and another symbol

To get warmed up, we give a different notation (symbol) for quaternion algebras that
holds in any characteristic and which is convenient for many purposes.

Let B be a commutative, finite-dimensional algebra over F. We say B is separable
if

B⊗F F � F × · · · × F.

If B � F[x]/( f (x)) with f (x) ∈ F[x], then B is separable if and only if f has distinct
roots in F.

5.1.1. If char F , 2, a quadratic F-algebra K is separable if and only if K �

F[x]/(x2 − a) with a , 0 if and only if K is a field or K � F × F.

5.1.2. If char F = 2, then a quadratic F-algebra K is separable if and only if K �

F[x]/(x2 + x + a) for some a ∈ F, and any quadratic algebra of the form K =

F[x]/(x2 + a) with a ∈ F is not separable.

Now the more general more general notation.

61
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5.1.3. Let K be a separable quadratic F-algebra, and let b ∈ F×. We denote by(K, b
F

)
= K + K j

the F-algebra with basis 1, j as a left K-vector space and with the multiplication rules
j2 = b and jα = α j for α ∈ K, where is the standard involution on K. (Since K is
separable over F, the standard involution is the nontrivial element of Gal(K/F).)

From Paragraph 5.1.1, we see that
(K, b

F

)
is a quaternion algebra over F if char F ,

2; we will show this also holds in characteristic 2 and so gives a characteristic-free
way to define quaternion algebras.

In using this symbol, we are breaking the symmetry between the standard gener-
ators i, j, but otherwise have not changed anything about the definition.

5.2 Characteristic 2

From the previous section, we now see how to define quaternion algebras in charac-
teristic 2. Throughout this section, suppose that char F = 2.

Definition 5.2.1. An algebra B over F (with char F = 2) is a quaternion algebra if
there exists an F-basis 1, i, j, k for B such that

i2 + i = a, j2 = b, and k = i j = j(i + 1) (5.2.2)

with a ∈ F and b ∈ F×.

Just as when char F , 2, we find that the multiplication table for a quaternion

algebra B is determined by the rules (5.2.2). We denote by
[a, b

F

)
the F-algebra with

basis 1, i, j, i j subject to the multiplication rules (5.2.2). The algebra
[a, b

F

)
is not

symmetric in a, b (explaining the choice of notation), but it is still functorial in the
field F.

If we let K = F[i] � F[x]/(x2 + x + a), then[a, b
F

)
�

(K, b
F

)
and our notation extends that of Section 5.1.

Example 5.2.3. The ring M2(F) of 2 × 2-matrices with coefficients in F is again a

quaternion algebra over F: indeed, we have an isomorphism
[1, 1

F

)
∼−→ M2(F) with

i 7→
(
0 1
1 1

)
, j 7→

(
0 1
1 0

)
.
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The following result can be proven in a similar way as Lemma 2.2.5.

Lemma 5.2.4. An F-algebra B is a quaternion algebra if and only if there exist
generators i, j ∈ B satisfying

i2 + i = a, j2 = b, and i j = j(i + 1). (5.2.5)

5.2.6. Let B =

[a, b
F

)
be a quaternion algebra over F. Then B has a standard involu-

tion given by

α = t + xi + y j + zi j 7→ α = x + α = (t + x) + xi + y j + zi j

since

(t + xi + y j + zi j)((t + x) + xi + y j + zi j) = t2 + tx + ax2 + by2 + byz + abz2 ∈ F.

Consequently, one has a reduced trace and reduced norm on B as in Chapter 3.

We now state a version of Theorem 3.5.1 in characteristic 2; the proof is similar
and is left as an exercise.

Theorem 5.2.7. Let B be a division F-algebra with a standard involution which is
not the identity. Then either B is a separable quadratic field extension of F or B is a
quaternion algebra over F.

Proof. Exercise 5.5.

5.3 Quadratic forms and characteristic 2

We now turn to the theory of quadratic forms in characteristic 2. Here, we have
T (x, x) = 2Q(x) = 0, so there is no longer an equivalence between quadratic forms
and symmetric bilinear forms—the former is the more “fundamental” object. To
define normalized forms, we will also have need of the following form: for a, b ∈ F,
we define Q(x, y) = ax2 + axy + by2 on F2 and abbreviate Q = [a, b].

Lemma 5.3.1. Let Q : V → F be a quadratic form with dimF V < ∞. Then there
exists a basis of V such that

Q � [a1, b1] ⊥ · · · ⊥ [am, bm] ⊥ 〈c1, . . . , cn〉

with ai, bi, c j ∈ F; morevoer, Q is nonsingular if and only if a1 · · · am , 0 and

(dimF V is even and n = 0) or (dimF V is odd and n = 1).
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Proof. Exercise 5.6.

Example 5.3.2. Let B =

[a, b
F

)
be a quaternion algebra. Then 1, i, j, i j is a normal-

ized basis for B, indeed we have

nrd � [1, a] ⊥ [b, ab] � [1, a]⊗ 〈1, b〉,

and consequently nrd is nonsingular.

We now consider the characterization of quaternion algebras as those equipped
with a nonsingular standard involution (Theorem 4.3.1).

Proposition 5.3.3. Let B be an F-algebra (with char F = 2). Then B has a nonsin-
gular standard involution if and only if B is a separable quadratic F-algebra or B is
a quaternion algebra over F.

Proof. If B = F, then the standard involution is the identity but it is not nonsingular,
as trd(1) = 2 = 0.

If dimF B = 2, then B = K has a unique standard involution (Lemma 3.4.1). By
Paragraph 5.1.2, we see that the involution is nonsingular if and only if K is separable.

So suppose dimF B > 2. Since B has a nonsingular standard involution, there
exists an element i ∈ B such that T (i, 1) = trd(i) , 0. We have i < F since trd(F) =

{0}. Rescaling we may assume trd(i) = 1, whence i2 = i + a for some a ∈ F, and
nrd |F+Fi = [1, a]. We have begun the proof of Lemma 5.3.1, and 1, i is part of a
normalized basis, in this special case.

By nondegeneracy, there exists j ∈ {1, i}⊥ such that nrd( j) = b , 0. Thus
trd( j) = 0 so j = j and j2 = b ∈ F×. Furthermore, we have

0 = trd(i j) = i j + ji = i j + j(i + 1)

so i j = j(i + 1). Therefore i, j generate an F-subalgebra A �
[a, b

F

)
.

The conclusion of the proof follows exactly as in (4.3.2): if k ∈ {1, i, j, i j}⊥ then
k(i j) = k( ji), a contradiction.

Next, we characterize isomorphism classes of quaternion algebras in characteris-
tic 2 in the language of quadratic forms.

Let B be a quaternion algebra over F. We again define

B0 = {α ∈ B : trd(α) = 0} = {1}⊥.

But now B0 = F ⊕ F j⊕ Fi j and in this basis we have

nrd |B0 � 〈1〉 ⊥ [b, ab].
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with discriminant
disc(nrd |B0) = b2 = 1 ∈ F×/F×2, (5.3.4)

recalling that in odd dimension, the discriminant is halved (Definition 4.2.9).

Theorem 5.3.5. The maps B 7→ nrd |B0 7→ V(nrd |B0) yield equivalences of cate-
gories

{Quaternion algebras over F
up to isomorphism

}
←→


Nonsingular ternary

quadratic forms over F
with discriminant 1 ∈ F×/F×2

up to isometry


←→


Nonsingular ternary

quadratic forms over F
up to similarity


←→

{ Conics over F
up to isomorphism

}
Proof. We extend the proof of Proposition 4.4.4 to char F = 2. Let f : A0 → B0 be

an isomorphism of quadratic spaces. Let A �
[a, b

F

)
. Extend f to an F-linear map

A → B by mapping i 7→ b−1 f (i j) f ( j). The map f preserves 1: it maps F to F by
Exercise 5.8, since F = (B0)⊥ = (A0)⊥, and 1 = nrd(1) = nrd( f (1)) = f (1)2 so
f (1) = 1. We have f ( j)2 = nrd( f ( j)) = nrd( j) = b as before, since j, i j ∈ A0. Thus

1 = trd(i) = b−1 trd((i j) j) = b−1T (i j, j) =

= b−1T ( f (i j), f ( j)) = trd(b−1 f (i j) f ( j)) = trd( f (i))

and similarly nrd( f (i)) = nrd(i) = a, so we have f (i)2 + f (i) + a = 0. Finally,
f (i) f ( j) = f ( j)( f (i) + 1) by Exercise 5.9. So the map f is an isomorphism of quater-
nion algebras. This map is surjective since

To show the map is surjective, let V be a nonsingular ternary quadratic space with
discriminant 1 ∈ F×2. Then Q � 〈u〉 ⊥ [b, c] for some u, b ∈ F× and c ∈ F. Scaling
by u shows that Q ∼ 〈1〉 ⊥ [bu−1, cu−1], and this arises from the quaternion algebra[a, bu−1

F

)
with a = ucb−1.

The rest of the equivalence follows as in the proof of Theorem 4.4.5.

We now turn to identifying the matrix ring in characteristic 2.

Definition 5.3.6. A quadratic form H : V → F is a hyperbolic plane if H � [1, 0],
i.e., H(x, y) = x2 + xy = x(x + y).

As in Lemma 4.5.3, we have the following result.



66 CHAPTER 5. QUATERNION ALGEBRAS IN CHARACTERISTIC 2

Lemma 5.3.7. If Q is nonsingular and isotropic then Q � H ⊥ Q′ with H a hyper-
bolic plane.

We may again characterize division quaternion algebras by examination of the
reduced norm as a quadratic form as in Theorems 4.5.5 and 4.6.3.

Theorem 5.3.8. Let B =

[a, b
F

)
(with char F = 2). Then the following are equivalent:

(i) B �
[1, 1

F

)
� M2(F);

(ii) B is not a division ring;

(iii) The quadratic form nrd is isotropic;

(iv) The quadratic form nrd |B0 is isotropic;

(v) The binary form [1, a] represents b;

(vi) b ∈ NK/F(K×) where K = F[i]; and

(vii) The conic C = V(nrd |B0) ⊂ P2 has an F-rational point.

Proof. Only condition (v) requires significant modification in the case char F = 2;
see Exercise 5.7.

Analogous to section 4.7, one can define a symbol [a, b)F for the splitting of
quaternion algebras in characteristic 2. This symbol is no longer called the Hilbert

symbol, but there is still an analogue of the Hilbert equation, namely
[a, b

F

)
is split

if and only if bx2 + bxy + aby2 = 1 has a solution with x, y ∈ F.

Lemma 5.3.9. Let K ⊃ F be a quadratic extension of fields. Then K is a splitting
field for B if and only if there is an injective F-algebra homomorphism K ↪→ B.

Proof. If ι : K ↪→ B and K = F(α), then 1⊗α− ι(α)⊗ 1 is a zerodivisor in B⊗F K,
with

(1⊗ α− ι(α)⊗ 1)
(
1⊗ α− ι(α)⊗ 1

)
= 0 (5.3.10)

by Exercise 5.10.
Conversely, let K = F(α) and suppose B⊗F K � M2(K). Without loss of gener-

ality, we may assume that B =

[a, b
F

)
is a division ring. By Theorem 5.3.8(v), tthere

exist x, y, z, u, v, w ∈ F not all zero such that

(x + uα)2 + b(y + vα)2 + b(y + vα)(z + wα) + ab(z + wα)2 = 0 (5.3.11)
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so

(u2 + bv2 + bvw + abw2)α2 + (vz + wy)bα + (x2 + by2 + byz + abz2) = 0. (5.3.12)

Let β = x+y j+zi j and γ = u+v j+wi j. Then γ ∈ B×, since γ = 0 implies nrd(β) = 0
and yet B is a division ring. But then the element

µ = βγ−1 = (u2 + uv + av2 + bw2)−1β(v + γ)

satisfies the same equation as (5.3.12), so the embedding α 7→ µ gives an embedding
K ↪→ B.

5.4 Extensions and further reading

Exercises

5.1. Give a version of the primitive element theorem as follows. Let B be a commu-
tative F-algebra with dimF B > char F. Show that B � F[x]/( f (x)) for some
f (x) ∈ F[x].

5.2. Let B be a quaternion algebra over F with char F , 2, and let K ⊆ B be
a separable quadratic F-algebra. Show that there exists b ∈ F× such that

B �
(K, b

F

)
(as in Paragraph 5.1.3).

5.3. Let K be a separable quadratic F-algebra and let u, binF×. Show that
(K, b

F

)
�(K, ub

F

)
if and only if u ∈ nrd(K×) = NK/F(K×).

5.4. Let char F = 2 and let a ∈ F and b ∈ F×.

a) Show that
[a, b

F

)
�

[a, ab
F

)
if a , 0.

b) Show that if t ∈ F a,nd u ∈ F×, then
[a, b

F

)
�

[a + (t + t2), bu2

F

)
.

5.5. Let char F = 2 and let B be a division F-algebra with a standard involution.
Prove that either the standard involution is the identity (and so B is classified
by Exercise 3.7), or that the conclusion of Theorem 3.5.1 holds for B: namely,
that either B = K is a separable quadratic field extension of F or that B is
a quaternion algebra over F. [Hint: Replace conjugation by i by the map
φ(x) = ix + xi, and show that φ2 = φ. Then diagonalize and proceed as in the
case char F , 2.]
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5.6. Prove Lemma 5.3.1, that every quadratic form over F with char F = 2 has a
normalized basis.

5.7. Prove Theorem 5.3.8.

5.8. Let B be a quaternion algebra over F (with F of arbitrary characteristic). Show
that F = (B0)⊥.

5.9. Let A, B be quaternion algebras over F with char F = 2, let f : A0 → B0

be an isometry, and define f (i) = f (i j) f ( j) nrd( j)−1. Show that f (i) f ( j) =

f ( j)( f (i) + 1), as in the proof of Theorem 5.3.5.

5.10. Verify (5.3.10).

5.11. Prove Wedderburn’s theorem the following special case: a finite quaternion
ring of even cardinality is not a division ring. [Hint: See Exercise 3.12.]



Chapter 6

Simple algebras

6.1 The “simplest” algebras

In this chapter, we return to the characterization of quaternion algebras. We initially
defined quaternion algebras in terms of generators and relations in Chapter 2; in the
chapters that followed, we showed that quaternion algebras are equivalently noncom-
mutative algebras with a nonsingular standard involution. Here, we pursue another
approach, and characterize quaternion algebras in a different way.

Consider now the “simplest” sorts of algebras. Field extensions are perhaps the
simplest kinds of algebras, studied in a first course in abstract algebra. Division rings
are closest to fields—they just lack commutativity—but miss the matrix rings. So we
look for a concept that includes them both.

Like the primes among the integers or the finite simple groups among finite
groups, it is natural to seek algebras that cannot be “broken down” any further. Ac-
cordingly, we say that a ring B is simple if it has nontrivial two-sided ideals, i.e., the
only two-sided ideals are {0} and B. To show the power of this notion, consider this:
if φ : B → A is a ring homomorphism and B is simple, then φ is either injective or
the zero map (since ker φ ⊆ B is a two-sided ideal).

A division ring is simple, since every element is a unit so every ideal (left, right,
or two-sided) is trivial. In particular, a field is a simple ring, and in fact, a commuta-
tive ring is simple if and only if it is a field. The matrix ring Mn(F) over a field F is
also simple, something that can be checked directly by multiplying by matrix units
(Exercise 6.4).

Moreover, quaternion algebras are simple. The shortest proof of this statement,
given what we have done so far, is to employ Theorems 4.5.5 and 5.3.8: a quaternion
algebra B over F is either isomorphic to M2(F) or is a division ring, and in either
case is simple. One can also prove this directly (Exercise 6.1).

69
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Although the primes are quite mysterious and the classification of finite simple
groups is a monumental achievement in group theory, the situation for algebras is
quite simple, indeed!

Theorem 6.1.1 (Wedderburn–Artin). Let F be a field and B be a finite-dimensional
F-algebra. Then B is simple if and only if B � Mn(D) where n ≥ 1 and D is a
finite-dimensional division F-algebra.

A corollary of this theorem is another characterization of quaternion algebras.
Recall that an F-algebra B is central if the center of B is F. Quaternion algebras are
central (Exercise 2.7).

Corollary 6.1.2. Let B be an F-algebra. Then the following are equivalent:

(i) B is a quaternion algebra;

(ii) B⊗F F � M2(F), where F is an algebraic closure of F; and

(iii) B is a central simple algebra of dimension dimF B = 4.

Moreover, a central simple algebra B of dimension dimF B = 4 is either a division
algebra or has B � M2(F).

This corollary has the neat consequence that a division algebra B over F is a
quaternion algebra over F if and only if it is central of dimension dimF B = 4.

For the reader in a hurry, we now give a proof of this corollary without invoking
the Wedderburn–Artin theorem, previewing some of the ideas that go into it.

Proof of Corollary. The statement (i)⇒ (ii) was proven in Exercise 2.4(c).
To prove (ii)⇒ (iii), suppose B is an algebra with B = B ⊗F F � M2(F). The

F-algebra B is central simple, from above. Thus Z(B) = Z(B) ∩ F = F. And if I is a
two-sided ideal of B then I = I ⊗F F is a two-sided ideal of B, so I = {0} or I = B
is trivial, whence I = I ∩ F is trivial.

Finally, we prove (iii)⇒ (i). Let B a central simple F-algebra of dimension 4. If
B is a division algebra we are done; so suppose not. Then B has a nontrivial left ideal,
generated by a nonunit, and let {0} ( I ( B be a nontrivial left ideal with 0 < m =

dimF I minimal. Then we have a nonzero homomorphism B → EndF(I) � Mm(F)
which is injective, since B is simple. By dimensions, we cannot have m = 1 and if
m = 2, then B � M2(F). So suppose m = 3. Then by minimality, every nontrivial
left ideal of B has dimension 3. But for any α ∈ B, we have that Iα is a left ideal, so
the left ideal I ∩ Iα is either {0} or I; in either case, Iα ⊆ I, so I is a right ideal as
well. But this contradicts the fact that B is simple.
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The Wedderburn–Artin theorem is an important structural result used through-
out mathematics, so we give in this chapter a reasonably self-contained account of
its proof. More generally, it will be convenient to work with semisimple algebras,
which for the purposes of this introduction can be thought of as finite direct products
of simple algebras. Indeed, when treating ideals of an algebra we would be remiss
if we did not discuss more generally modules over the algebra, and the notions of
simple and semisimple module are natural concepts in linear algebra and represen-
tation theory: a semisimple module is one that is a direct sum of simple modules
(“completely reducible”), analogous to a semisimple operator where every invariant
subspace has an invariant complement (e.g., a diagonalizable matrix).

The second important result in this chapter is a theorem that concerns the simple
subalgebras of a simple algebra.

Theorem 6.1.3 (Skolem–Noether). Let A, B be simple F-algebras and suppose that
B is central. Suppose that f , g : A→ B are homomorphisms. Then there exists β ∈ B
such that f (α) = β−1g(α)β for all α ∈ A.

Corollary 6.1.4. Every F-algebra automorphism of a simple F-algebra B is inner,
i.e., AutF(B) � B×/F×.

Just as above, for our quaternionic purposes, we can give a direct proof.

Corollary 6.1.5. Let B be a quaternion algebra over F and let K1,K2 ⊂ B be
quadratic subfields. Suppose that φ : K1

∼−→ K2 is an isomorphism of F-algebras.
Then φ lifts to an inner automorphism of B, i.e., there exists β ∈ B such that
K2 = β−1K1β.

Proof. We have K1 = F[α1] � F[x]/(x2 − tx + n), where α1 ∈ B and t, n ∈ F. Let
α2 = φ(α1) ∈ K2 ⊆ B. We want to find β ∈ B× such that βα1 = α2β.

In the special case B � M2(F), then α1, α2 ∈ M2(F) satisfy the same irreducible
characteristic polynomial, so by the theory of rational canonical forms, we have α2 =

β−1αβ where β ∈ B× � GL2(F).
In general, the set

{β ∈ B : βα1 = α2β}

is an F-vector subspace of B. We have B ⊗F F � M2(F), so there exists a nonzero
β ∈ B⊗F F that will do; but by linear algebra, this means that there exists a nonzero
β ∈ B with the desired property. If B � M2(F) then B is a division ring, so β ∈ B×,
and we are done.
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6.2 Simple modules

Throughout this chapter, let B be a finite-dimensional F-algebra.
To understand the algebra B, we look at its representations. A representation of

B (over F) is a vector space V over F together with an F-algebra homomorphism
B → EndF(V). Equivalently, a representation is given by a left (or right) B-module
V: this is almost a tautology. Although one can define infinite-dimensional represen-
tations, they will not interest us here, and we assume throughout that dimF V < ∞,
or equivalently that V is a finitely generated (left or right) B-module. If we choose a
basis for V , we obtain an isomorphism EndF(V) � Mn(F) where n = dimF V , so a
representation is just a homomorphic way of thinking of the algebra B as an algebra
of matrices.

Example 6.2.1. The space of column vectors Fn is a left Mn(F)-module; the space
of row vectors is a right Mn(F)-module.

Example 6.2.2. B is itself a left B-module, giving rise to the left regular representa-
tion B→ EndF(B) (cf. Paragraph 2.2.8 and Remark 3.3.5).

Example 6.2.3. Let G be a finite group. Then a representation of F[G] (is the same
as an F[G]-module which) is the same as a homomorphism G → GL(V), where V is
an F-vector space (Exercise 3.5).

Definition 6.2.4. Let V be a left B-module. Then V is simple (or irreducible) if
V , {0} and the only B-submodules of V are {0} and V .

We say V is indecomposable if V cannot be written as V = V1⊕V2 with Vi , {0}
for i = 1, 2.

A simple module is indecomposable, but the converse need not hold, and this is
a central point of difficulty in understanding representations.

Example 6.2.5. If B =

{(
a b
0 c

)
: a, b, c ∈ F

}
⊆ M2(F), then the space V = F2 of

column vectors is not simple, since the subspace spanned by
(
1
0

)
is a B-submodule;

nevertheless, V is indecomposable (Exercise 6.3).

The importance of simple modules is analogous to that of simple groups. Indeed,
arguing by induction on the dimension of V , we have the following lemma analogous
to the Jordan–Hölder theorem on composition series.

Lemma 6.2.6. A (finite-dimensional) left B-module V admits a filtration

V = V0 ) V1 ) V2 ) · · · ) Vr = {0}
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such that Vi/Vi+1 is simple for each i.

This filtration is not unique, but up to isomorphism and permutation, the quotients
Vi/Vi+1 are unique.

Having defined the notion of simplicity for modules, we now consider simplicity
of the algebra B.

Definition 6.2.7. An F-algebra B is simple if the only two-sided ideals of B are {0}
and B.

Equivalently, B is simple if and only if any F-algebra (or even ring) homomor-
phism B→ A is either injective or the zero map.

Remark 6.2.8. The two notions of simplicity are related as follows: B is simple as an
algebra if and only if it is simple as a left and right B-module.

Example 6.2.9. A division F-algebra D is simple. In fact, the F-algebra Mn(D) is
simple for any division F-algebra D (Exercise 6.4), so in particular Mn(F) is simple.

Example 6.2.10. Let F be an algebraic closure of F. If B ⊗F F is simple, then B
is simple. Indeed, the association I 7→ I ⊗F F is an injective map from the set of
two-sided ideals of B to the set of two-sided ideals of B⊗F F.

6.2.11. If B is a quaternion algebra over F, then B is simple. By Exercise 2.7, we
have B⊗F F � M2(F), which is simple by Example 6.2.9, so B is simple by Example
6.2.10.

Example 6.2.9 shows that algebras of the form Mn(D) with D a division F-
algebra yield a large class of simple F-algebras. In fact, these are all such algebras,
a fact we will now prove. First, a few preliminary results.

Lemma 6.2.12 (Schur). Let B be an F-algebra. Let V1,V2 be simple B-modules.
Then any homomorphism φ : V1 → V2 of B-modules is either zero or an isomor-
phism.

Proof. We have that ker φ and img φ are B-submodules of V1 and V2, respectively, so
either φ = 0 or ker φ = 0 and img φ = V2, hence V1 � V2.

Corollary 6.2.13. If V is a simple B-module, then EndB(V) is a division ring.

6.2.14. Let B be an F-algebra and consider B as a left B-module. Then we have a
map

ρ : Bop ∼−→ EndB(B)

α 7→ (ρα : β 7→ βα),
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where Bop is the opposite algebra of B (Paragraph 3.2.2).
The map ρ is injective since ρα = 0 implies ρα(1) = α = 0; it is also surjective,

since if φ ∈ EndB(B) then letting α = φ(1) we have φ(β) = βφ(1) = βα for all β ∈ B.
Finally, it is an F-algebra homomorphism, since

ραβ(µ) = µ(αβ) = (µα)β = (ρβ ◦ ρα)(µ),

and therefore ρ is an isomorphism of F-algebras.
One lesson here is that a left module has endomorphisms that act naturally on the

right; but the more common convention is that endomorphisms also act on the left,
so in order to make this compatible, the opposite algebra intervenes.

6.2.15. Many theorems of linear algebra hold equally well over division rings as they
do over fields, as long as one is careful about the direction of scalar multiplication.
For example, let D be a division F-algebra and let V be a left D-module. Then
V � Dn is free, and choice of basis for V gives an isomorphism EndD(V) � Mn(Dop).
When n = 1, this becomes EndD(D) � Dop, as in Paragraph 6.2.14.

Lemma 6.2.16. Let B be a (finite-dimensional) simple F-algebra. Then there exists
a simple left B-module which is unique up to isomorphism.

Proof. Since B is finite-dimensional over F, there is a nonzero left ideal I of B of
minimal dimension, and such an ideal I is necessarily simple. Moreover, if ν ∈ I is
nonzero then Bν = I, since Bν ⊆ I is nonzero and I is simple. Let I = Bν with ν ∈ I.

Now let V be any simple B-module; we will show I � V as B-modules. Since B
is simple, the natural map B→ EndF(V) is injective (since it is nonzero). Therefore,
there exists x ∈ V such that νx , 0, so Ix , {0}. Thus, the map I → V by β 7→ βx is
a nonzero B-module homomorphism, so it is an isomorphism by Schur’s lemma.

Example 6.2.17. The unique simple left Mn(F)-module (up to isomorphism) is the
space Fn of column vectors (Example 6.2.1).

6.3 Semisimple modules and the Wedderburn–Artin
theorem

We continue our assumptions that B is a finite-dimensional F-algebra and a B-module
V is finite-dimensional.

Definition 6.3.1. A B-module V is semisimple (or completely reducible) if V =⊕
i Vi is a (finite) direct sum of simple B-modules Vi.
B is a semisimple F-algebra if B is semisimple as a left B-module.
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Remark 6.3.2. More precisely, we have defined the notion of left semisimple and
could equally well define right semisimple; below we will see that these two notions
are the same.

Example 6.3.3. If B = F, then simple F-modules are one-dimensional vector spaces,
and as F is simple these are the only ones. Every F-vector space has a basis and so
is the direct sum of one-dimensional subspaces, so every F-module is semisimple.

Example 6.3.4. A finite-dimensional commutative F-algebra B is semisimple if and
only if B is the product of field extensions of F, i.e., B � K1 × · · · × Kr with Ki ⊇ F
a finite extension of fields.

Lemma 6.3.5. The following statements hold.

(a) A B-module V is semisimple if and only if it is the sum of simple B-modules.

(b) A submodule or a quotient module of a semisimple B-module is semisimple.

(c) If B is a semisimple F-algebra, then every B-module is semisimple.

Proof. For (a), let V =
∑

i Vi be the sum of simple B-modules. Since V is finite-
dimensional, we can rewrite it as an irredundant finite sum; and then since each Vi is
simple, the intersection of any two distinct summands is {0}, so the sum is direct.

For (b), let W ⊆ V be a submodule of the semisimple B-module V . Every
0 , x ∈ W is contained in a simple B-submodule of W by minimality, so W =

∑
i Wi

is a sum of simple B-modules. The result now follows from (a) for submodules. For
quotient modules, suppose φ : V → Z is a surjective B-module homomorphism; then
φ−1(Z) ⊆ V is a B-submodule, so φ−1(Z) =

∑
i Wi is a sum of simple B-modules,

and hence by Schur’s lemma Z =
∑

i φ(Wi) is semisimple.
For (c), let V be a B-module. Since V is finitely generated as a B-module, there

is a surjective B-module homomorphism Br → V for some r ≥ 1. Since Br is
semisimple, so too is V by (b).

Lemma 6.3.6. If B is a simple F-algebra, then B is a semisimple F-algebra.

Proof. Let I ⊆ B be a minimal nonzero left ideal, the unique simple left B-module up
to isomorphism as in Lemma 6.2.16. For all α ∈ B, the left ideal Iα is a homomorphic
image of I, so by Schur’s lemma, either Iα = {0} or Iα is simple. Let A =

∑
α Iα.

Then A is a nonzero two-sided ideal of B, so since B is simple, we have A = B. Thus
B is the sum of simple B-modules, so the result follows from Lemma 6.3.5(a).

Corollary 6.3.7. A (finite) direct product of simple F-algebras is a semisimple F-
algebra.



76 CHAPTER 6. SIMPLE ALGEBRAS

Proof. If B � B1 × · · · × Br with each Bi simple, then by Lemma 6.3.6, each Bi is is
semisimple so Bi =

⊕
j Ii j is the direct sum of simple Bi-modules Ii j. Each Ii j has

the natural structure of a B-module (extending by zero), and with this structure it is
simple, so B =

⊕
i, j Ii j is semisimple.

The converse of Corollary 6.3.7 is true and is proven as Corollary 6.3.12, a con-
sequence of the Wedderburn–Artin theorem.

In analogy to Paragraph 6.2.15, we have the following corollary.

Corollary 6.3.8. Let B be a simple F-algebra and let V be a left B-module. Then
V � I⊕n for some n ≥ 1, where I is a simple left B-module. In particular, two left
B-modules V1,V2 are isomorphic if and only if dimF V1 = dimF V2.

Proof. Since B is simple, B is semisimple by Lemma 6.3.6, so V is semisimple by
Lemma 6.3.5. But by Lemma 6.2.16, there is a unique simple left B-module I, and
the result follows.

In other words, this corollary says that if B is simple then every left B-module V
has a left basis over B; if we define the rank of a left B-module V to be cardinality
of this basis (the integer n such that V � I⊕n as in Corollary 6.3.8), then two such
modules are isomorphic if and only if they have the same rank.

We now come to the main result of this chapter.

Theorem 6.3.9 (Wedderburn–Artin). Let B be a finite-dimensional F-algebra. Then
B is semisimple if and only if there exist integers n1, . . . , nr and division algebras
D1, . . . ,Dr such that

B � Mn1(D1)× · · · ×Mnr (Dr).

In such a decomposition, the integers n1, . . . , nr are unique up to permutation and
once these integers are fixed, the division rings D1, . . . ,Dr are unique up to isomor-
phism.

Proof. If B �
∏

i Mni(Di), then each factor Mni(Di) is a simple F-algebra by Example
6.2.9, so by Corollary 6.3.7, B is semisimple.

So suppose B is semisimple. Then we can write B as a left B-module as the
direct sum B � I⊕n1

1 ⊕ · · · ⊕ I⊕nr
r of simple B-modules I1, . . . , Ir, grouped up to

isomorphism. We have EndB(B) � Bop by Paragraph 6.2.14. By Schur’s lemma, we
have

EndB(B) �
⊕

i

EndB
(
I⊕ni
i

)
;

by Paragraph 6.2.15, we have

EndB
(
I⊕ni
i

)
� Mni(Di)
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where Di = EndB(Ii) is a division ring. So

B � EndB(B)op � Mn1(Dop
1 )× · · · ×Mnr (D

op
r ).

The statements about uniqueness are then clear.

Corollary 6.3.10. Let B be a simple F-algebra. Then B � Mn(D) for a uniquely
determined integer n ∈ Z≥1 and division algebra D, unique up to isomorphism.

Example 6.3.11. Let B be a division F-algebra. Then V = B is a simple B-module,
and in Corollary 6.3.10 we have D = EndB(B) = Bop, and the Wedderburn–Artin
isomorphism is just B � M1((Bop)op).

Corollary 6.3.12. An F-algebra B is semisimple if and only if B is the direct product
of simple F-algebras.

Proof. Immediate from the Wedderburn–Artin theorem, as each factor Mni(Di) is
simple.

6.4 Central simple algebras

Definition 6.4.1. An F-algebra B is central if the center of B is equal to F, i.e.,
Z(B) = {α ∈ B : αβ = βα for all α ∈ B} = F.

Remark 6.4.2. If the F-algebra B has center Z(B) = K, then B is a K-algebra—this is
true even if K is not a field, but we have considered so far only algebras over fields.
Aside from this caveat, every algebra is a central algebra over its center.

Example 6.4.3. By Corollary 6.3.10, the center Z(B) of a simple F-algebra B is a
field, since Z(Mn(D)) = Z(D) (Exercise 6.4).

The category of central simple algebras is closed under tensor product, as follows.

Proposition 6.4.4. Let A, B be F-algebras and suppose that B is central.

(a) The center of A⊗F B is Z(A) ⊆ A⊗F B.

(b) Suppose that A, B are simple. Then A⊗F B is simple.

Proof. First, centrality in part (a). Suppose that γ =
∑

i αi ⊗ βi ∈ Z(A⊗ B). Without
loss of generality, we may assume that αi are linearly independent over F. Then by
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properties of tensor products, the elements βi ∈ B are unique. But then for all β ∈ B
we have

∑
i

(αi ⊗ ββi) = (1⊗ β)

∑
i

αi ⊗ βi

 =

∑
i

αi ⊗ βi

 (1⊗ β) =
∑

i

(αi ⊗ βiβ)

so ββi = βiβ for each i; thus βi = bi ∈ Z(B) = F. Hence

γ =
∑

i

αi ⊗ bi =
∑

i

αibi ⊗ 1 =

∑
i

αibi

⊗ 1;

since α ⊗ 1 also commutes with γ for all α ∈ B, we have
∑

i αibi ∈ Z(A). Thus
γ ∈ Z(A)⊗ F = Z(A).

Next, simplicity in part (b). Let I be a nontrivial two-sided ideal in A ⊗ B, and
let γ =

∑m
i=1 αi ⊗ βi ∈ I \ {0}. Without loss of generality, we may assume β1 , 0.

Then since B is simple, we have Bβ1B = B, so multiplying on the left and right by
elements of B ⊆ A⊗ B, we may assume further that β1 = 1. Let γ ∈ I \ {0} be such
an element that is minimal with respect to m; then in particular the elements βi are
linearly independent over F. Now for each β ∈ B, we have

(1⊗ β)γ − γ(1⊗ β) =

m∑
i=2

(αi ⊗ (ββi − βiβ)) ∈ I;

but by minimality of m, the right-hand side is zero, so ββi = βiβ for all i. Hence
βi ∈ Z(B) = F for all i and as above γ = α⊗ 1 for some 0 , α ∈ A. But then

I ⊇ (A⊗ 1)(α⊗ 1)(A⊗ 1) = (AαA)⊗ 1 = A⊗ 1

since A is simple, so I ⊇ (A⊗ 1)(1⊗ B) = A⊗ B, and thus I = A⊗ B and A⊗ B is
simple.

Lemma 6.4.5. If B is a central simple algebra, then so too is Bop, and B ⊗F Bop �

EndF(B).

Proof. Define φ : B⊗F Bop → EndF(B) by φ(µ) = αµβ for α, β, µ ∈ B. Then just as
in Paragraph 6.2.14, φ is a nonzero F-algebra homomorphism. By Proposition 6.4.4,
B ⊗F Bop is simple, so φ is injective. Since dimF(B ⊗F Bop) = dimF EndF(B) =

(dimF B)2, φ is an isomorphism.
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6.5 Quaternion algebras

Having the set the stage, we are now ready to prove the following final characteriza-
tions of quaternion algebras.

Proposition 6.5.1. Let B be an F-algebra. Then the following are equivalent.

(i) B is a quaternion algebra;

(ii) B is a central simple F-algebra with dimF B = 4;

(iii) B is a central semisimple F-algebra with dimF B = 4; and

(iv) B⊗F F � M2(F), where F is an algebraic closure of F.

Proof. First, (i)⇒ (ii): if B is a quaternion algebra, then B is central simple (Para-
graph 6.2.11).

The equivalence (ii) ⇔ (iii) follows from the Wedderburn–Artin theorem: we
have

1 = dim Z(B) =

r∑
i=1

dimF Z(Di) ≥ r

so r = 1.
Next we prove (ii)⇒ (iv). If B is central simple, then B⊗F F is a central simple

F-algebra by Proposition 6.4.4. But by Exercise 2.8, the only division F-algebra is
F, so by the Wedderburn–Artin theorem we have B⊗F F � Mn(F); by dimensions,
we have n = 2.

It remains to prove (iv)⇒ (i). So suppose B ⊗F F � M2(F). Then B is simple
by Example 6.2.10 and dimF B = 4. By the Wedderburn–Artin theorem (Corollary
6.3.10), we have B � Mn(D) with n ∈ Z≥1 and D a division ring. So 4 = dimF B =

n2 dimF D so either n = 2 so B � M2(F) and we are done, or n = 1 and B is a division
ring.

In this latter case, the result will follow from Theorem 3.5.1 (and Theorem 5.2.7
for the case char F = 2) if we show that B has degree 2. But for any α ∈ B we have
that α ∈ B⊗F F � M2(F) satisfies its characteristic polynomial of degree 2, so that
1, α, α2 are linearly dependent over F and hence linearly dependent over F, by linear
algebra.

Inspired by the proof of this result, we reconsider and reprove the splitting crite-
rion considered in the previous section.

Proposition 6.5.2. Let B be a quaternion algebra over F. Then the following are
equivalent:
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(i) B � M2(F);

(ii) B is not a division ring;

(iii) There exists 0 , ε ∈ B such that ε2 = 0;

(iv) B has a nontrivial left ideal I ⊆ B;

Proof. The equivalence (i)⇔ (ii) follows from the Wedderburn–Artin theorem (also
proved in Theorems 4.5.5 and 5.3.8). The implications (i)⇒ (iii)⇒ (ii) and (i)⇒
(iv)⇒ (ii) are clear.

6.5.3. We showed in Lemma 6.2.16 that a simple algebra B has a unique simple left
B-module I up to isomorphism, obtained as a minimal nonzero left ideal. If B is a
quaternion algebra, this simple module I can be readily identified using the above
proposition. If B is a division ring, then necessarily I = B. Otherwise, we have
B � M2(F), and then dimF I = 2; indeed, the map B → EndF(I) given by left
multiplication is then an isomorphism.

6.6 Skolem–Noether

We conclude this chapter with a fundamental result that characterizes the automor-
phisms of a simple algebra—and much more.

Theorem 6.6.1 (Skolem–Noether). Let A, B be simple F-algebras and suppose that
B is central. Suppose that f , g : A→ B are homomorphisms. Then there exists β ∈ B
such that f (α) = β−1g(α)β for all α ∈ A.

Proof. By Corollary 6.3.10, we have B � EndD(V) � Mn(Dop) where V is a simple
B-module and D = EndB(V) is a central F-algebra. Now the maps f , g give V the
structure of an A-module in two ways. The A-module structure commutes with the
D-module structure since B � EndD(V). So V has two A⊗F D-module structures via
f and g.

By Proposition 6.4.4, since D is central over F, we have that A⊗F D is a simple F-
algebra. By Corollary 6.3.8 and a dimension count, the two A⊗F D-module structures
on V are isomorphic. Thus, there exists an isomorphism β : V → V of A ⊗F D-
modules; i.e. we have β( f (α)x) = g(α)β(x) for all α ∈ A and x ∈ V , and β(δx) =

δβ(x) for all δ ∈ D and x ∈ V . We have β ∈ EndD(V) � B and so we can write
β f (α)β−1 = g(α) for all α ∈ A, as claimed.

Corollary 6.6.2. If A1, A2 are simple F-subalgebras of a central simple F-algebra
B and φ : A1

∼−→ A2 is an isomorphism of F-algebras, then φ extends to an inner
automorphism of B.
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Corollary 6.6.3. The group of F-algebra automorphisms of a central simple algebra
B is AutF(B) � B×/F×.

As a consequence, for example, we get that AutF(Mn(F)) = PGLn(F).

Definition 6.6.4. Let A be an F-subalgebra of B. Let

C(A) = CB(A) = {β ∈ B : αβ = βα for all α ∈ A}

be the centralizer of A (in B).

Note that C(A) is an F-subalgebra of B.

Lemma 6.6.5. Let B be a central simple F-algebra and let A ⊆ B a simple F-
subalgebra. Then the following statements hold:

(a) CB(A) is a simple F-algebra.

(b) dimF B = dimF A · dimF CB(A).

(c) CB(CB(A)) = A.

Part (c) of this lemma is called the double centralizer property.

Proof. First, part (a). We interpret the centralizer as arising from certain kinds of
endomorphisms. We have that B is a left A⊗Bop module by the action (α⊗β)·µ = αµβ

for α⊗ β ∈ A⊗ Bop and µ ∈ B. We claim that

CB(A) = EndA⊗Bop(B). (6.6.6)

Indeed, any φ ∈ EndA⊗Bop(B) is left multiplication by an element of B: if γ = φ(1),
then φ(µ) = φ(1)µ = γµ by 1⊗ Bop-linearity. Now the equality

γα = φ(α) = αφ(1) = αγ

shows that multiplication by γ is A ⊗ 1-linear if and only if γ ∈ CB(A), proving
(6.6.6).

By Proposition 6.4.4, the algebra A ⊗ Bop is simple. By the Wedderburn–Artin
theorem, we have A⊗ Bop � Mn(D) for some n ≥ 1 and division F-algebra D. Since
Mn(D) is simple, its unique left D-module is V = Dn, and EndMn(D)(V) � Dop. In
particular, we have B � Vr for some r ≥ 1 as an A⊗ Bop-module. So

CB(A) = EndA⊗Bop(B) � EndMn(D)(Vr) � Mr(EndMn(D)(V)) � Mr(Dop).

Thus CB(A) is simple.
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For part (b), we have

dimF CB(A) = dimF Mr(Dop) = r2 dimF D

and
dimF(A⊗ Bop) = dimF A · dimF B = n2 dimF D

and
dimF B = dimF Vr = r dimF Dn = rn dimF D

so dimF A · dimF CB(A) = rn dimF D = dimF B.
Finally, part (c) follows from the fact (a) and (b), giving

dimF B = dimF CB(A) · dimF CB(CB(A)) = dimF A · dimF CB(A)

so dimF A = dimF CB(CB(A)) and A ⊆ CB(CB(A)) so equality holds.

Example 6.6.7. We always have the two extremes A = F and A = B, with CB(F) = B
and CB(B) = F, accordingly.

Corollary 6.6.8. Let B be a central simple F-algebra and let K be a maximal sub-
field. Then [B : F] = [K : F]2.

Proof. If K is maximal, then CB(K) = K, so [B : F] = [K : F]2.

6.7 Reduced trace and norm

In this last section, we consider notions of reduced trace and reduced norm in the
context of semisimple algebras.

6.7.1. Let B be a simple algebra over F, and let Fsep denote a separable closure of
F. By Exercise 6.12, we have an F-algebra homomorphism

ι : B ↪→ B⊗F Fsep � Mn(Fsep)

for some n ≥ 1. By the Skolem-Noether theorem (Theorem 6.6.1), if ι′ is another
such homomorphism, then there exists M ∈ GLn(Fsep) such that ι′(α) = Mι(α)M−1,
so the characteristic polynomial of ι(α) is independent of the choice of ι. We define
the reduced characteristic polynomial of α ∈ B to be the characteristic polynomial
of ι(α) as an element of Fsep[T ] and similarly the reduced trace and reduced norm
of α to be the trace and determinant of ι(α) as elements of Fsep.

In fact, the reduced characteristic polynomial descends to F, as follows. The
absolute Galois group GF = Gal(Fsep/F) acts on B⊗F Fsep � Mn(Fsep) by

σ(α⊗ a) = α⊗ σ(a)



6.8. SEPARABLE ALGEBRAS 83

for σ ∈ GF , α ∈ B, and a ∈ Fsep. For σ ∈ GF , we define σι : B ↪→ B ⊗F Fsep

by (σι)(α) = σ(ι(α)). Just as ι is an F-algebra homomorphism, so too is σι, exactly
because σ ∈ GF fixes F. By the preceding paragraph, therefore, the characteristic
polynomial of ι(α) and (σι)(α) = σ(ι(α)) are the same. And if

f (α; T ) = det(T − ι(α)) = T n + an−1T n−1 + · · · + a0

is the reduced characteristic polynomial of ι(α), then the reduced characteristic poly-
nomial of (σι)(α) is

σf (α; T ) = det(T − σ(ι(α))) = T n + σ(an−1)T n−1 + · · · + σ(a0).

And then since f (α; T ) = σf (α; T ) for all σ ∈ GF , by Galois theory, we have
f (α; T ) ∈ F[T ]. Therefore, the reduced norm and reduced trace also belong to F.

6.7.2. We extend this definition to semisimple algebras B by writing B � B1×· · ·×Br

where each Bi is simple, and defining the reduced characteristic polynomial to be the
product of the reduced characteristic polynomials on each simple direct factor Bi.
This is well-defined by the uniqueness statement in the Wedderburn–Artin theorem
(Theorem 6.3.9).

More conceptually, we can reinterpret this as follows. Let Vi be the unique simple
left Bi ⊗F Fsep-module and let V =

⊕
i Vi; then V is the unique minimal faithful

(semisimple) left B ⊗F Fsep-module, up to isomorphism. We have a map B ↪→
EndFsep(V), so we may accordingly define the reduced characteristic polynomial in
this way, and argue as in Paragraph 6.7.1.

6.8 Separable algebras

For a (finite-dimensional) F-algebra, the notions of simple and semisimple are sensi-
tive to the base field F in the sense that these properties need not hold after extending
the base field. Indeed, let K ⊇ F be a finite extension of fields, so K is a simple
F-algebra. Then K ⊗F F is simple only when K = F and is semisimple if and only
if K ⊗F F � F × · · · × F, i.e., K is separable over F.

It is important to have a notion which is stable under base change, as follows.

Definition 6.8.1. Let B be a finite-dimensional F-algebra. We say that B is a separa-
ble F-algebra if B is semisimple and Z(B) is the product of separable field extensions
of F.

By the Wedderburn–Artin theorem, for a semisimple algebra B we have

B � Mn1(D1)× · · · ×Mnr (Dr),
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so by Example 6.4.3 we have

Z(B) � Z(D1)× · · · × Z(Dr),

and B is separable if and only if Z(Di) is separable for each i = 1, . . . , r. Like being
central, the notion of separability depends on the base field F.

Lemma 6.8.2. A finite-dimensional simple F-algebra is a separable algebra over its
center K.

Proof. The center of B is a field K = Z(B) and as a K-algebra, the center Z(B) = K
is certainly separable over K. (Or use Proposition 6.4.4 and (iii) below.)

The notion of separability in this context is incredibly robust and useful.

Theorem 6.8.3. Let B be a finite-dimensional F-algebra. Then the following are
equivalent:

(i) B is separable;

(ii) There exists a finite separable field extension K of F such that B ⊗F K �

Mn1(K)× · · · × Mnr (K) for integers n1, . . . , nr ≥ 1;

(iii) For every extension K ⊇ F of fields, the K-algebra B⊗F K is semisimple; and

(iv) The reduced trace gives rise to a nondegenerate pairing

B× B→ F

(α, β) 7→ trd(αβ).

In particular by (iii), B is a separable F-algebra if and only if B⊗F K is a separable
K-algebra for all field extensions K ⊇ F.

For this reason, a separable F-algebra is sometimes called absolutely semisimple.
For more, see Reiner [Rei03, Section 7c] or Pierce [Pie82, Chapter 10].

6.9 Extensions and further reading

6.9.1. Basic references for this section include Lam [Lam01, §2–3] and Farb–Dennis
[FD93, Part I]. An elementary approach to the Weddernburn–Artin theorem is given
by Brešar [Bre10].
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6.9.2. Theorem 6.3.9 as it is stated was originally proven by Wedderburn [Wed08],
and so is sometimes called Wedderburn’s theorem. However, this term may also
apply to the theorem of Wedderburn that a finite division ring is a field; and Artin
generalized Theorem 6.3.9 to rings where the ascending and descending chain con-
dition holds for left ideals [Art26], so we follow the common convention by referring
to Theorem 6.3.9 as the Wedderburn–Artin theorem.

6.9.3. Doing linear algebra with semisimple modules mirrors very closely linear al-
gebra over a field. We have already seen that every submodule and quotient module
of a semisimple module is again semisimple. Moreover, every module homomor-
phism V → W with V semisimple splits, and every submodule of a semisimple
module is a direct summand. In particular, a semisimple module is projective, and
every module over a semisimple algebra is projective.

We have barely scratched the surface of this theory and we refer to [[cites]] for
further reference.

6.9.4. Among central simple algebras over a field, quaternion algebras have an es-
pecially nice presentation because of the quadratic norm form can be diagonalized
(normalized, in characteristic 2). More generally, one may look at algebras with a
similarly nice presentation, as follows. [[Cyclic algebras]]

Exercises

6.1. Prove that a quaternion algebra B =

(a, b
F

)
with char F , 2 is simple, as

follows.

a) Let I be a nontrivial two-sided ideal. Show that if ε ∈ I, then ε2 = 0.

b) Show that there exists α ∈ B such that trd(α) = 0 and trd(εα) , 0.

c) Considering εα + αε, derive a contradiction (cf. (4.2.7)).

Modify this argument to show that an algebra B =

[a, b
F

)
is simple when

char F = 2.

6.2. Let B be a quaternion algebra. Exhibit an explicit isomorphism B ⊗F B ∼−→
M4(F) (see Exercise 2.9).

6.3. Let B =

{(
a b
0 c

)
: a, b, c ∈ F

}
⊆ M2(F), and V = F2 be the left B-module of

column vectors. Show that B is indecomposable, but not simple (cf. Example
6.2.5).
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6.4. a) Let D be a division F-algebra. Prove that Mn(D) is a simple F-algebra
with center Z(D) for all n ≥ 1. [Hint: Let Ei j be the matrix with 1 in
the i jth entry and zeros in all other entries. Show that EkiME j` = mi jEk`

where mi j is the i jth entry of M.]

b) More generally, let R be a ring (associative with 1, but potentially non-
commutative). Show that Z(Mn(R)) = Z(R) and that any two-sided ideal
of Mn(R) is of the form Mn(I) ⊆ Mn(R) where I is a two-sided ideal of
R.

6.5. Generalize the statement of Proposition 6.4.4(a) as follows. Let A, B be F-
algebras, and let A′ ⊆ A and B′ ⊆ B be F-subalgebras. Prove that CA⊗B(A′ ⊗
B′) = CA(A′)⊗CB(B′).

6.6. Let G , {1} be a finite group. Show that the augmentation ideal, the two-
sided ideal generated by g− 1 for g ∈ G, is a nontrivial ideal, and hence F[G]
is not simple as an F-algebra. (However, F[G] is semisimple if and only if
char F is coprime to #G: this is Maschke’s theorem [Lam01, Theorem 6.1].)

6.7. Let B be an F-algebra, and let F be an algebraic closure of F. Show that B is
simple if and only if B⊗F F is simple.

6.8. Let D be a (finite-dimensional) division algebra over F. Show that D = F.
Conclude that if B is a simple algebra over F, then B � Mn(F) for some n ≥ 1
and hence is central.

6.9. Show that if B is a semisimple F-algebra, then so is Mn(B) for any n ∈ Z≥1.

6.10. A nil ideal of a ring B is a (two-sided) ideal I ⊆ B such that In = (0) for some
n ∈ Z>0.

Let B be a central (finite-dimensional) F-algebra with standard involution with
B , F. Show that B is a quaternion algebra if and only if the largest nil ideal
of B is (0). [Hint: Suppose 0 , e ∈ B satisfies e2 = 0. Show that e generates a
nil ideal if and only if trd(ex) = 0 for all x ∈ B.]

[[Relate nil ideal to semisimple.]]

6.11. Give an example of (finite-dimensional) simple algebras A, B over a field F
such that A⊗F B is not simple. Same with not semisimple.

6.12. In Exercise 6.8, we saw that if D is a (finite-dimensional) division algebra over
F then D ⊗F F � Mn(F) for some n ≥ 1. In this exercise, we show the same
is true if we consider the separable closure.
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Let D be a finite-dimensional central division algebra over a separably closed
field F, i.e. F contains a root of all separable polynomials with coefficients in
F. Suppose char F = p.

a) Prove that dimF D is divisible by p.

b) Show that the minimal polynomial of each nonzero d ∈ D has the form
xpe − a for some a ∈ F.

c) Choose an isomorphism φ : D ⊗F F → Mn(F). Show that the trace of
φ(x⊗ 1) = 0 for all x ∈ D.

d) Prove that D does not exist.

6.13. Use the Skolem–Noether theorem to give another proof that if K ⊂ B is a

separable quadratic F-algebra then B �
(K, b

F

)
for some b ∈ F×.

6.14. Give an alternate direct proof of Corollary 6.6.3. [Hint: Use the fact that there
is a unique simple left B-module.]

6.15. Let B =

(a, b
F

)
be a quaternion algebra, and let K = F[i]. Show that the

subgroup of Aut(B) that fixes K ⊆ B is isomorphic to the group

K×/F× ∪ j(K×/F×).

Show that the subgroup of Aut(B) that restricts to the identity on K is isomor-
phic to K×/F×.

6.16. Use the Skolem–Noether theorem and the fact that a finite group cannot be
written as the union of the conjugates of a proper subgroup to prove Wedder-
burn’s theorem: a finite division ring is a field.

6.17. Show that every ring automorphism of H is inner. (Compare this with auto-
morphisms of C!)





Chapter 7

Simple algebras and involutions

7.1 The Brauer group and involutions

Cyclic algebras. But are all central division algebras cyclic? No, and to get an
example, it is enough to take a tensor product of quaternion algebras: these are bi-
quaternion algebras, and the theory of Albert.

More generally, the set of isomorphism classes of central simple algebras is
closed under tensor product; if we think that the matrix ring is something that is
no more complicated than the ring that it is over, it is natural to introduce an equiva-
lence relation on central simple algebras that identifies a division ring with the matrix
ring (of any rank) over this division ring. This set of such equivalence classes then
becomes a group under tensor product, known as the Brauer group. Large subject;
over fields, the tensor products of quaternion algebras are elements of order at most
2 in the Brauer group.

An important application of the theory of semisimple algebras is in the structure
of endomorphism algebras of abelian varieties. For example, supersingular elliptic
curves. Instead of a standard involution, we consider positive involutions; the Rosati
involution is a positive involution on the endomorphism algebra of an abelian variety,
and it is a consequence that this algebra (over Q) is semisimple! Weil classified
simple algebras with positive involution, and these come very close to the theory of
quaternion algebras.

We’ve seen quaternion algebras characterized in several different ways: possess-
ing a standard involution is a strong condition indeed. In many contexts, we have a
simple algebra with an involution of another kind; we see the consequences of that
in this section.

First, we consider tensor products of quaternion algebras: the standard involution
on each factor gives an involution, and the decomposition of this according to the

89
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Wedderburn–Artin theorem says something about quadratic forms.
Once we see that tensor products are interesting to study, we make a group out

of (classes of) central simple algebras: this is the Brauer group, and the quaternion
algebras generate the 2-torsion.

Finally, we consider positive involutions, which arise naturally in the study of
endomorphism algebras of abelian varieties. It turns out that quaternion algebras
again figure prominently.

These sections are not essential for the rest of the text.

7.2 Biquaternion algebras

Something about the Brauer group here, and quaternion algebras are elements of
order 2.

Work of Albert [Alb72] and the Albert form.
Let A, B be quaternion algebras over F. The tensor product A ⊗ B is a cen-

tral simple algebra over F of dimension 16 called a biquaternion algebra. By the
Wedderburn–Artin theorem, we have one of the following possibilities for this alge-
bra:

(i) A⊗ B is a division algebra;

(ii) A⊗ B � M4(F);

(iii) A � M2(D) where D is a quaternion division algebra over F.

We may prefer to combine the last two and just say that A ⊗ B � M2(C) where C is
a quaternion algebra over F, since M2(M2(F)) � M4(F).

There is an algebraic way to see what happens.

Proposition 7.2.1. The following are equivalent:

(i) A⊗F B is not a division algebra;

(ii) A, B have a common quadratic splitting field;

(iii) There exists a quadratic field extension K/F that can be F-embedded in both
A and B.

Proof. Lam gives the proof in his textbook. Characteristic 2 argument by Lam
[Lam02], so you can add “separable”.
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There is also a quadratic forms approach. We define the Albert form of the

biquaternion algebra A ⊗ B is Q nrd |A0 ⊥ nrd |B0 . If char F , 2 and A �
(a, b

F

)
and

B �
(c, d

F

)
then the Albert form is Q = 〈−a,−b, ab,−c,−d, cd〉.

Proposition 7.2.2. Let A⊗ B be a biquaternion algebra with Albert form Q. Then

A⊗ B is not a division algebra ⇔ Q is isotropic

and

A⊗ B � M4(F) ⇔ Q � H ⊥ H ⊥ H

where H is a hyperbolic plane.

[[Is this still OK in characteristic 2?]]
For the fields of interest in this book (finite fields, local fields, global fields), a

biquaternion algebra is never a division algebra. But biquaternion division algebras
exist: let F = C(x, y, z, w) be a rational function field in 4 variables and take A =( x, y

F

)
and B =

(z, w
F

)
. (Exercise.)

Implications for testing if two quaternion algebras are isomorphic.

7.3 Brauer group

The set of division algebras over F is indeed interesting to study, encoding deep
information about the field F. This set can be given the structure of a group as
follows: if D,D′ are division F-algebras, then D ⊗F D′ � Mn(D′′) for a unique
division F-algebra D′′ up to F-algebra isomorphism, so we could try to define D ⊕
D′ = D′′, by taking the “division ring” part.

To make this work, recall that every simple F-algebra is the matrix ring over a
division ring, by the Wedderburn–Artin theorem (Theorem 6.3.9). So let CSA(F) be
the set of isomorphism classes of central simple F-algebras. The binary operation of
tensor product on CSA(F) is commutative and F is the identity, but for dimension
reasons, only F has an inverse. So we define an equivalence relation ∼ on this set:

A ∼ A′ if Mn′(A) � Mn(A′) for some n, n′ ≥ 1. (7.3.1)

In particular, A ∼ Mn(A) for all A ∈ CSA(F) as needed above.

Lemma 7.3.2. The set of equivalence classes of central simple F-algebras under the
equivalence relation ∼ has the structure of an abelian group.
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Proof. Tensor product is compatible with this definition (Exercise 7.2). If dimF A =

n and Aop is the opposite algebra of A (Paragraph 3.2.2) then the map

A⊗F Aop → EndF(A) � Mn(F)

α⊗ β 7→ (µ 7→ αµβ)

is a nonzero homomorphism of F-algebras, so since A⊗F Aop is simple it is injective,
and since dimF A ⊗F Aop = n2 = dimF Mn(F) it is an isomorphism, and so [A]−1 =

[Aop] provides an inverse to [A].

So we make the following definition.

Definition 7.3.3. The Brauer group of F is the set Br(F) of equivalence classes of
central simple F-algebras under the equivalence relation ∼ defined in (7.3.1).

Let B be a division quaternion algebra over F. Then the standard involution gives
an isomorphism B ∼−→ Bop, and hence in Br(F) we have [B]−1 = [B] and so [B] is an
element of order at most 2. It follows that biquaternion algebras, or more generally
tensor products of quaternion algebras, are also elements of order at most 2 in Br(F).

7.4 Positive involutions

Our interest in involutions in Chapter 3 began with an observation of Hamilton: the
product of a nonzero element with its involute inH is a positive real number (its norm,
or square length). We then proved that such the existence of a such an involution
characterizes quaternion algebras in an essential way. However, one may want to
relax this setup and instead consider when the product of an nonzero element with its
involute merely has positve trace.

Throughout this section, let B be a finite-dimensionalR-algebra. Recall that there
is a trace map Tr : B→ R given by the trace of right multiplication.

Definition 7.4.1. An involution ∗ : B → B is positive if Tr(αα∗) > 0 for all α ∈
B \ {0}.

Example 7.4.2. The standard involution on R, C, andH are positive involutions, but
the standard involution on M2(R) is not, since if α ∈ M2(R) then Tr(αα) = 4 det(α)
takes on all values in R.

7.4.3. Let D be one of R, C, or H. Let B = Mn(D). The standard involution on D
extends to an involution on B, acting on coordinates.
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Then the conjugate transpose map α 7→ α∗ = αt for α ∈ B is a positive involution
on B. Indeed, if α = (ai j)i, j=1,...,n then

Tr(αα∗) = n Tr(αα∗) = n‖α‖2 = n
n∑

i, j=1

nrd(ai j)

is the Frobenius norm on B. , e.g., if D = R then Tr(αα∗) =
∑

i, j a2
i j > 0 for α , 0.

We will soon see that essentially all positive involutions are given in Paragraph
7.4.3. First, we reduce to the case where B is a semisimple algebra.

Lemma 7.4.4. Suppose that B admits a positive involution. Then B is semisimple.

Proof. Let α ∈ rad B. Since J = rad B is nilpotent, there exists n such that Jn , {0}
but Jn+1 = {0}. Let α ∈ J be such that αn , 0 but αn+1 = 0. We have J∗ = J, so
αnα∗ = 0 so Tr(αn(αn)∗) = Tr(0) = 0, contradicting that ∗ is positive.

An

Theorem 7.4.5 (Weil). Let B be a simple R-algebra with a positive involution † :
B→ B. Then there exists an element µ ∈ B× with µ2 ∈ R>0, such that

α† = µ−1α∗µ

and ∗ is the conjugate transpose involution.

The element µ in Theorem 7.4.5 is unique up to multiplication by F∗, by the
Skolem–Noether theorem.

7.5 Endomorphism algebras of abelian varieties

We conclude this section with an application that may be skipped on a first read-
ing: we characterize endomorphism algebras of (simple) abelian varieties in terms of
algebras with involutions.

Let k be a field with algebraic closure k. A variety over k is a geometrically in-
tegral separated scheme of finite type over k. An abelian variety is a proper group
variety, i.e., a group in the category of varieties over k. An abelian variety is pro-
jective and commutative, and any abelian variety over C is isomorphic to Cg/Λ for
some g ≥ 0 and discrete subgroup Λ ⊂ Cg satisfying Λ � Z2g. An abelian variety A
is simple if A has no abelian subvariety other than {0} and A.

An isogeny is a surjective homomorphism α : A → A′ of abelian varieties such
that dim A = dim A′ with finite kernel ker(α) ⊆ A.

Let A be an abelian variety over an algebraically closed field k = k.
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Lemma 7.5.1. A is isogenous to the product

An1
1 × · · · × Anr

r

where A1, . . . , Ar are simple, pairwise nonisogenous, abelian subvarieties of A and
n1, . . . , nr ∈ Z>0.

Let End(A) be the ring of endomorphisms of A. It follows from Lemma 7.5.1 that

End(A)⊗Z Q �
r∏

i=1

Mni(Di)

where Di = End(Ai)⊗Z Q. So from now on, we may suppose that A is simple; then
D = End(A)⊗Q is a division algebra, hence simple.

We will need just three properties of the endomorphism algebra D. The first two
properties are basic.

Proposition 7.5.2. D = End(A)⊗Q is a finite-dimensional division algebra over Q
that admits an involution † : D→ D.

The same method of proof as Theorem 3.5.1 applies in this case.

Lemma 7.5.3. Let D be a division algebra over Q that admits an involution †. Sup-
pose that the fixed subspace Then there is a unique subfield F ⊆ Z(D) such that one
of the three posibilities holds:

(i) D = F is a field and † is the identity;

(ii) D = K is a quadratic field extension of F and † is the standard involution; or

(iii) D is a division quaternion algebra over F.

Proof. Let
D〈†〉 = {α ∈ D : α† = α}

be the subspace of D where † acts by the identity, and let F = D〈†〉 ∩ Z(D). Then D
is an F-algebra and † is an involution of D as an F-algebra.

Since † is an involution, we can diagonalize and write D = D+⊕D− where † acts
as the identity on D+ and acts as −1 on D−.

Diagonalizing, we can write D = D+ ⊕ D− where. Then D〈†〉 is a subfield of
D, since fixed subfield of †. Then (αα†)† = (α†)†α† = αα† by the properties of an
involution, so αα† ∈ F.
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Definition 7.5.4. An involution ∗ : B → B of a finite-dimensional Q-algebra B is
positive if the map

B→ Q
α 7→ Tr(αα∗)

is a positive definite quadratic form on B, i.e., Tr(αα∗) > 0 for all α ∈ B \ {0}.

The involution † : D→ D is called the Rosati involution , and it arises from the
existence of the dual isogeny. (It depends on a choice of polarization , an isogeny
φ : A→ A∨.)

We now use the results of this chapter to explicitly characterize the algebras D
that can occur as endomorphism algebras of simple abelian varieties over an alge-
braically closed field, using Proposition 7.5.2.

First, we relate the existence of a positive involution to a standard involution.

Proposition 7.5.5. There exists µ ∈ D

Remark 7.5.6. The Rosati involution depends on a choice of polarization, and the
implicit claim in Proposition 7.5.2 is that A (up to isogeny) has a polarization such
that the Rosati involution is the standard involution.

Proposition 7.5.7. We have one of four possibilities for D.

Type I. D = F is a totally real field, and the Rosati involution

Type II. D is a division quaternion algebra over a totally real field F that is totally
indefinite

7.6 Extensions and further reading

7.6.1. Merkurjev in 1981 proved that any division algebra with an involution is
Brauer equivalent to a tensor product of quaternion algebras, i.e., if D is a division
F-algebra with (not necessarily standard) involution, then there exists n ∈ Z≥1 such
that Mn(D) is isomorphic to a tensor product of quaternion algebras. His theorem,
more properly, says that the natural map K2(F)→ Br(F)[2] is an isomorphism.

7.6.2. The notion of positive involution was introduced by Weil.
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Exercises

7.1. Let G be a finite group. Show that the map induced by g 7→ g−1 for g ∈ G
defines an positive involution on R[G]. Similarly, show that this map com-
posed with coordinatewise complex conjugation defines a positive involution
on C[G] (as an R-algebra).

7.2. Show that if ∼ is the equivalence relation (7.3.1) on CSA(F), then ∼ is com-
patible with tensor product, i.e., if A, A′ ∈ CSA(F) and A′ ∼ A′′ ∈ CSA(F)
then A⊗ A′ ∼ A⊗ A′′.

7.3. Let K/F be a finite extension of global fields. Show that the set of isomorphism
classes of plane conics over F such that X×F K � P1

K is infinite, and the same
for X ×F K � P1

K . (Compare Exercise 4.16.)

[[Examples of domains arising as coordinate rings of varieties.]]



Chapter 8

Orders

8.1 Integral structures

Inside the rational numbers Q are the integers Z; inside a number field is its ring of
integers. What happens if we concern ourselves with a notion of integrality for pos-
sibly noncommutative algebras? In this chapter, we consider some basic questions
of this nature that work without hypothesis on the field.

First we have to understand the linear algebra aspects: these are modules inside
a vector space. Then the algebra structure is a multiplication law on this lattice, and
is called an order because something.

Some properties of orders can be deduced from the commutative case: orders
still consist of integral elements, satisfying a monic polynomial with coefficients in
Z.

The matrix ring over a field are endomorphisms of a vector space; the orders
in a matrix ring should look like endomorphisms of a lattice (perhaps with extra
structure).

Do some examples over Z.

8.2 Lattices

Throughout this chapter, let R be a noetherian domain with field of fractions F. To
avoid trivialities, we assume R , F.

Definition 8.2.1. Let V be a finite-dimensional F-vector space. An R-lattice of V is
a finitely generated R-submodule M ⊆ V with MF = V .

Remark 8.2.2. Other authors omit the second condition in the definition of an R-
lattice and say that I is full if MF = V . We will not encounter R-lattices that are not

97
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full (and when we do, we call them finitely generated R-submodules), so we avoid
this added nomenclature.

By definition, an R-lattice contains a basis of V , and it can be thought of an
R-submodule that “allows bounded denominators”, as follows.

Lemma 8.2.3. Let M be an R-lattice. Then for any y ∈ V, there exists 0 , r ∈ R
such that ry ∈ M. Moreover, if J is a finitely generated R-submodule of V, then there
exists 0 , r ∈ R such that rJ ⊆ M, and J is an R-lattice if and only if there exists
0 , r ∈ R such that rM ⊆ J ⊆ r−1M.

Proof. Since FM = V , the R-lattice M contains an F-basis x1, . . . , xn for V , so in
particular M ⊃ Rx1 ⊕ · · · ⊕ Rxn. Writing y ∈ V in the basis x1, . . . , xn, clearing
denominators we see that there exists 0 , r ∈ R such that rx ∈ M.

For the second statement, let yi be a set of R-module generators for J; then there
exist ri ∈ R such that riyi ∈ M hence 0 , r =

∏
i ri satisfies rJ ⊆ M, so J ⊆ r−1M.

Repeating this argument with M interchanged with J and taking the product of the
two, we have the result.

8.3 Orders

Let B be an F-algebra.

Definition 8.3.1. An R-order O ⊆ B is an R-lattice that is also a subring of B.

In particular, if O is an R-order then we insist that 1 ∈ O.

8.3.2. An R-algebra is a ring O equipped with an embedding R ↪→ O whose image
lies in the center ofO. An R-orderO is an R-algebra, and ifO is an R-algebra that is
finitely generated as an R-module, then O is an R-order of B = O ⊗R F.

Example 8.3.3. The matrix algebra Mn(F) has the R-order Mn(R). The subring
R[G] =

⊕
g

Rg is an R-order in the group ring F[G].

Example 8.3.4. Let a, b ∈ R \ {0} and consider the quaternion algebra B =

(a, b
F

)
.

Then O = R⊕ Ri⊕ R j⊕ Ri j is an R-order.

Let I ⊆ B be an R-lattice in the F-algebra B.

8.3.5. An important construction of orders comes as follows. Define the set

OL(I) = {α ∈ B : αI ⊆ I}.
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Then OL(I) is an R-submodule of B which is a ring. We show it is also an R-lattice.
For any α ∈ B, by Lemma 8.2.3 there exists 0 , r ∈ R such that r(αI) ⊆ I, hence
OL(I)F = B. Also by this lemma, there exists 0 , s ∈ R such that s = s · 1 ∈ I; thus
OL(I)s ⊆ I soOL(I) ⊆ s−1I. Since R is noetherian and s−1I is an R-lattice so finitely
generated, we conclude that OL(I) is finitely generated and is thus an R-lattice.

It follows that every F-algebra B has an R-order, since if B =
⊕

i Fαi then
I =

⊕
i Rαi is an R-lattice.

Definition 8.3.6. The order

OL(I) = {α ∈ B : αI ⊆ I}

is called the left order of I. We similarly define the right order of I by

OR(I) = {α ∈ B : Iα ⊆ I}.

Orders are composed of integral elements, defined as follows. If α ∈ B, we
denote by R[α] =

∑
d Rαd the (commutative) R-subalgebra of B generated by α.

Definition 8.3.7. An element α ∈ B is integral over R if α satisfies a monic polyno-
mial with coefficients in R.

Lemma 8.3.8. For α ∈ B, the following are equivalent:

(i) α is integral over R;

(ii) R[α] is a finitely generated R-module;

(iii) α is contained in a subring A which is a finitely generated R-module.

Proof. If α ∈ B is integral and is a root of f (x) = xn + an−1xn−1 + · · · + a0 ∈ R[x],
then obviously R[α] = R+Rα+ · · ·+Rαn−1. Conversely, if R[α] is finitely generated,
then α satisfies the characteristic polynomial of left multiplication by α on a basis for
B consisting of elements of O. This proves (i)⇔ (ii).

For the final equivalence, we see that (ii)⇒ (iii) is immediate, and for the con-
verse, if O ⊆ B is an R-order, then every α ∈ O is integral over R, since R[α] is a
submodule of O so (since R is noetherian) R[α] is finitely generated.

Corollary 8.3.9. If O is an R-order, then every α ∈ O is integral over R.

We say R is integrally closed (in F) if any α ∈ F integral over R has α ∈ R.
Inside the field F, the set of elements integral over R (the integral closure of R in

F) forms a ring: if α, β are integral over R then α+β and αβ are integral since they lie
in R[α, β] which is a finitely generated submodule of F. This ring is itself integrally
closed.
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Lemma 8.3.10. Suppose that R is integrally closed. Then α ∈ B is integral over R if
and only if the minimal polynomial of α over F has coefficients in R.

Proof. Let f (x) ∈ R[x] be a monic polynomial that α satisfies, and let g(x) ∈ F[x]
be the minimal polynomial of α. Let K be a splitting field for g(x), and let α1, . . . , αn

be the roots of g(x) in K. Since g(x) | f (x), each such αi is integral over R, and the set
of elements in K integral over R forms a ring, so each coefficient of g is integral over
R and belongs to F; but since R is integrally closed, these coefficients must belong to
R, so g(x) ∈ R[x].

Corollary 8.3.11. If B is an F-algebra with a standard involution, and R is integrally
closed, then α ∈ B is integral over R if and only if trd(α), nrd(α) ∈ R.

The integral closure of R in F is the largest ring containing integral elements.
Accordingly, we make the following more general definition.

Definition 8.3.12. An R-order is maximal if it is not properly contained in another
R-order.

If B is a commutative F-algebra and R is integrally closed in F, then the inte-
gral closure S of R in K is integrally closed and therefore S is a maximal R-order
in K. However, if B is noncommutative, then the set of elements in B integral over
R is no longer necessarily itself a ring, and so the theory of maximal orders is more
complicated. (This may seem counterintuitive at first, but certain aspects of the non-
commutative situation are indeed quite different!)

Example 8.3.13. Let B = M2(Q) and let α =

(
0 1/2
0 0

)
and β =

(
0 0

1/2 0

)
. Then

α2 = β2 = 0, so α, β are integral over R = Z, but α+β is not integral since nrd(α+β) =

−1/4 (Corollary 8.3.11). Such a counterexample does not require the existence of
zerodivisors: see Exercise 8.9.

The problem in the noncommutative setting is that although R[α] and R[β] may be
finitely generated as R-modules, this need not be the case for the R-algebra generated
by α and β: indeed, in the example above, it is not!

The structure of (maximal) orders in a quaternion algebra over the domains of
arithmetic interest is the subject of the second Part of this text. To conclude this
chapter, we discuss some special cases over the next few sections.

8.4 Orders in separable algebras

We have also the following characterization of orders in separable algebras.
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Lemma 8.4.1. Let O ⊆ B be a subring of a separable F-algebra B such that OF =

B. Then O is an R-order if and only if every α ∈ O is integral.

Proof. Let O ⊆ B be a subring of an F-algebra B such that OF = B. Recall that
a separable F-algebra is a semisimple F-algebra such that the symmetric bilinear
pairing (α, β) 7→ trd(αβ) is nondegenerate.

We need to show that O is finitely generated. Let α1, . . . , αn be an F-basis for B
contained in O. If β ∈ O then β =

∑
i aiαi with ai ∈ F. We have βαi ∈ O since O

is a ring, so trd(βαi) =
∑

j a j trd(α jαi) with trd(α jαi) ∈ R. Now since B is separable,
the matrix (trd(αiα j))i, j=1,...,n is invertible, say r = det(trd(αiα j)), so we can solve
these equations for a j using Cramer’s rule and we find that a j ∈ r−1R. Consequently
O ⊆ r−1(Rα1 ⊕ · · · ⊕ Rαn) is a submodule of a finitely generated module so (since
R is noetherian) we have that O is finitely generated.

Remark 8.4.2. Assuming the axiom of choice, it follows from Lemma 8.4.1 that a
separable F-algebra B has a maximal order. By Paragraph 8.3.5, B has an R-order O
(since it has a lattice, taking the R-span of any F-basis), so the collection of R-orders
containing O is nonempty. Given any chain of R-orders containing O, by Lemma
8.4.1 the union of these orders is again an R-order. Thus, by Zorn’s lemma, there
exists a maximal element in this collection and B has a maximal order.

8.5 Orders in a matrix ring

Next, we study orders in a matrix ring. The matrix ring over F is just the endo-
morphism ring of a finite-dimension vector space over F, and we seek a similar
description for orders as endomorphism rings of lattices, following Paragraph 8.3.5.

Let V be an F-vector space with dimF V = n and let B = EndF(V). Choosing a
basis of V gives an identification B = EndF(V) � Mn(F). Given an R-lattice I ⊆ V ,
we define

EndR(I) = { f ∈ EndF(V) : f (I) ⊆ I} ⊂ B.

Note that the definition of End(I) differs from that of the left order (8.3.5): we do not
take B = V , but rather, consider endomorphisms of lattices of smaller rank.

Example 8.5.1. If V = Fx1 ⊕ · · · ⊕ Fxn and I = Rx1 ⊕ · · · ⊕ Rxn, then EndR(I) �
Mn(R).

More generally, if I is completely decomposable, i.e. I = a1x1⊕ · · · ⊕ anxn with
ai projective R-submodules of F, then EndR(J) ⊆ Mn(F) consists of those matrices
whose i jth entry lies in HomR(ai, a j) ⊆ HomF(F, F) = F. For example, if n = 2 then

EndR(I) �
(

R HomR(a2, a1)
HomR(a1, a2) R

)
⊂ M2(F).
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Lemma 8.5.2. Let I be an R-lattice of V. Then EndR(I) is an R-order in B =

EndF(V).

Proof. As in Paragraph 8.3.5, we have EndR(I)F = B. Let α1, α2, . . . , αn be an
F-basis for V and let J = Rα1 ⊕ · · · ⊕ Rαn. Then by Lemma 8.2.3 there exists
0 , r ∈ R such that rJ ⊆ I ⊆ r−1J. Therefore EndR(rJ) = rn EndR(J) ⊆ EndR(I) ⊆
r−n EndR(J), and so EndR(I) is an R-order in B.

Lemma 8.5.3. Let O ⊆ B = EndF(V) be an R-order. Then O ⊆ EndR(I) for some
R-lattice I ⊆ V.

Proof. Let J be any R-lattice in V , and let I = {α ∈ J : Oα ⊆ J}. Then I is an
R-submodule of J with FI = V (as in Paragraph 8.3.5), so I is an R-lattice in V and
O ⊆ EndR(I).

Corollary 8.5.4. If R is a PID, then every maximal R-order O ⊆ B � Mn(F) is
conjugate in B to Mn(R).

Proof. The isomorphism B � Mn(F) arises from a basis x1, . . . , xn; letting J =⊕
i Rxi we have EndR(J) � Mn(R). Now the R-order Mn(R) is maximal by Exer-

cise 8.6, since a PID is integrally closed. By the lemma, we have O ⊆ EndR(I) for
some R-lattice I ⊆ V , so if O is maximal then O = EndR(I). If R is a PID then
I = Ry1 ⊕ · · · ⊕ Ryn, and the change of basis matrix from xi to yi realizes EndR(I) as
a conjugate of EndR(J) � Mn(R).

An order O ⊆ EndR(I) can be thought of as a subring of endomorphisms of
a lattice preserving some extra structure. We consider this matter in detail in the
quaternionic context of 2× 2-matrices in Chapter 16.

8.6 Quadratic forms

In setting up an integral theory, we will also have need of an extension of the theory
of quadratic forms over a PID; these notions generalize those over fields (Section
4.2) in a straightforward way.

Let R be a PID.

Definition 8.6.1. A quadratic form over R is a map Q : M → R where M is a (free)
R-module satisfying:

(i) Q(rx) = r2Q(x) for all r ∈ R and x ∈ Rn; and
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(ii) The map T : Rn × Rn → R defined by

T (x, y) = Q(x + y)− Q(x)− Q(y)

is R-bilinear.

T is called the associated bilinear map .

8.6.2. Let Q : V → F be a quadratic form with F the field of fractions of R. Let
M ⊆ V be a finitely generated R-lattice such that Q(M) ⊆ R. Then the restriction
Q|M : M → R is a quadratic form. Conversely, if Q : M → R is a quadratic form
over R, then the extension Q : M ⊗R F → F is a quadratic form over F.

Definition 8.6.3. A similarity between quadratic forms Q : M → R and Q′ : M′ → R
is an isomorphism f : M ∼−→ M′ and u ∈ R× such that Q( f (x)) = uQ′(x) for all
x ∈ M. An isometry between quadratic forms is a similarity with u = 1.

Let Q : M → R be a quadratic form over R. Then Q is nondegenerate if the
extension Q : M ⊗R F → F is nondegenerate. [[Nonsingular?]] From now on,
suppose that M � Rn is free of finite rank n in the basis e1, . . . , en. We then define
the discriminant disc(Q) as the (half-)determinant of the Gram matrix (T (ei, e j))i, j,
as in Definition 4.2.9. [[Nonsingular? and differences between them?]]

8.7 Extensions and further reading

8.7.1. The hypothesis that R is noetherian is used in Paragraph 8.3.5; it seems pos-
sible that the left order may not be finitely generated. Perhaps noetherian induction
will work? [[Used in other places?]].

Exercises

Let R be a noetherian domain with field of fractions F.

8.1. Let L,M be R-lattices in a vector space V with dimF V <∞. Show that L + M
and L ∩ M are R-lattices.

8.2. Let B be an F-algebra and let I ⊂ B be an R-lattice. Show that there exists a
nonzero r ∈ R ∩ I.

8.3. Let c ⊆ R be a nonzero ideal. Show that(
R R
c R

)
=

{(
a b
c d

)
∈ M2(R) : c ∈ c

}
⊆ M2(R)

is an R-order in M2(F).
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8.4. Let O,O′ ⊆ B be R-orders. Show that O ∩O′ is an R-order.

8.5. Let A1, . . . , Ar be F-algebras and let B = A1 × · · · × Ar. Show that O ⊆ B is
an R-order if and only if O ∩ Ai is an R-order for each i.

8.6. Let R be integrally closed. Show that Mn(R) is a maximal R-order in Mn(F).

8.7. Let B =

(K, b
F

)
with b ∈ R and let S be an R-order in K. Let O = S + S j.

Show that O is an R-order in B.

8.8. Let B be an F-algebra with a standard involution and let α ∈ B. Show that if α
is integral over R then trd(αn) ∈ R for all n ∈ Z≥0. Is the converse true?

8.9. Generalize Example 8.3.13 as follows.

a) Find an algebra B over a field F and elements α, β ∈ B such that α, β are
integral over R ⊆ F but αβ is not.

b) Find a division ring D over a field F and elements α, β ∈ D such that α, β
are integral over R ⊆ F but α + β is not.

8.10. Give an example of a non-noetherian ring R and modules J ⊂ I such that I is
finitely generated but J is not finitely generated. Does this yield an example
where OL(I) is not an R-lattice (cf. Paragraph 8.3.5)?

8.11. Let α ∈ Mn(F) have characteristic polynomial with coefficients in R. Show
that α is conjugate by an element β ∈ GLn(F) to an element of Mn(R). Explic-
itly, how do you find such a matrix β?

8.12. Let O ⊆ B be an R-order.

a) Show that OL(O) = OR(O) = O.

b) Let α ∈ B×, and let αO = {αβ : β ∈ O}. Show that αO is an R-lattice
and that OL(αO) = αOα−1.

8.13. Let O ⊆ B be an R-order and let γ ∈ O and let N : B× → F× be any
multiplicative map. Show that γ ∈ O× if and only if N(γ) ∈ R×, and in
particular, if B has a standard involution, then γ ∈ O× if and only if nrd(γ) ∈
R×.

[[More explicit examples.]]
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Chapter 9

The Hurwitz order

Before we embark on a general treatment of quaternion algebras over number fields
and the arithmetic of their orders, we consider the special case of the Hurwitz or-
der. This is not only instructive for what follows, but this order possesses certain
exceptional symmetries that make it worthy of specific investigation.

9.1 The Hurwitz order

We consider in this chapter the restriction of the Hamiltonians from R to Q, namely,

the quaternion algebra B =

(−1,−1
Q

)
. We consider first the natural further restriction

to those elements with integer coordinates

Z〈i, j, k〉 = Z + Zi + Z j + Zk;

by Example 8.3.4, this is a Z-order in B, called the Lipschitz order . In the rest of this
chapter, we will work over Z and so we will simply refer to Z-lattices and Z-orders
as lattices and orders.

The Lipschitz order is not a maximal order, and as we will see later on, this
makes it less suitable for the development of an algebraic theory; this is analogous
to the fact that the ring Z[

√
−3] is a order in Q(

√
−3) but is not maximal (not

integrally closed) as it is properly contained in the maximal order Z[(−1 +
√
−3)/2]

of Eisenstein integers.

Lemma 9.1.1. The lattice

O = Z + Zi + Z j + Z
(
−1 + i + j + k

2

)
(9.1.2)

in B is a maximal order that properly contains Z〈i, j〉 (with index [O : O′] = 2).
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The order O (9.1.2) is called the Hurwitz order .

Proof. By Exercise 9.1, the lattice O is an order. Suppose that O′ ⊇ O and let
α = t + xi + y j + zk ∈ O′ with t, x, y, z ∈ Q. Then trd(α) = 2t ∈ Z, so by Corollary
8.3.11 we have t ∈ 1

2Z. Similarly, we have αi ∈ O′ so trd(αi) = −2x ∈ Z, hence
x ∈ 1

2Z, and in the same way y, z ∈ 1
2Z. Finally, nrd(α) = t2 + x2 + y2 + z2 ∈ Z, and

considerations modulo 4 imply that t, x, y, z either all belong to Z or to 1
2 + Z; thus

α ∈ O and O′ = O.

Note that the element ω = (−1 + i + j + k)/2 satisfies ω2 + ω + 1 = 0, so the
comparison with the Eisenstein integers is more than incidental: we have Z[

√
−3] �

Z[i + j + k] ⊆ Z〈i, j, k〉, and both extend to a maximal order in a parallel way.

9.2 Hurwitz units and finite subgroups of the
Hamiltonians

We now consider unit groups. An element γ = t+ xi+y j+zi j ∈ Z〈i, j〉 is a unit if and
only if nrd(γ) = t2 + x2 + y2 + z2 = 1 ∈ Z×, and since t, x, y, z ∈ Z we immediately
have

Z〈i, j, k〉× = {±1,±i,± j,±i j} � Q8

is the quaternion group of order 8. In a similar way, allowing t, x, y, z ∈ 1
2Z we find

that
O× = {(±1± i± j± k)/2} ∪ {±1,±i,± j,±k}

is a group of order 24.
We have O× � S 4 because there is already no embedding Q8 ↪→ S 4. (The

permutation representation Q8 → S 4 obtained by the action on the cosets of the
unique subgroup 〈−1〉 of index 4 factors through the quotient Q8 → Q8/ ± 1 �

V4 ↪→ S 4, where V4 is the Klein 4-group.) There are 15 groups of order 24 up to
isomorphism; we identify the right one as follows.

Lemma 9.2.1. We have O× � SL2(F3).

Proof. We obtain this isomorphism by reduction modulo 3. We have a ring homo-
morphism

O → O/3O � F3〈i, j, k〉 �
(−1,−1
F3

)
.

But any quaternion algebra over a finite field is isomorphic to the matrix ring by
Wedderburn’s theorem (Exercises 3.12, 5.11, and 6.16). Specifically, the element
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ε = i + j + k has ε2 = 0 ∈ O/3O, and so the left ideal generated by ε has basis ε and
iεi = −1− j + k and this yields an isomorphism (Proposition 6.5.2)

O/3O → M2(F3)

i, j 7→
(
0 −1
1 0

)
,

(
1 1
1 −1

)
(Exercise 9.2). This map gives an injective group homomorphism O× ↪→ SL2(F3),
since the reduced norm corresponds to the determinant. By a comparison of orders,
we see that this is an isomorphism.

We have a permutation representation SL2(F3) → S 4 obtained from the natural
action of SL2(F3) on the set P1(F3) = F3 ∪ {∞} by left multiplication; the kernel
of this map is the subgroup generated by the scalar matrix −1 and so the image is
PSL2(F3) = SL2(F3)/{±1} � A4, and in particular we have an exact sequence

1→ {±1} → O× → A4 → 1. (9.2.2)

We can also visualize this group (and the exact sequence (9.2.2)), thinking of the
Hamiltonians as acting by rotations (Section 2.3). Recall we have an exact sequence

1→ {±1} → H×1 → SO(3)→ 1

obtained by the left action α 7→ αvα−1 for α ∈ H×1 and v ∈ H0 � R3; specifically,
by Proposition 2.3.10, a quaternion α = cos θ+ I(α) sin θ acts by rotation through the
angle 2θ about the axis I(α).

Then we can think of the groupO×/{±1} � A4 as the group of symmetries (rigid
motions) of a tetrahedron (or rather, a tetrahedron and its dual), as follows. Inside the
cube in R3 with vertices (±1,±1,±1), we can find four inscribed tetrahedra, for ex-
ample, the tetrahedron T with vertices (1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1).
Then the elements ±i,± j,±k act by rotation about the x, y, z axes by an angle π =

180◦ (so interchanging points with the same x, y, z coordinate). The element ±ω =

±(−1 + i + j + k)/2 rotates by the angle 2π/3 = 120◦ fixing the point (1, 1, 1) and
cyclically permuting the other three points, and by symmetry we understand the ac-
tion of the other elements ofO×. We therefore callO× the binary tetrahedral group;
the notations 2T � Â4 are also used for this group.

The subgroup Q8 E 2T is normal (as it is characteristic, consisting of all el-
ements of O of order dividing 4), and so we can write 2T = Q8 o Z/3Z where
Z/3Z〈ω〉 acts on Q8 by conjugation, cyclically rotating the elements i, j, k. Finally,
the group 2T has a presentation

2T � 〈r, s, t | r2 = s3 = t3 = rst = −1〉 (9.2.3)
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via r = i, s = ω = (−1 + i + j + k)/2, and t = (−1 + i + j− k)/2 (Exercise 9.5); we
will see later (Section 24.1) that this realizes it as a spherical triangle group.

We conclude by noting that the difference between the Lipschitz and Hurwitz
orders is “covered” by the extra units.

Lemma 9.2.4. For any β ∈ O, there exists γ ∈ O× such that βγ ∈ Z〈i, j, k〉.

Proof. If β ∈ Z〈i, j, k〉 already, then we are done. Otherwise, 2β = t + xi + y j + zk
with all t, x, y, z ∈ Z odd. Choosing matching signs, there exists γ ∈ O× such that
2β ≡ 2γ (mod 4O). Thus

(2β)γ−1 ≡ 2 (mod 4O)

so βγ−1 ∈ Z + 2O = Z〈i, j, k〉, as claimed.

9.3 Euclidean algorithm, sums of four squares

The Eisenstein order Z[(−1 +
√
−3)/2] has several nice properties. Perhaps nicest

of all is that it is a Euclidean domain, so in particular it is a PID and UFD. (Alas, the
ring Z[

√
−3] just fails to be Euclidean.)

The Hurwitz order also has a left (or right) Euclidean algorithm generalizing the
commutative case, as follows. We have an embedding B ↪→ B⊗QR � H, and inside
H � R4 the Hurwitz order sits as a (Z-)lattice equipped with the Euclidean inner
product, so we can think of the reduced norm by instead thinking of distance. In
the Lipschitz order, we see by rounding coordinates that for any γ ∈ B there exists
µ ∈ Z〈i, j, k〉 such that nrd(γ − µ) ≤ 4 · (1/2)2 = 1—a farthest point occurs at the
center (1/2, 1/2, 1/2, 1/2) of a unit cube. But this is precisely the point where the
Hurwitz quaternions occur, and it follows that for any γ ∈ B, there exists µ ∈ O such
that nrd(γ − µ) < 1. (In fact, we can take nrd(γ − µ) ≤ 1/2; see Exercise 9.6.)

This becomes a euclidean algorithm in the usual way.

Lemma 9.3.1 (Hurwitz order is Euclidean). For all α, β ∈ O with β , 0, there exists
µ, ρ ∈ O such that

α = µβ + ρ

and nrd(ρ) < nrd(β).

A similar statement holds for division on the right, i.e., we may also take α =

βµ + ρ.

Proof. If nrd(α) < nrd(β), we may take µ = 1 and ρ = 0, so suppose nrd(α) ≥
nrd(β) > 0. Let γ = αβ−1 ∈ B. Then there exists µ ∈ O such that nrd(γ − µ) =
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nrd(αβ−1 − µ) < 1, so by multiplicativity, nrd(α − µβ) < nrd(β). So we may take
ρ = α− µβ.

Lemma 9.3.2. Every left (or right) ideal I ⊆ O is left principal, i.e., there exists
β ∈ I such that I = βO.

Proof. Let I ⊆ O be a left ideal. If I = {0}, we are done. Otherwise, there exists an
element 0 , β ∈ I with minimal reduced norm nrd(β) ∈ Z>0. We claim that I = Oβ.
Indeed, for any α ∈ I, by the left Euclidean algorithm in Lemma 9.3.1, there exists
µ ∈ O such that α = µβ + ρ with nrd(ρ) < nrd(β); but ρ = α − µβ ∈ I, so by
minimality, we have nrd(ρ) = 0 so ρ = 0, hence α ∈ Oβ as claimed.

Corollary 9.3.3 (Bezout’s theorem). For all α, β ∈ O with αO + βO = γO, there
exists µ, ν ∈ O such that αµ + βν = γ.

It does not follow that there is unique factorization in O in the traditional sense,
as the order of multiplication matters. Nevertheless, there is a theory of prime factor-
ization in O as follows.

Definition 9.3.4. An element π ∈ O is prime if whenever αβ = π with α, β ∈ O then
α ∈ O× or β ∈ O×.

Lemma 9.3.5. Let π ∈ O. Then the following are equivalent:

(i) I = Oπ is a prime right ideal, i.e., if αβ ∈ I then α ∈ I or β ∈ I;

(ii) πO is a prime left ideal; and

(iii) nrd(π) = p ∈ Z is a prime.

If any one of the conditions of Lemma 9.3.5 is satisfied, we say that π ∈ O is
prime.

Proof. We begin by proving the last statement.

Lemma 9.3.6. For all primes p, there exists π ∈ O such that ππ = nrd(π) = p.

Proof. We have 2 = 12 + 12 + 02 + 02, so we may assume p ≥ 3 is odd. Then we

have O/pO �
(−1,−1
Fp

)
and by Wedderburn’s theorem, we have

(−1,−1
Fp

)
� M2(Fp)
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so there exists a left ideal I mod p ⊂ O/pO with dimFp(I mod p) = 2. Let

I = {α ∈ O : α mod p ∈ I mod p};

in particular we have pO ( I ( O. Then I ⊂ O is a left ideal, and I , O. But
I = βO is left principal by Lemma 9.3.2.

We claim that nrd(β) = p. Since p ∈ I, we have p = βµ for some µ ∈ O,
whence nrd(p) = p2 = nrd(β) nrd(µ) so nrd(β) | p2. We cannot have nrd(β) = 1 or
nrd(β) = p2, as these would imply I = O or I = pO, impossible. So nrd(β) = p.

Definition 9.3.7. An element α ∈ O is primitive if α < nO for all n ∈ Z.

[[Define left divisibility, etc.?]]

Theorem 9.3.8 (Conway–Smith). Let α ∈ O be primitive and let a = nrd(α). Factor
a = p1 p2 · · · pr into a product of primes. Then there exists π1, π2, . . . , πr ∈ O such
that

α = π1π2 · · · πr, and nrd(πi) = pi for all i.

Moreover, any other such factorization is of the form

α = (π1γ1)(γ−1
1 π2γ

−1
2 ) · · · (γ−1

r−1πr) (9.3.9)

where γ1, . . . , γr ∈ O×.

The factorization (9.3.9) is said to be obtained from α = π1 · · · πr by unit migra-
tion.

Theorem 9.3.10. Every integer n ≥ 0 is the sum of four squares, i.e., there exists
t, x, y, z ∈ Z such that n = t2 + x2 + y2 + z2.

Proof. We seek an element β ∈ Z〈i, j, k〉 such that nrd(β) = n. By multiplicativity,
it is sufficient to treat the case where n = p is prime. We obtain π ∈ O such that
nrd(π) = p by Lemma 9.3.6. But now the result follows from Lemma 9.2.4, as there
exists γ ∈ O× such that πγ ∈ Z〈i, j, k〉.

9.4 Sums of three squares

9.5 Extensions and further reading

Exercises

9.1. Show that

O = Z + Zi + Z j + Z
(
1 + i + j + k

2

)
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is an order in B =

(−1,−1
Q

)
.

9.2. Check that the map

O/3O → M2(F3)

i, j 7→
(
0 −1
1 0

)
,

(
1 1
1 −1

)
from Lemma 9.2.1 is the isomorphism obtained from the representation on the
left ideal generated by ε = i + j + k.

9.3. Draw the subgroup lattice for SL2(F3), indicating normal subgroups (and their
quotients).

9.4. Let O ⊂ B =

(−1,−1
Q

)
be the Hurwitz order.

a) Consider the natural ring homomorphism O → O ⊗Z F2 = OF2 giving
the reduction of the algebra O modulo 2. Show that #OF2 = 16, that
O×F2

� A4 the alternating group on 4 elements. Conclude that OF2 �
M2(F2) and hence that OF2 is not a quaternion algebra over F2.

b) Show that AutF2(OF2) � S 4 (automorphisms as an F2-algebra). More
generally, if F is a field of characteristic 2, show that OF = O ⊗Z F has
AutF OF is an extension of SL2(F) by the additive group F2.

This kind of construction, considered instead over the octonions, arises when
constructing the exceptional group G2 in characteristic 2 [Wil09, §4.4.1].

9.5. Show that
2T � 〈r, s, t | r2 = s3 = t3 = rst = −1〉

(cf. (9.5)).

9.6. Let Λ = Z4 + (( 1
2 ,

1
2 ,

1
2 ,

1
2 ) + Z4) be the image of the Hurwitz order O under

the natural embedding O ↪→ H � R4. Show that for every x ∈ R4, there
exists λΛ such that ‖λ‖2 ≤ 1/2. [Hint: without loss of generality we may
take 0 ≤ xi ≤ 1/2 for all i; then show we may take x1 + x2 + x3 + x4 ≤ 1;
conclude that the maximum value of ‖x‖2 with these conditions occurs at the
point ( 1

2 ,
1
2 , 0, 0).]





Chapter 10

Quaternion algebras over local
fields

In this chapter, we classify quaternion algebras over local fields; this generalizes the
classification of quaternion algebras over R.

10.1 Local quaternion algebras

Having spent the first part of this book exploring the properties of quaternion alge-
bras, we now seek to classify them over a nice class of fields. Over any field F we
have the matrix ring M2(F), and if F is a finite field or an algebraically closed field
F, then any quaternion algebra over F is isomorphic to the matrix ring. The ‘first’
quaternion algebra, of course, was the division ring H of Hamiltonians, and this ring
is the only division quaternion ring over R up to isomorphism.

In this section, we will classify quaternion algebras over a field F that is in some
sense similar to R. We will insist that the field F is equipped with a topology com-
patible with the field operations in which F is Hausdorff and locally compact (every
element of F has a compact neighborhood). To avoid trivialities, we will insist that
this topology is not the discrete topology (where every subset of F is open): such a
topological field is called a local field.

For purposes of illustration, we consider local fields F that contain the rational
numbers Q as a dense subfield. Such a field F is the completion of Q with respect
to an absolute value | |, so is obtained as the set of equivalence classes of Cauchy
sequences, and has a topology induced by the metric d(x, y) = |x− y|. By a theorem
of Ostrowski, such an absolute value is equivalent to either the usual archimedean
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absolute value or a p-adic absolute value, defined by |0|p = 0 and

|c|p = p− ordp(c) for c ∈ Q×,

where ordp(c) is the power of p occurring in c in its unique factorization (taken to be
negative if p divides the denominator of c written in lowest terms).

Just as elements of R can be thought of infinite decimals, an element of Qp can
be thought of in its p-adic expansion

a = (. . . a3a2a1a0.a−1a−2 · · · a−k)p =

∞∑
n=−k

an pn

where each ai ∈ {0, . . . , p−1} are the digits of a. We continue “to the left” because a
decimal expansion is a series in the base 1/10 < 1 and instead we have a base p > 1.
Inside Qp is the ring Zp of p-adic integers , the completion of Z with respect to | |p:
the ring Zp consists of those elements of Qp with an = 0 for n < 0. The ring Zp

might be thought of intuitively as Z/p∞Z, if this made sense: they were first defined
in this context by Hensel, who wanted a uniform language for when a Diophantine
equation has a solution modulo pn for all n.

By construction, the ring Zp and the field Qp come equipped with a topology
arising from its metric dp(x, y) = |x− y|p. With respect to this topology, in fact Zp

is compact and Qp is locally compact. It is easiest to see this by viewing Zp as a
projective limit with respect to the natural maps Z/pn+1Z→ Z/pnZ:

Zp = lim←−
n
Z/pnZ

=

x = (xn)n ∈
∞∏

n=0

Z/pnZ : xn+1 ≡ xn (mod pn) for all n ≥ 0

 . (10.1.1)

In other words, each element of Zp is a compatible sequence of elements in Z/pnZ
for each n. The equality (10.1.1) is just a reformulation of the notion of Cauchy
sequence for Z, and so for the purposes of this introduction it can equally well be
taken as a definition. As for the topology in (10.1.1), each factor Z/pnZ is given the
discrete topology, the product

∏∞
n=0 Z/pnZ is given the product topology, and Zp is

given the restriction topology. Since each Z/pnZ is compact (it is a finite set!), by
Tychonoff’s theorem the product

∏∞
n=0 Z/pnZ is compact; and Zp is closed inside

this product (a convergent limit of Cauchy sequences is a Cauchy sequence), so Zp

is compact. The set Zp is a neighborhood of 0, indeed, it is the closed ball of radius
1 around 0:

Zp = {x ∈ Qp : |a|p ≤ 1}.
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In a similar way, the disc of radius 1 around any a ∈ Qp is a compact neighborhood
of a homeomorphic to Zp, so Qp is locally compact.

As is evident from this argument, although Qp is Hausdorff and locally compact,
it has a rather strange topology, akin to a Cantor set: Qp is totally disconnected (the
largest connected subsets consist of single points). Nevertheless, being able to make
topological arguments like the one above is the whole point of looking at local fields
like Qp: our understanding of algebraic objects is informed by the topology.

In particular, we have a result for quaternion algebras over Qp that is quite anal-
ogous to that over R.

Theorem 10.1.2. There is a unique division quaternion algebra B over Qp, up to
isomorphism. In fact, if p , 2, then B is given by

B �
(e, p
Qp

)
where e ∈ Z is a quadratic nonresidue modulo p.

We approach this theorem in two ways in this section. The first way is using the
language of quadratic forms, and for that we use the classification of isomorphism
classes of quaternion algebras in terms of similarity classes of ternary quadratic
forms. The following proposition then implies Theorem 10.1.2.

Proposition 10.1.3. There is a unique ternary anisotropic quadratic form Q overQp,
up to similarity. If p , 2, then Q ∼ 〈1,−e,−p〉 where e is a quadratic nonresidue
modulo p.

This proposition can be proved using some rather direct manipulations with quad-
ratic forms. On the other hand, it has the defect that quadratic forms behave differ-
ently in characteristic 2, and so one may ask for a more uniform proof. This is the
second way that we approach the proof of Theorem 10.1.2: we extend the absolute
value onQp to one on a division quaternion algebra B, and use this extension to show
that B is unique by direct examination of its valuation ring and two-sided maximal
ideal. While it requires a bit more theory, this method of proof also can be used to
classify central division algebras over Qp in much the same manner.

10.2 Local fields

Definition 10.2.1. A topological ring is a ring A equipped with a topology such
that the ring operations (addition, negation, and multiplication) are continuous. A
homomorphism of topological rings is a ring homomorphism that is continuous. A
topological field is a field that is also a topological ring in such a way that division
by a nonzero element is continuous.
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A very natural way to equip a ring with a topology that occurs throughout math-
ematics is by way of an absolute value; to get started, we consider such notions first
for fields. Throughout, let F be a field.

Definition 10.2.2. An absolute value on F is a map

| | : F → R≥0

such that:

(i) |x| = 0 if and only if x = 0;

(ii) |xy| = |x|y for all x, y ∈ F; and

(iii) |x + y| ≤ |x| + |y| for all x, y ∈ F (triangle inequality ).

An absolute value | | on F gives F the structure of a topological field by the metric
d(x, y) = |x− y|. Two absolute values | |, ‖ ‖ on F are equivalent if there exists c > 0
such that |x| = ‖x‖c for all x ∈ F; equivalent absolute values induces the same
topology on F.

Definition 10.2.3. An absolute value is nonarchimedean if |x + y| ≤ sup{|x|, |y|}
for all x, y ∈ F (ultra metric inequality ), and archimedean otherwise.

Example 10.2.4. The fields R and C are topological fields with respect to the usual
archimedean absolute value.

Remark 10.2.5. A field is archimedean if and only if it satisfies the archimedean
property : for all x ∈ F×, there exists n ∈ Z such that |nx| > 1. In particular, a field
F equipped with an archimedean absolute value has char F = 0.

Example 10.2.6. Every field has the trivial (nonarchimedean) absolute value, de-
fined by |0| = 0 and |x| = 1 for all x ∈ F×; the trivial absolute value induces the
discrete topology on F.

A nonarchimedean absolute value on a field F arises naturally by way of a valu-
ation, as follows.

Definition 10.2.7. A valuation of a field F is a map v : F → R ∪ {∞} such that:

(i) v(x) =∞ if and only if x = 0;

(ii) v(xy) = v(x) + v(y) for all x, y ∈ F; and

(iii) v(x + y) ≥ min(v(x), v(y)) for all x, y ∈ F.
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A valuation is discrete if the value group v(F×) is discrete inR (has no accumulation
points).

Here, we set the convention that x +∞ = ∞ + x = ∞ for all x ∈ R ∪ {∞}.
By (ii), the value group v(F×) is indeed a subgroup of the additive group R, and so
although an absolute value is multiplicative, a valuation is additive.

Example 10.2.8. For p ∈ Z prime, the the map v(x) = ordp(x) is a valuation on Q.

Example 10.2.9. Let k be a field and F = k(t) the field of rational functions over k.
For f (t) = g(t)/h(t) ∈ k(t) \ {0}, define v( f (t)) = deg g(t) − deg h(t) and v(0) = ∞.
Then v is a discrete valuation on F.

Given the parallels between them, it should come as no surprise that a valuation
gives rise to an absolute value on F by defining |x| = c−v(x) for any c > 1; the induced
topology on F is independent of the choice of c. By condition (iii), the absolute value
associated to a valuation is nonarchimedean.

Example 10.2.10. The trivial valuation is the valuation v satisfying v(0) = ∞ and
v(x) = 0 for all x ∈ F×. The trivial valuation gives the trivial absolute value on F.

Two valuations v, w are equivalent if there exists a ∈ R>0 such that v(x) = aw(x)
for all x ∈ F; equivalent valuations give the same topology on a field. A nontrivial
discrete valuation is equivalent after rescaling (by the minimal positive element in
the value group) to one with value group Z, since a nontrivial discrete subgroup of R
is cyclic; we call such a discrete valuation normalized.

Given a field F with a nontrivial discrete valuation v, we have the valuation ring
R = {x ∈ F : v(x) ≥ 0}. We have R× = {x ∈ F : v(x) = 0} since v(x) + v(x−1) =

v(1) = 0 for all x ∈ F×. The valuation ring is a local ring with unique maximal ideal

p = {x ∈ F : v(x) > 0} = R \ R×.

An element π ∈ p with smallest valuation is called a uniformizer, and comparing
valuations we see that πR = (π) = p. Since p ( R is maximal, the quotient k = R/p
is a field, called the residue field of R (or of F).

Recall that a topological space is locally compact if each point has a compact
neighborhood.

Definition 10.2.11. A local field is a Hausdorff, locally compact topological field
with a nondiscrete topology.

In a local field, we can hope to understand its structure by local considerations in
a compact neighborhood, hence the name.

Local fields have a very simple classification as follows.
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Theorem 10.2.12. Every local field F is isomorphic as a topological field to one of
the following:

• F is archimedean, and F � R or F � C;

• F is nonarchimedean with char F = 0, and F is a finite extension of Qp for
some prime p; or

• F is nonarchimedean with char F = p, and F is a finite extension of Fp((t)) for
some prime p; in this case, there is a (non-canonical) isomorphism F � Fq((t))
where q is a power of p.

We have the following equivalent characterization of nonarchimedean local fields.

Lemma 10.2.13. A field is a nonarchimedean local field if and only if it is complete
with respect to a nontrivial discrete valuation v : F → R ∪ {∞} with finite residue
field.

Although a local field is only locally compact, the valuation ring is itself compact,
as follows.

Lemma 10.2.14. Suppose F is nonarchimedean. Then F is totally disconnected and
the valuation ring R ⊂ F is a compact, totally disconnected topological ring.

Proof. To see that F is totally disconnected (so too R is totally disconnected), by
translation it suffices to show that the only connected set containing 0 is {0}. Let
x ∈ F× with |x| = δ > 0. The image |F×| ⊆ R>0 is discrete, so there exists
0 < ε < δ so that |y| < δ implies |y| ≤ δ − ε for all y ∈ F. Thus an open ball is a
closed ball

D(0, δ) = {y ∈ F : |y| < δ} = {y ∈ F : |y| ≤ δ− ε} = D[0, δ− ε];

since x ∈ F× and δ > 0 were arbitrary, the only connected subset containing 0 is
{0}.

Next, we show R is compact. We have a natural continuous ring homomorphism

φ : R→
∞∏

n=1

R/pn

where each factor R/pn is equipped with the discrete topology and the product is
given the product topology. The map φ is injective, since

⋂∞
n=1 p

n = {0} (every
nonzero element has finite valuation). The image of φ is obviously closed. Therefore
R is homeomorphic onto its closed image. But by Tychonoff’s theorem, the prod-
uct

∏∞
n=1 R/pn of compact sets is compact, and a closed subset of a compact set is

compact, so R is compact.
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One key property of local fields we will use is Hensel’s lemma: it is the nonar-
chimedean analogue of Newton’s method.

Lemma 10.2.15 (Hensel’s lemma). Let F be a nonarchimedean local field with val-
uation v and valuation ring R, and let f (x1, . . . , xn) ∈ R[x1, . . . , xn] with n ≥ 1.
Suppose that a = (ai)i ∈ Rn satisfies

k = v( f (a1, . . . , an)) > 2v( f ′(a1, . . . , an)) ≥ 0.

Then there exists ã = (̃ai)i ∈ Rn such that f (̃a) = 0 and

ãi ≡ ai (mod pk)

for all i = 1, . . . , n.

10.3 Unique division ring, first proof

We now seek to classify quaternion algebras over local fields. First, suppose F is
archimedean. When F = C, the only quaternion algebra over C up to isomorphism
is B � M2(C). When F = R, by the theorem of Frobenius (Corollary 3.5.5), there is
a unique quaternion division algebra over R. The classification of quaternion alge-
bras over nonarchimedean local fields is quite analogous to the classification over R;
indeed, we have the following.

Theorem 10.3.1. Let F , C be a local field. Then there is a unique division quater-
nion algebra B over F up to F-algebra isomorphism.

To prove this theorem, from the first paragraph of this section we may assume F
is a nonarchimedean local field with discrete valuation v.

We approach the proof of Theorem 10.3.1 from two vantage points. In this
section, we give a proof using quadratic forms (which excludes the case where
char F = 2); in the next section, we give another proof by extending the valuation
(including all characteristics).

By Theorems 4.4.5 and 4.5.5, to prove Theorem 10.3.1 it is equivalent to prove
the following proposition.

Proposition 10.3.2. Let F , C be a local field. Then there is a unique nonsingular
anisotropic ternary quadratic form over F up to similarity.

So our task becomes a hands-on investigation of ternary quadratic forms over F.
The theory of quadratic forms over F is linked to that over its residue field k, so we
first need to examine isotropy of quadratic forms over a finite field.
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Lemma 10.3.3. A quadratic space V over a finite field with dimF V ≥ 3 is isotropic.

This statement is elementary (Exercise 10.1).

Lemma 10.3.4. Suppose char k , 2. Let Q : M → R be a nonsingular quadratic
form over R. Then the reduction Q mod p : M⊗Rk→ k of Q modulo p is nonsingular
over k; moreover, Q is isotropic over R if and only if Q mod p is isotropic.

Lemma 10.3.4 is a consequence of Hensel’s lemma (Lemma 10.2.15). Combin-
ing these two lemmas, we obtain the following.

Proposition 10.3.5. Suppose char k , 2. Let Q : M → R be a nonsingular quadratic
form over R with M of rank ≥ 3. Then Q is isotropic.

Considering valuations, we also deduce the following from Lemma 10.3.4.

Lemma 10.3.6. Suppose char k , 2. Then #F×/F×2 � (Z/2Z)2 and is represented
by the classes of 1, e, π, eπ where e ∈ R× is any element which reduces modulo p to
a nonsquare in k.

We first consider the case char k , 2.

Proof of Proposition 10.3.2 (char k , 2). Let Q � 〈a,−b,−c〉 be a nonsingular, an-
isotropic ternary quadratic form over F. Rescaling the basis elements by a power of
the uniformizer, we may assume that v(a), v(b), v(c) ∈ {0, 1}. Then, by the pigeon-
hole principle on this set of valuations, we may rescale the form and permute the
basis to assume that a = 1 and 0 = v(b) ≤ v(c). If v(b) = v(c) = 0 then the quadratic
form modulo p is nonsingular, so by Lemma 10.3.3 it is isotropic and by Lemma
10.3.4 we conclude Q is isotropic, a contradiction.

We are left with the case v(b) = 0 and v(c) = 1. By Lemma 10.3.6, we may
assume b = 1 or b = e where e is a nonsquare in k. If b = 1, then the form is
obviously isotropic, so we have b = e. Similarly, we have c = π or c = eπ. In fact,
the latter case is similar to the former: scaling by e we have

〈1,−e,−eπ〉 ∼ 〈−1, e,−π〉

and since 〈−1, e〉 � 〈1,−e〉 (Exercise 10.2), we have Q ∼ 〈1,−e,−π〉.
To conclude, we show that the form 〈1,−e,−π〉 is anisotropic. Suppose that

x2 − ey2 = πz2 with x, y, z ∈ F3 not all zero. By homogeneity, we may assume
x, y, z ∈ R and at least one of x, y, z ∈ R×. Reducing modulo p we have x2 ≡ ey2

(mod p) so since e is a nonsquare we have v(x), v(y) ≥ 1. But this implies that
v(z) = 0 and so v(πz2) = 1 = v(x2 − ey2) ≥ 2, a contradiction.
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Now suppose that char k = 2. Recall the issues with inseparability in character-
istic 2 (Paragraph 5.1.2). Let ℘(k) = {z + z2 : z ∈ k} be the Artin-Schreier group of
k. The polynomial x2 + x + t is reducible if and only if t ∈ ℘(k), and since k is finite,
we have k/℘(k) � Z/2Z (Exercise 10.3). Let t ∈ R represent the nontrivial class in
k \ ℘(k).

Proof of Proposition 10.3.2 (char k = 2). By nonsingularity and scaling, we may as-
sume that Q ∼ [1, b] ⊥ 〈c〉 with b, c ∈ R. If v(b) > 0, then [1, b] is isotropic modulo
p and hence Q is isotropic, a contradiction. So v(b) = 0, and for the same reason b
in the same class as t ∈ k \ ℘(k). Scaling, we may assume v(c) = 0, 1. If v(c) = 0,
then either c or t + c belongs to ℘(k) and so again we have a contradiction. Thus
v(c) = 1 and c = uπ for some u ∈ R×; but then [u, tu] � [1, t] so Q ∼ [1, t] ⊥ 〈π〉.
To conclude, we verify that this form is indeed anisotropic, applying the same ar-
gument as in the last paragraph in the proof when char k , 2 to the quadratic form
x2 + xy + ty2 = πz2.

In mixed characteristic where char F = 0 and char F = 2, the extension K =

F[x]/(x2 + x + t) for t nontrivial in k/℘(k) is the unramified quadratic extension of
F, and we can complete the square to obtain K = F(

√
e) with e ∈ F× \ F×2—it is

just no longer the case that e is nontrivial in k×/k×2. Putting these cases together, we
have the following corollary.

Corollary 10.3.7. Let F , C be a local field and B be a quaternion algebra over F.
Then B is a division quaternion algebra if and only if

B �
(K, π

F

)
where K is the unramified quadratic extension of F. In particular, if char k , 2, then
B is a division algebra if and only if

B �
(e, π

F

)
, where e is nontrivial in k×/k×2

and if char F = char k = 2, then B is a division algebra if and only if

B �
[ t, π

F

)
, where t is nontrivial in k/℘(k).

10.4 Local Hilbert symbol

Recall the definition of the Hilbert symbol (Section 4.7). In this section, we compute
the Hilbert symbol over a local field F with char k , 2. Let a, b ∈ F×.
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We begin with the case where F is archimedean. If F = C, then the Hilbert
symbol is identically 1. If F = R, then

(a, b)R =

1, if a > 0 or b > 0;
−1, if a < 0 and b < 0.

Lemma 10.4.1. The Hilbert symbol over a nonarchimedean local field F is bimulti-
plicative, i.e.

(a, bc)F = (a, b)F(a, c)F and (ab, c)F = (a, c)F = (b, c)F

for all a, b, c ∈ F×.

Remark 10.4.2. The bimultiplicativity property of the local Hilbert symbol is a spe-
cial property and does not extend to a general field!

Proof. This will follow from the direct computation below (10.4.3), but it is helpful
to know this fact independently.

We appeal to Theorem 4.5.5(vi): we have (a, b)F = 1 if and only if b ∈ NK/F(K×)
where K = F[x]/(x2 − a). If K is not a field, then (a, b)F = 1 identically, so it
is certainly multiplicative. Otherwise, F×/NK/F(K×) � Z/2Z: when char k , 2,
this follows from Lemma 10.3.6, but it is true in general. Multiplicativity is then
immediate.

Since the Hilbert symbol is well-defined up to squares, the symbol (a, b)F is
determined by the values with a, b ∈ {1, e, π, eπ} where e is a nonsquare in k×. Let
s = (−1)(#k−1)/2, so that s = 1,−1 according as −1 is a square in k. Then we have:

(a, b)F 1 e π eπ
1 1 1 1 1
e 1 1 −1 −1
π 1 −1 s −s
eπ 1 −1 −s s

(10.4.3)

The computation of this table is Exercise 10.7.

10.4.4. The following criteria follow from 10.4.3:

(a) If v(ab) = 0, then (a, b)F = 1.

(b) If v(a) = 0 and v(b) = v(π), then

(a, b)F =

(a
π

)
=

1 if a ∈ k×2;
−1 if a ∈ k× \ k×2.
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10.4.5. The computation of the Hilbert symbol for local fields with char F , 2 but
char k = 2 is significantly more involved. We provide in Exercise 10.11 a way to
understand this symbol for a general F. In this paragraph, we compute the Hilbert
symbol for F = Q2.

To begin, the group Q×2 /Q
×2
2 is generated by −1,−3, 2, so representatives are

{±1,±3,±2,±6}. The extension Q2(
√
−3) ⊃ Q2 is the unique unramified exten-

sion.
We recall Hilbert’s criterion: (a, b)F = 1 if and only if ax2 + by2 = 1 has a

solution with x, y ∈ F.
If a, b ∈ Z are odd, then

ax2 + by2 = z2 has a nontrivial solution in Q2

⇐⇒ a ≡ 1 (mod 4) or b ≡ 1 (mod 4);

by homogeneity and Hensel’s lemma, it is enough to check for a solution modulo 4.
This deals with all of the symbols with a, b odd.

By the determination above, we see that (−3, b) = −1 for b = ±2,±6 and
(2, 2)Q2 = (−1, 2)Q2 = 1 the latter by Hilbert’s criterion, as −1 + 2 = 1; knowing
multiplicativity (Lemma 10.4.1), we have uniquely determined all Hilbert symbols.
It is still useful to compute several of these symbols individually, in the same manner
as (10.4.5) (working modulo 8): see Exercise 10.10. We summarize the results here:

(a, b)Q2 1 −3 −1 3 2 −6 −2 6
1 1 1 1 1 1 1 1 1
−3 1 1 1 1 −1 −1 −1 −1
−1 1 1 −1 −1 1 1 −1 −1
3 1 1 −1 −1 −1 −1 1 1
2 1 −1 1 −1 1 −1 1 −1
−6 1 −1 1 −1 −1 1 −1 1
−2 1 −1 −1 1 1 −1 −1 1
6 1 −1 −1 1 −1 1 1 −1

(10.4.6)

[[Unramified square symbol.]]

10.5 Unique division ring, second proof

We now proceed to give a second proof of Theorem 10.3.1; we will extend the valua-
tion v to one uniquely on a division quaternion algebra. For this, we will need to rely
a bit more heavily on the theory of local fields. We retain our assumption that F is a
nonarchimedean local field with valuation ring R, residue field k, and maximal ideal
p generated by a uniformizer π.
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Let K ⊇ F be a finite extension of fields. Then there exists a unique valuation w
on K such that w|F = v, and we say that w extends v: this valuation is defined by

w(x) =
v(NK/F(x))

[K : F]
; (10.5.1)

in particular, K is also a nonarchimedean local field. (The only nontrivial thing to
check is condition (iii), and this can be derived from the fact that

v(NK/F(x)) ≥ 0⇒ v(NK/F(x + 1)) ≥ 0

for x ∈ K and this follows by a direct examination of the minimal polynomial of x.)

Lemma 10.5.2. The integral closure of R in K is the valuation ring S = {x ∈ K :
w(x) ≥ 0}, and S is an R-order in K.

A finite extension K/F is unramified if a uniformizer π for F is also a uniformizer
for K. There is a unique unramified extension of F of any degree f ∈ Z≥1 and such
a field corresponds to the unique extension of the residue field k of degree f . In an
unramified extension K/F of degree [K : F] = f , we have NK/F(K×) = R×π fZ, so
b ∈ NK/F(K×) if and only if f | v(b).

10.5.3. If char k , 2, then by Hensel’s lemma, the unramified extension of degree
2 is given by adjoining a square root of the unique nontrivial class in k×/k×2; if
char k = 2, then the unramified extension of degree 2 is given by adjoining a root
of the polynomial x2 + x + t where t is a nontrivial class in the Artin-Schreier group
k/℘(k).

Let K ⊇ F be a finite separable extension of fields. We say K/F with e = [K : F]
is totally ramified if a uniformizer πK has the property that πe

K is a uniformizer for
F. For any finite separable extension K/F of degree n, there is a (unique) maximal
unramified subextension Kun/F, and the extension K/Kun is totally ramified.

K

Kun

e

F

f

We say that e = [K : Kun] is the ramification degree and f = [Kun : F] the inertial
degree, and we have the fundamental equality

n = [K : F] = e f . (10.5.4)
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We now seek to generalize these theorems to the noncommutative case. Let D be
a central simple division algebra over F with dimF D = [D : F] = n2. We extend the
valuation v to a map

w : D→ R ∪ {∞}

α 7→
v(ND/F(α))

[D : F]
=
v(nrd(α))

n
,

where the equality follows from the fact that ND/F(α) = nrd(α)n (see Section 6.7).

Lemma 10.5.5. The map w defines a valuation on D, i.e., the following hold:

(i) w(α) =∞ if and only if α = 0.

(ii) w(αβ) = w(α) + w(β) = w(βα) for all α, β ∈ D.

(iii) w(α + β) ≥ min(w(α), w(β)) for all α, β ∈ D.

(iv) w(D×) is discrete in R.

Proof. Statement (i) is clear (note it already uses that D is a division ring). Statement
(ii) follows from the multiplicativity of nrd and v. To prove (iii), we may assume
β , 0 and so β ∈ D×. We have w(α+ β) = w(β) +w(αβ−1 + 1). But the restriction of
w to F(αβ−1) is a discrete valuation, so w(αβ−1 + 1) ≥ min(w(αβ−1), w(1)) so by (ii)
w(α + β) ≥ min(w(α), w(β)), as desired. Finally, (iv) holds since w(D×) ⊆ v(F×)/n
and the latter is discrete.

From Lemma 10.5.5, we say that w is a discrete valuation on D since it satisfies
the same axioms as for a field. It follows from Lemma 10.5.5 that the set

O = {α ∈ D : w(α) ≥ 0}

is a ring, called the valuation ring of D.

Proposition 10.5.6. O is the unique maximal R-order in D, consisting of all elements
of D that are integral over R.

Proof. First, we prove that

O = {α ∈ D : α is integral over R}.

In one direction, suppose α ∈ D is integral over R. Since R is integrally closed, by
Lemma 8.3.10 the coefficients of the minimal polynomial f (x) ∈ F[x] of α belong to
R. Since D is a division ring, f (x) is irreducible and hence the reduced characteristic
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polynomial g(x) is a power of f (x) and thus has coefficients in R. The reduced norm
is the constant coefficient of g(x), so α ∈ O.

Now suppose α ∈ O, so that w(α) ≥ 0, and let K = F(α). Let f (x) ∈ F[x] be
the minimal polynomial of α. We want to conclude that f (x) ∈ R[x] knowing that
w(α) ≥ 0. But the restriction of w to K is the unique extension of v to K, and so
this is a statement about the extension K/F of local fields and therefore follows from
the theory in the commutative case. For completeness, we give the proof. Let L be
a splitting field of f (x) containing K. Then v extends to a unique valuation wL on L.
At the same time, the norm w on D restricts to a discrete valuation on K and hence
by equivalence of valuations, we have wL(α) ≥ 0. But now if f (x) =

∏n
i=1(x− αi) =

xn + · · ·+ a0 ∈ F[x] with αi ∈ L, then wL(αi) = a0 = w(α) ≥ 0. Thus the coefficients
of f (symmetric functions in the αi) belong to R, and so α is integral over R.

We can now prove that O is an R-order. Scaling any element α ∈ D× by an
appropriate power of π gives it positive valuation, so OF = D. So to conclude we
must show that O is finitely generated as an R-module. For this purpose, we may
assume that D is central over F, since the center K = Z(D) is a field extension of F
of finite degree and the integral closure of R in K is finitely generated as an R-module
(Lemma 10.5.2). A central division algebra is separable, so we may apply Lemma
8.4.1: every α ∈ O is integral over R and O is a ring, so the lemma implies that O is
an R-order.

Finally, it follows immediately that O is a maximal R-order: by Corollary 8.3.9,
every element of an R-order is integral over R, andO contains all such elements.

Remark 10.5.7. For a quaternion division algebra D, we can argue more directly in
the proof of Proposition 10.5.6 using the reduced norm: see Exercise 10.14.

It follows from Proposition 10.5.6 that O is a finitely generated R-submodule of
D. But R is a PID (every ideal is a power of the maximal ideal p) so in fact O is free
of rank [D : F] over R. We have

O× = {α ∈ D : w(α) = 0} (10.5.8)

since w(α−1) = −w(α) and α ∈ O× if and only if nrd(α) ∈ R×. Consequently,

P = {α ∈ D : w(α) > 0} = O \ O×

is the unique maximal two-sided ideal of O. Therefore O is a noncommutative local
ring, a ring with a unique maximal left (or right) ideal.

We are now prepared to give the second proof of the main result in this chapter
(Theorem 10.3.1). By way of analogy, we consider the commutative case: for an
extension L of F of degree [L : F] = n, we have a ramification degree e and an
inertial degree f with e f = n (10.5.4). The same will be true when B is a division



10.5. UNIQUE DIVISION RING, SECOND PROOF 129

quaternion algebra: we will show that O/P is a quadratic field extension of k and
hence that B contains an unramified separable quadratic extension K of F (extending
the analogy, that f = 2); and then computing with valuations we will conclude that
P2 = πO (and e = 2) from which the result follows.

Proof of Theorem 10.3.1. Suppose that v : F → Z≥0 ∪ {∞} is normalized and let
j ∈ P have minimal (positive) valuation w( j) ≥ 1/2. Then for any 0 , α ∈ P we
have w(α j−1) = w(α) − w( j) ≥ 0 so α j−1 ∈ O so α ∈ O j. Thus P = O j = jO =

O jO, since P is a two-sided ideal. Arguing in the same way, since

w( j) ≤ w(π) = v(π2) = 1 ≤ w( j2),

we conclude that P ⊇ πO ⊇ P2 = j2O. The map α 7→ α j yields an isomorphism
O/P ∼−→ P/P2 of k-vector spaces, so

4 = dimkO/πO ≤ dimkO/P + dimk P/P2 = 2 dimkO/P (10.5.9)

and thus dimkO/P ≥ 2; in particular, O/P , k.
SinceO\P = {x ∈ O : w(x) = 0} = O×, the ringO/P is a division algebra over

k and hence a finite division ring. But then by Wedderburn’s theorem (Exercises 3.12
and 5.11, or Exercise 6.16), the ring O/P is a field. Thus, there exists i ∈ O such
that O/P = k(i), since k is a finite field. Then K = F(i) is an unramified separable
quadratic extension of F and consequently dimkO/P = f = 2. Therefore equality
holds in (10.5.9), and so P2 = πO.

By Exercise 6.13, there exists b ∈ F× such that B �
(K, b

F

)
. But B is a division

ring if and only if b ∈ F× \ NK/F(K×) by Theorems 4.5.5 and 5.3.8. Since K/F is
unramified we have NK/F(K×) = R×π2Z, so we may take b = π (Exercise 5.3) and

B �
(K, π

F

)
is the unique division quaternion algebra over F.

Corollary 10.5.10. If F is nonarchimedean and B =

(K, b
F

)
, then B � M2(F) if K is

unramified over F (so v is split or inert in K) and v(b) = 0.

Remark 10.5.11. Let B �
(K, π

F

)
be a division quaternion algebra over F, so that K

is a separable quadratic subfield and j2 = π. As above, in analogy with the case of
field extensions, we define the ramification degree of B over F as e(B/F) = 2 and
the inertial degree of B over F as f (B/F) = 2 and note the equality e(B/F) f (B/F) =

4 = [B : F], as in the commutative case. This equality carries over more generally to
division algebras; see Exercise 10.17.
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10.6 Topology

In this section, we conclude with some discussion about the topology of algebras
over local fields.

Let F be a local field. Then F is locally compact (by definition) but is not itself
compact. The subgroup F× = F \ {0} is equipped the subspace topology; it is open
in F so F× is locally compact—this is quite visible when F = R,C is archimedean.
If F is nonarchimedean, with valuation ring R and valuation v, then F× is totally
disconnected and further R× = {x ∈ R : v(x) = 0} ⊂ R is closed so is a topological
abelian group that is compact (and totally disconnected).

Now let B be a finite-dimensional F-algebra. Then as a vector space over F, it
has a unique topology compatible with the topology on F, as any two norms on a
topological vector F-space (extending the norm on F) are equivalent (the sup norm
is equivalent to the sum of squares norm, etc.). Two elements are close in the topol-
ogy on B if and only if their coefficients are close with respect to a (fixed) basis: for
example, two matrices in Mn(F) are close if and only if all of their coordinate entries
are close. Consequently, B is locally compact topological ring (take a compact neigh-
borhood in each coordinate). It is also true that B× is a locally compact topological
group: the norm NB/F : B× → F× is a continuous map, so B× is open in B, and an
open subset of a Hausdorff, locally compact space is locally compact in the subspace
topology.

Example 10.6.1. If B = Mn(F), then B× = GLn(F) is locally compact: any closed,
bounded neighborhood that avoids the locus of matrices with determinant 0 is a
compact neighborhood. When F is archimedean, this is quite visual: any matrix
of nonzero determinant is at some finite distance away from the determinant zero
locus! Note however that GLn(F) is not itself compact since F× = GL1(F) is not
compact.

Now suppose F is nonarchimedean with valuation v and valuation ring R. Then
R is the maximal compact subring of F. Indeed, x ∈ F lies in a compact subring if
and only if v(x) ≥ 0 if and only if x is integral over R. The only new implication here
is the statement that if v(x) < 0 then x does not lie in a compact subring, and that is
because the sequence xn = xn does not have a convergent subsequence as |xn| → ∞.

Next, let O be an R-order in B. Then O � Rn is a free R-module of finite rank.
Choosing a basis, the above argument shows that O is compact as the Cartesian
power of a compact set. The groupO× is therefore also compact because it is closed:
for γ ∈ O, we have γ ∈ O× if and only if NB/F(γ) ∈ R× ⊂ R and R× = {x ∈ R :
v(x) = 0} ⊆ R is closed.
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Example 10.6.2. For R = Zp ⊆ F = Qp and B = Mn(Qp), the order O = Mn(Zp)
is compact (neighborhoods can be taken coordinatewise) and the subgroup O× =

GLn(Zp) is compact: there is no way to run off to infinity, either in a single coordinate
or via the determinant.

10.6.3. Suppose B = D is a division ring. Then the valuation ring O is the max-
imal compact subring of B, for the same reason as in the commutative case. In
this situation, the unit group O× is a pro-solvable group! We have a filtration
O ⊃ P ⊃ P2 ⊃ . . . giving rise to a filtration

O× ⊃ 1 + P ⊃ 1 + P2 ⊃ . . . .

As in the second proof of Theorem 10.3.1, the quotient O/P is a finite extension of
the finite residue field k, so (O/P)× is a cyclic abelian group. The maximal two-sided
ideal P is principal, generated by an element j of minimal valuation, and multipli-
cation by jn gives an isomorphism O/P ∼−→ Pn/Pn+1 of k-vector spaces (or abelian
groups) for all n ≥ 1.

Furthermore, for each n ≥ 1, we have an isomorphism of groups

Pn/Pn+1 ∼−→ (1 + Pn)/(1 + Pn+1)

α 7→ 1 + α.
(10.6.4)

Therefore, O× = lim←−n
(O/Pn)× is an inverse limit of solvable groups.

10.6.5. We will also want to consider norm 1 groups; for this, we assume that B is a
semisimple algebra. Let

B×1 = {α ∈ B : nrd(α) = 1}.

Then B×1 is a closed subgroup of B×, since the reduced norm is a continuous function.
If B is a divison ring and F is nonarchimedean, then B has a valuation ring O, and
B×1 = O×1 is compact. If B is a division ring and F is archimedean, then B � H and
B×1 � H×1 � SU(2) is compact (it is identified with the 3-sphere in R4). Finally, if
B is not a division ring, then either B is the product of two algebras or B is a matrix
ring over a division ring, and correspondingly B is not compact by considering the
subgroup (π, 1/π) or a unipotent subgroup.

10.7 Splitting fields

Proposition 10.7.1. Let B be a division quaternion ring over F, and let L be a sepa-
rable field extension of F of finite degree. Then L is a splitting field for B if and only
if [L : F] is even.
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Proof. We have B �
(K, π

F

)
where K is the unramified quadratic extension of F. Let

e, f be the ramification index and inertial degree of L. Then [L : F] = n = e f , so n is
even if and only if e is even or f is even.

But f is even if and only if L contains an unramified quadratic subextension,
necessarily isomorphic to K; but then K splits B so L splits B.

Otherwise, L is linearly disjoint from K so K ⊗F L = KL is the unramified

quadratic extension of L. Therefore B⊗F L �
(KL, π

L

)
. Let RL be the valuation ring

of L and let πL be a uniformizer for L. Then NKL/L(KL×) = R×L π
2Z
L . If L/F has

ramification index e, then π = uπe
L for some u ∈ R×L . Putting these together, we see

that B ⊗F L is a division ring if and only if π is a norm from KL if and only if e is
even.

Corollary 10.7.2. If K/F is a separable quadratic field extension, then K ↪→ B.

In other words, B contains every separable quadratic extension of F!

10.8 Extensions and further reading

10.8.1. The p-adic numbers were developed by Hensel. In the early 1920s, Hasse
used them in the study of quadratic forms and algebras over number fields. At the
time, what is now called the “local–global principle” then was called the the p-adic
transfer from the “small” to the “large”.

10.8.2. Theory of local fields: [Neu99, Corollary V.1.2]. serre.

10.8.3. Weil started this game in his basic number theory.

10.8.4. Theory of local division rings more generally and noncommutative local
rings.

10.9 Algorithmic aspects

Computing the Hilbert symbol

Exercises

10.1. Let k be a finite field and let Q : V → k be a ternary quadratic form. Show
that q is isotropic. [Hint: Reduce to the case of finding a solution to y2 = f (x)
where f is a polynomial of degree 2. Then only the case #k odd remains; show
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that f takes on at least (q + 1)/2 values in k but there are at most (q − 1)/2
nonsquares in k.]

Conclude again that there is no division quaternion ring over a finite field k.

10.2. Let k be a finite field with char k , 2 and let e ∈ k×. Show that there is an
isometry 〈−1, e〉 � 〈1,−e〉.

10.3. Let k be a finite field with even cardinality. Show that #k/℘(k) = 2, where ℘(k)
is the Artin-Schreier group.

10.4. Let F , C be a local field and let Q be a nonsingular ternary quadratic form
over F. Show that Q is isotropic over any quadratic field extension of F.

10.5. Let B be a division quaternion algebra over a nonarchimedean local field F.
Give another proof that the unramified quadratic extension K of F embeds in
B as follows.

Suppose it does not: then for all x ∈ O, the extension F(x)/F is ramified, so
there exists a ∈ R such that x − a ∈ P ∩ K(x); then write x = x0 = a + jx1,
where P = jO, and iterate to conclude that x =

∑∞
n=0 an jn with an ∈ R. But

F( j) is complete so O ⊆ F( j), a contradiction.

10.6. Let B be a division quaternion algebra over the nonarchimedean local field F.

a) Show that B is a complete, locally compact topological ring and that O
is the maximal compact subring of B.

b) Show that O× and B×/F× are compact topological groups.

c) Conclude that the smooth, irreducible complex representations of B× are
finite dimensional, and compare this with the alternative B � M2(F).

10.7. Show that the table of Hilbert symbols (10.4.3) is correct.

10.8. Let F be a local field and K the unramified quadratic extension of F. Compute
the K-left regular representation of a division quaternion algebra B over F
(2.2.8) and identify the maximal order R and the maximal ideal P.

10.9. Prove a descent for the Hilbert symbol, as follows. Let K be a finite extension
of the local field F with char F , 2 and let a, b ∈ F×. Show that (a, b)K =

(a,NK/F(b))F .

10.10. Show that the table of Hilbert symbols (10.4.6) is correct by considering the
equation ax2 + by2 ≡ 1 (mod 8).
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10.11. [[Alternative method for computing the Hilbert symbol.]]

10.12. One can package Paragraph 10.4.4 together with multiplying by squares to
prove the following more general criterion. For a, b ∈ F×, we have

(a, b)F = (−1)v(a)v(b)(q−1)/2
(

a
π

)v(b)
b
π


v(a)

where a = a0π
v(a) and b = b0π

v(b) (and v(π) = 1).

10.13. Consider B =

(−1,−1
Q2

)
and letO = Z2⊕Z2i⊕Z2 j⊕Z2(1+i+ j+i j)/2. Show

that B is a division ring. Give an explicit formula for the discrete valuation w
on B (extending the valuation v on Q2) and prove that O is its valuation ring.

10.14. Let B be a division quaternion algebra over F. Show that α ∈ B is integral
over R if and only if nrd(x), nrd(x + 1) ∈ R if and only if w(x), w(x + 1) ≥ 0,
where w is the valuation on B.

10.15. Let B be a division quaternion algebra over a nonarchimedean local field F,
and let O be the valuation ring. Show that every one-sided (left or right) ideal
of O is a power of the maximal ideal J and hence is two-sided.

10.16. Let F be a nonarchimedean local field, let B = M2(F) and O = M2(R). Show
that there are q + 1 right O-ideals of norm p corresponding to the elements of
P1(k) or to the lines in k2.

10.17. Let D be a finite-dimensional division algebra over a nonarchimedean local
field F of degree [D : F] = n2 with valuation ring O and two-sided ideal P.
Show that O/P is finite extension of k of degree n and Jn = OπO.

10.18. Show that (10.6.4) is an isomorphism of (abelian) groups.



Chapter 11

Quaternion algebras over global
fields

In this chapter, we discuss quaternion algebras over global fields and characterize
them up to isomorphism.

11.1 Ramification

To motivate the classification of quaternion algebras over Q, we consider by analogy
a classification of quadratic fields. For this purpose, we restrict to the following class.

Definition 11.1.1. A quadratic field F = Q(
√

d) of discriminant d ∈ Z is mildly
ramified if 8 - d.

A quadratic field F is mildly ramified if and only if F = Q(
√

m) where m , 1 is
odd and squarefree; then d = m or d = 4m according as m = 1, 3 (mod 4).

Let F = Q(
√

d) be a mildly ramified quadratic field of discriminant d ∈ Z and
let R be its ring of integers. The primes p that ramify in F, so pR = p2 for a prime
ideal p ⊂ R, are precisely those with p | d.

But a discriminant d can be either positive or negative; to put this bit of data on
the same footing, we define the set of places of Q to be the primes together with
the symbol ∞, and we make the convention that ∞ ramifies in F if d < 0 and is
unramified if d > 0. This convention is sensible, because when d < 0 we have
only one way to embed Q(

√
d) ↪→ C up to complex conjugation—only one place

above∞ in F, so ramified—whereas there are two essentially distinct ways to embed
Q(
√

d) ↪→ R when d > 0 (two places above∞ in F).
Let F = Q(

√
d) be a mildly ramified quadratic field, and let Ram(F) be the set

of places that ramify in F. The set Ram(F) determines F up to isomorphism, since

135
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the discriminant of F is the product of the odd primes in Ram(F), multiplied by 4 if
2 ∈ Ram(F) and by−1 if∞ ∈ Ram(F). (For bookkeeping reasons, in this context it
would probably therefore be better to consider 4 and −1 as primes, but we will resist
the inducement here.) However, not every finite set of places Σ occurs: the product d
corresponding to Σ is a discriminant if and only if d ≡ 0, 1 (mod 4). We call this a
parity condition on the set of ramifying places of a mildly ramified quadratic field:

2 ∈ Σ ⇐⇒ there are an odd number of primes p ∈ Σ with p ≡ −1 (mod 4)

(with the convention that∞ is congruent to −1 (mod 4)).
Note that if Σ is a finite subset of places of Q and 2 < Σ, then precisely one of

either Σ or Σ ∪ {∞} satisfies the parity condition; accordingly, if we define m(Σ) to
be the product of all odd primes in Σ multiplied by−1 if∞ ∈ Σ, then we can recover
Σ from m(Σ).

We have proven the following result.

Lemma 11.1.2. The maps F 7→ Ram(F) and Σ 7→ m(Σ) furnishes a bijection{ Mildly ramified quadratic fields
Q(
√

d) up to isomorphism

}
←→

{ Finite subsets of places of Q
satisfying the parity condition

}
←→ {Squarefree odd integers m , 1} .

This classification procedure using sets of ramifying primes and discriminants
works as well for quaternion algebras over Q. Let B be a quaternion algebra over
Q. When is a prime p ramified in B? In Chapter 10, we saw that the completion
Bp = B⊗Q Qp is either a division ring or the matrix ring M2(Qp). Further, when Bp

is a division ring, the valuation ring Op ⊂ Bp is the unique maximal order, and the
unique maximal ideal Pp ⊂ Op satisfies pOp = P2

p. So by analogy with the quadratic
case, we say that a place v is ramified in B if the completion Bv is a division ring, and
otherwise v is unramified (or split).

There are only finitely many places where B =

(a, b
Q

)
is ramified: by the calcula-

tion of the Hilbert symbol (Paragraph 10.4.4), if p - 2ab is prime, then (a, b)Qp = 1
and p is split in B. Therefore # Ram(B) <∞.

Let Ram(B) be the set of ramified places of B. Not every finite subset Σ of
places can occur as Ram(B) for a quaternion algebra B. It turns out that the parity
condition here is that we must have #Σ even. So again, if Σ is a finite set of primes,
then precisely one of either Σ or Σ ∪ {∞} can occur as Ram(B). We define the
discriminant of B to be the product disc(B) of primes that ramify in B, so disc(B) a
squarefree positive integer.

The main result of this chapter, specialized to the case F = Q, is then the follow-
ing.
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Theorem 11.1.3. The maps B 7→ Ram(B) and Σ 7→∏
p∈Σ p furnish bijections{ Quaternion algebras over Q

up to isomorphism

}
←→

{ Finite subsets of places of Q
of even cardinality

}
←→ {d ∈ Z>0 squarefree} .

The composition of these maps is B 7→∏
p∈Ram(B) p = disc(B).

Having stated Theorem 11.1.3, we will spend the next two sections giving a self-
contained proof, assuming two statements from basic number theory (quadratic reci-
procity, and primes in arithmetic progression). Although the proofs presented do not
generalize to an arbitrary global field, the argument is simple enough and its structure
is good motivation for the more involved treatment in the chapter ahead.

11.2 Hilbert reciprocity over the rationals

To begin, we look into the parity condition: it has a simple reformulation in terms of
the Hilbert symbol (Section 4.7). For a place v of Q, let Qv denote the completion
of Q at the absolute value associated to v: if v = p is prime, then Qv = Qp is the
field of p-adic numbers; if v = ∞ is the real place, then Qv = R. For a, b ∈ Q×, we
abbreviate (a, b)Qv = (a, b)v.

Proposition 11.2.1 (Hilbert reciprocity). For all a, b ∈ Q×, we have∏
v

(a, b)v = 1, (11.2.2)

the product taken over all places v of Q.

The product (11.2.2) is well-defined, because we just saw that for all primes
p - 2ab, we have (a, b)p = 1. The following corollary is then immediate.

Corollary 11.2.3. Let B be a quaternion algebra over Q. Then the set Ram(B) is
finite of even cardinality.

The law of Hilbert reciprocity, as it turns out, is a core premise in number theory:
it is equivalent to the law of quadratic reciprocity(

p
q

) (
q
p

)
= (−1)

p−1
2

q−1
2 (11.2.4)

for odd primes p, q together with the supplement(−1
p

)
= (−1)

p−1
2 and

(2
p

)
= (−1)

p2−1
8 (11.2.5)
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for odd primes p.
We now give a proof of Hilbert reciprocity (Proposition 11.2.1), assuming the

law of quadratic reciprocity and its supplement.

Proof of Proposition 11.2.1. Since the Hilbert symbol is bilinear, it suffices to prove
the statement when a, b ∈ Z are equal to either −1 or a prime number. The Hilbert
symbol is also symmetric, so we may interchange a, b.

If a = b = −1, then B =

(a, b
Q

)
=

(−1,−1
Q

)
is the rational Hamiltonians, and

we have (−1,−1)∞ = (−1,−1)2 = −1 and (−1,−1)v = 1 if v , 2,∞, by the
computation of the even Hilbert symbol (Paragraph 10.4.5). Similarly, the cases with
a = −1, 2 follow from the supplement (11.2.5), and are requested in Exercise 11.1.

So we may suppose a = p and b = q are primes. If p = q then
( p, p
Q

)
�

(−1, p
Q

)
and we reduce to the previous case, so we may suppose p , q. Since p, q > 0, we
have (p, q)∞ = 1. We have (p, q)` = 1 for all primes ` - 2pq. We have

(p, q)p = (q, p)p =

(
q
p

)
and (p, q)q =

(
p
q

)
by Paragraph 10.4.4. Finally, we have

(p, q)2 = −1 if and only if p, q ≡ 3 (mod 4)

i.e., (p, q)2 = (−1)(p−1)(q−1)/4, again by the computation of the even Hilbert symbol
(10.4.5). Thus the product becomes∏

v

(p, q)v = (−1)(p−1)(q−1)/4
(

p
q

) (
q
p

)
= 1

by quadratic reciprocity.

Hilbert reciprocity has several aesthetic advantages over the law of quadratic
reciprocity. For one, it is simpler to write down! Also, Hilbert believed that his
reciprocity law is a kind of analogue of Cauchy’s integral theorem, expressing an
integral as a sum of residues (11.9.6). The fact that a normalized product over all
places is trivial also arises quite naturally: if we define for x ∈ Q× and a prime p the
normalized absolute value

|x|p = p− ordp(x),

and |x|∞ the usual archimedean absolute value, then∏
v

|x|v = 1
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by unique factorization in Z; this is called the product formula for Q, for obvious
reasons.

From the tight relationship between quaternion algebras and ternary quadratic
forms, we obtain the following corollary.

Corollary 11.2.6. Let Q be a nonsingular ternary quadratic form over Q. Then the
set of places v such that Qv is anisotropic is finite and of even cardinality.

In particular, by Corollary 11.2.6 we have that if Qv is isotropic for all but one
place v of Q, then Qv is in fact isotropic for all places v.

Proof. In the bijection of Theorem 4.4.5, the quadratic form Q corresponds to a

quaternion algebra B =

(a, b
Q

)
, and by Theorem 4.5.5, Q is isotropic if and only if

B is split if and only if (a, b)Q = 1. By functoriality, the same is true over each
completion Qv for v a place of Q, and therefore the set of places v where Qv is
isotropic is precisely the set of ramified places in B. The result then follows by
Hilbert reciprocity.

To conclude this section, we show that every allowable product of Hilbert sym-
bols is obtained.

Proposition 11.2.7. Let Σ be a finite set of places of Q of even cardinality. Then
there exists a quaternion algebra B over Q with Ram(B) = Σ.

Just as with Hilbert reciprocity, Proposition 11.2.7 touches on a deep statement
in number theory concerning primes.

Theorem 11.2.8 (Primes in arithmetic progression). Given a, n ∈ Z coprime, there
are infinitely many primes p ≡ a (mod n).

We now prove Proposition 11.2.7 assuming Theorem 11.2.8.

Proof. Let d =
∏

p∈Σ p be the product of the primes in Σ, and let u = −1 if∞ ∈ Σ

and u = 1 otherwise. Let d∗ = ud. We consider quaternion algebras of the form

B =

(d∗, q∗

Q

)
with q∗ = uq (and q prime) satisfying certain congruence conditions to ensure
Ram(B) = Σ. To this end, we seek a prime q such that

q∗ is a quadratic nonresidue modulo p for all odd p | d (11.2.9)
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and

q∗ ≡
1 (mod 8), if 2 - d;

5 (mod 8), if 2 | d.
(11.2.10)

There exists a prime satisfying the conditions (11.2.9)–(11.2.10) by the theorem
on primes in arithmetic progression (Theorem 11.2.8), since the condition to be a
quadratic nonresidue is a congruence condition on q∗ and hence on q modulo p.

We now verify that B has Ram(B) = Σ. We have (d∗, q∗)∞ = u by choice of signs
and (d∗, q∗)p = 1 for all p - 2dq. We compute that

(d∗, q∗)p =

(
q∗

p

)
= −1 for all odd p | d

by (11.2.9). For p = 2, we find that (d∗, q∗)2 = −1 or (d∗, q∗)2 = 1 according as 2 | d
or not by the computation of the even Hilbert symbol (10.4.5). This shows that

Σ ⊆ Ram(B) ⊆ Σ ∪ {q}.

The final symbol (d∗, q∗)q is determined by Hilbert reciprocity (Proposition 11.2.1):
since #Σ is already even, we must have (d∗, q∗)q = 1 and Σ = Ram(B).

11.3 Hasse–Minkowski theorem over the rationals

To complete the proof of Theorem 11.1.3, we need to show that the association B 7→
Ram(B) is injective (on isomorphism classes).

Proposition 11.3.1. Let A, B be quaternion algebras overQ. Then A � B if and only
if Ram(A) = Ram(B) if and only if Av � Bv for all (but one) places v.

The statement of Proposition 11.3.1 is a local–global principle: the global iso-
morphism class is determined by the local behavior at primes. For example, we have
the following consequence.

Corollary 11.3.2. Let B be a quaternion algebra over Q. Then B � M2(Q) if and
only if Bp � M2(Qp) for all primes p.

By the equivalence between quaternion algebras and quadratic forms (Chapter 4
and specifically Section 4.4), the statement of Proposition 11.3.1 is equivalent to the
statement that a ternary quadratic form overQ is isotropic if and only if it is isotropic
over all (but one) completions. In fact, the more general statement is true—and again
we come in contact with a deep result in number theory.
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Theorem 11.3.3 (Hasse–Minkowski). Let Q be a quadratic form over Q. Then Q is
isotropic if and only if Qv is isotropic for all places v of Q.

This theorem of Hasse–Minkowski is more generally called the Hasse principle
(see Paragraph 11.9.4).

We will prove the Hasse–Minkowski theorem by induction on the number of vari-
ables. Of particular interest is the case of (nondegenerate) ternary quadratic forms,
for which we have the following theorem of Legendre.

Theorem 11.3.4 (Legendre). Let a, b, c ∈ Z be nonzero, squarefree integers that are
relatively prime in pairs. Then the quadratic form

ax2 + by2 + cz2 = 0

has a nontrivial solution if and only if a, b, c do not all have the same sign and

−ab, −bc, −ac are quadratic residues modulo |c|, |a|, |b|, respectively.

Proof. First, the conditions for solvability are indeed necessary. The condition on
signs is necessary for a solution in R. If ax2 + by2 + cz2 = 0 with x, y, z ∈ Q not all
zero, then scaling we may assume x, y, z ∈ Z satisfy gcd(x, y, z) = 1; if p | c then
p - y (else p | x so p | z, contradiction), so (x/y)2 ≡ (−b/a) (mod |c|) so −ba is a
quadratic residue modulo |c|; the other conditions hold by symmetry.

So suppose the conditions hold. Multiplying through and rescaling by squares,
we may assume a, b are squarefree (but not necessarily coprime) and c = −1, and we
seek a nontrivial solution to ax2 +by2 = z2. If a ∈ Q×2, then we are done. Otherwise,
we need to solve

z2 − ax2

y2 = b = NQ(
√

a)/Q

(
z + x

√
a

y

)
for x, y, z ∈ Q and y , 0, i.e., we need to show that b is a norm from F = Q(

√
a).

By hypothesis, a, b are not both negative and

b is a square modulo |a| and a is a square modulo |b|. (11.3.5)

We may also assume |a| ≤ |b|.
We use complete induction on m = |a| + |b|. If m = 2, then we have the equation

±x2±y2 = z2 with the case both negative signs excluded, each of which has solutions.
Now suppose that m > 2 so |b| ≥ 2, and let p | b be prime divisor. By hypothesis,
there exist integers t, b′ such that t2 = a + bb′; taking a small residue, we may assume
|t| < |b|/2. Thus

bb′ = t2 − a = NF/Q(t +
√

a)
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so bb′ is a norm from F. Thus b is a norm if and only if b′ is a norm. But

∣∣∣b′∣∣∣ =

∣∣∣∣∣∣ t2 − a
b

∣∣∣∣∣∣ ≤ |b|4 + 1 < |b|

because |b| ≥ 2. Now write b′ = b′′u2 with b′′, u ∈ Z and b′′ squarefree. Then |b′′| ≤
|b′| < |b| and b′′ is a norm if and only if b′ is a norm. With these manipulations, we
propagate the hypothesis that |a| is a square modulo |b′′| and |b′′| is a square modulo
|a|. Therefore, the induction hypothesis applies to the equation ax2 + b′′y2 = z2, and
we are done.

Corollary 11.3.6. Let Q be a nondegenerate ternary quadratic form over Q. Then
Q is isotropic if and only if Qv is isotropic for all (but one) places v of Q.

Proof. If Q is isotropic, then Qv is isotropic for all v. For the converse, suppose that
Qv is isotropic for all places v of Q. As in the proof of Legendre’s Theorem 11.3.4,
we may assume Q(x, y, z) = ax2 + by2 − z2. The fact that Q is isotropic over R
implies that a, b are not both negative. Now let p | a be odd. The condition that Qp

is isotropic is equivalent to (a, b)p = (b/p) = 1; putting these together, we conclude
that b is a quadratic residue modulo |a|. The same holds for a, b interchanged, so
(11.3.5) holds and the result follows.

We are now in a position to complete the proof of the Hasse–Minkowski theorem.

Proof of Theorem 11.3.3. We may assume that Q is nondegenerate in n ≥ 1 vari-
ables. If n = 1, the statement is vacuous. If n = 2, the after scaling we may assume
Q(x, y) = x2 − ay2 with a ∈ Q×; since Qp is isotropic for all primes p, we have
a ∈ Q×2

p so in particular ordp(a) is even for all primes p; since Q is isotropic at∞,
we have a > 0; thus by unique factorization, we have a ∈ Q×2 and the result follows.
If n = 3, the statement is proven in Corollary 11.3.6.

Now suppose n ≥ 4. Write Q = 〈a, b〉 ⊥ −Q′ where Q′ = 〈c1, . . . , cn−2〉 and
a, b, ci ∈ Z. Let d = 2ab(c1 · · · cn−2) , 0. For each prime p | d, since Q is isotropic,
there exists tp ∈ Q×p represented by both 〈a, b〉 and Q′ in Qp. (This requires a
small argument, which is left as Exercise 11.4.) Similarly, there exists t∞ ∈ R×
represented by these forms in R.

By another application of primes in arithmetic progression (Exercise 11.5), there
exists t ∈ Q× such that:

(i) t ∈ tpQ×2
p for all primes p | d,

(ii) t and t∞ have the same sign, and

(iii) p - t for all primes p - d except possibly for one prime q - d.
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Now the quadratic form 〈a, b,−t〉 is isotropic for all p | d and at∞ by construction
and at all primes p - d except p = q since p - abt. Therefore, by case n = 3 (using
the “all but one” in Corollary 11.3.6), the form 〈a, b,−t〉 is isotropic.

On the other side, if n = 4, then the form 〈t〉 ⊥ Q′ is isotropic by the same
argument. If n ≥ 5, then we apply the induction hypothesis to Q′: the hypothesis
holds, since we have Q′ is isotropic at ∞ and all p | d by construction, and for
all p - d the completion Q′p is a nondegenerate form in ≥ 3 variables over Zp so
is isotropic by the results of Section 10.3, using Hensel’s lemma to lift a solution
modulo the odd prime p.

Finally, putting these two together, we find that Q is isotropic over Q.

We conclude with the following consequence, which immediately implies Propo-
sition 11.3.1.

Corollary 11.3.7. Let Q,Q′ be quadratic forms over Q in the same number of vari-
ables. Then Q � Q′ are isometric if and only if Qv � Q′v for all places v.

Proof. The implication (⇒) is immediate. We prove (⇐) by induction on the num-
ber of variables, the case of n = 0 variables being clear. By splitting the radical
(Paragraph 4.2.12), we may assume that Q,Q′ are nondegenerate. Let a ∈ Q× be
represented by Q. Since Qv � Q′v the quadratic form 〈a〉 ⊥ Q′ is isotropic at v for all
v, so Q′ represents a (Lemma 4.5.4). So in both cases, we can write Q � 〈a〉 ⊥ Q1
and Q′ � 〈a〉 ⊥ Q′1 for quadratic forms Q1,Q′1 in one fewer number of variables. Fi-
nally, by Witt cancellation (Proposition 4.2.16), from Qv � Q′v we have (Q1)v � (Q′1)v
for all v, so by induction, we have Q1 � Q′1, and thus Q � Q′.

In summary, the classification of quaternion algebras overQ embodies some deep
statements in number theory: quadratic reciprocity (and its reformulation in Hilbert
reciprocity), the Hasse-Minkowski theorem (the local–global principle for quadratic
forms), and the proofs use the theorem of primes in arithmetic progression! It is a
small blessing that we can make these essentially elementary arguments over Q. In
the more general case, we must dig more deeply.

11.4 Global fields

In this chapter and in many that remain, we focus on a certain class of fields of arith-
metic interest: a global field is a finite extension of Q (a number field) or Fp(t) (a
function field) for a prime p. Global fields are strongly governed by their comple-
tions with respect to nontrivial absolute values, which are local fields. Throughout
this text, we will return to this theme that global behavior is governed by local be-
havior.
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For the rest of this chapter, let F be a global field. The set of places of F is the
set of equivalence classes of embeddings ιv : F → Fv where Fv is a local field and
ιv(F) is dense in Fv; two embeddings ιv : F → Fv and ι′v : F → F′v are equivalent if
there is an isomorphism of topological fields φ : Fv → F′v such that ι′v = φ ◦ ιv.

Every valuation v : F → R ∪ {∞}, up to scaling, defines a place ιv : F →
Fv where v is the completion of F with respect to the absolute value induced by
v; we call such a place nonarchimedean, and using this identification we will write
v for both the place of F and the corresponding valuation. For a nonarchimedean
place v corresponding to a local field Fv, we denote by Rv its valuation ring, pv its
maximal ideal, and kv its residue field. If F is a function field, then all places of F
are nonarchimedean. If F is a number field, a place F ↪→ R is called a real place
and a place F ↪→ C (equivalent to its complex conjugate) is called a complex place.
A real or complex place is archimedean.

A global field F has a set of preferred embeddings ιv : F ↪→ Fv corresponding
to each place v (equivalently, a preferred choice of absolute values | |v for each place
v) such that the product formula holds: for all x ∈ F×, we have∏

v

|x|v = 1. (11.4.1)

The preferred absolute values are defined as follows.

11.4.2. The set of places of Q consists of the archimedean real place, induced by the
embeddingQ ↪→ R and the usual absolute value |x|∞, and the set of nonarchimedean
places indexed by the primes p given by the embeddingsQ ↪→ Qp, with the preferred
absolute value

|x|p = p− ordp(x).

The statement of the product formula for x ∈ Q is∏
p

p− ordp(x)|x|∞ = 1

and this follows from unique factorization in Z.

11.4.3. The set of places of Fp(t) is indexed by monic irreducible polynomials f (t) ∈
Fp[t] with preferred absolute value

|x(t)| f = p−(deg f ) ord f (x)

and 1/t, the place at infinity, with preferred absolute value

|x(t)|1/T = pdeg x.
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Then the statement of the product formula for x(t) ∈ Fp(t) is∏
f

p(deg f ) ord f (x) = pdeg x

which follows from unique factorization in Fp[t].

11.4.4. More generally, let K/F be a finite extension of global fields. Let v be a place
of F with a preferred absolute value and let w is a place of K above v. Then the
preferred absolute value for w is

|x|w = |NK/F(x)|1/[K:F]
v

for x ∈ K; note that if x ∈ F then

|x|w = |NK/F(x)|1/[K:F]
v = |x|v,

so the absolute value | |w extends | |v, and thus this definition is compatible with fur-
ther field extensions. [[In a potentially different way than valuations extend.]]

If F satisfies the product formula (11.4.1) with respect to preferred absolute val-
ues, then so does K, since

∏
w

|x|w =
∏
v

∏
w|v
|x|w

 =
∏
v

|NK/F(x)|v = 1.

Therefore every global field satisfies the product formula with respect to preferred
absolute values.

11.4.5. Let F be a global field. Let S be a nonempty finite set of places of F con-
taining all archimedean places of F (if F is a number field).

The ring of S-integers in F is the set

RS = {x ∈ F : v(x) ≥ 0 for all v < S}.

This definition makes sense as if v < S then by hypothesis v is nonarchimedean. We
will often abbreviate R = RS .

Example 11.4.6. If F is a number field and S consists only of the archimedean places
in F then RS is the ring of integers in F, the integral closure of Z in F. If F is a
function field, corresponding to a curve X, then RS is the ring of all rational functions
with no poles outside S .
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11.5 Ramification and discriminant

Let R = RS be an S-integer ring of F. Let B be a quaternion algebra over F.

Definition 11.5.1. Let v be a place of F. We say that B is ramified at v if Bv = B⊗F Fv

is a division ring; otherwise we say that B is split (or unramified) at v. Let Ram(B)
denote the set of ramified places of B.

We use the term ramified for the following reason: if Bp is a division ring with
valuation ring Op, then pOp = P2 for a two-sided maximal ideal P, by the results of
Section 10.5. In a similar way, we will see that if p is a prime of R unramified in B,
then there exist R-lattices of reduced norm p, so the term split is justified.

Lemma 11.5.2. The set Ram(B) of ramified places of B is finite.

Proof. Let B =

(K, b
F

)
. Since F has only finitely many archimedean places, we may

suppose v is nonarchimedean. The extension K/F is ramified at only finitely many
places, so we may assume that K/F is unramified at v (the corresponding prime p
is split or inert). Finally, we have v(b) = 0 for all but finitely many v, so we may

assume v(b) = 0. But then under these hypotheses, we have Bv =

(Kv, b
Fv

)
is split, by

Corollary 10.5.10.

Motivated by the fact that the discriminant of a quadratic field extension is divis-
ible by ramifying primes, we make the following definition.

Definition 11.5.3. The discriminant of B (relative to S) is the R-ideal

discS (B) =
∏

p ramified
p<S

p ⊆ R

obtained as the product of all primes p of R ramified in B.

11.5.4. When F is a number field and S consists of archimedean places only, so R
is the ring of integers of F, then we sometimes abbreviate discS (B) = disc(B). Note
that the discriminant discS (B) discards information about primes in S , so one should
refer to the set of ramified places for something independent of S .

The discriminant captures maximal R-orders in B, as follows: in particular, we
will see that maximal R-orders are characterized by their discriminants (and hence
by the ramified places of B not in S).

Proposition 11.5.5. Let O be an R-order in B. Then O is maximal if and only if
discrd(O) = discS (B).
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Proof. The order O is maximal if and only if Op is maximal for all primes p of R
by Lemma 12.4.2, so it suffices to prove this statement locally. If B is split at p then
Bp � M2(Fp), and an order is maximal if and only if it is isomorphic to M2(Rp). But
M2(Rp) has discriminant Rp by Exercise 13.3, and by Lemma 13.2.16, an order is
maximal if and only if it has discriminant Rp.

In a similar way, if B is ramified at p then Bp has a unique maximal order of
discriminant pRp, and the same argument applies.

Remark 11.5.6. The preceding results have an analogue in the case of a quadratic
field extension. Let K be a quadratic extension of F and suppose that 1/2 ∈ R. Let
S be the integral closure of R in K. Then an R-order in K is maximal if and only if
its discriminant is equal to

disc(S ) =
∏

p ramified in K
p<S

p ⊆ R.

11.5.7. It follows from Proposition 11.5.5 that

discS (B) | discrd(O).

So we define the level of an order O is the R-ideal

N = N(O) = discrd(O) discS (B)−1 ⊆ R.

11.6 Quaternion algebras over global fields

In the final section of this chapter, we deduce results characterizing isomorphism
classes of quaternion algebras assuming two results from number theory. In later
chapters, we give two self-contained proofs: an analytic approach using L-functions
(Chapter [[??]]) and a cohomological approach using ideles (Chapter [[??]]). These
arguments are more involved, and so for now we merely provide an exposition of the
statements.

The main result is as follows.

Theorem 11.6.1. The map B 7→ Ram(B) gives a bijection{ Quaternion algebras over F
up to isomorphism

}
←→

{ Finite subsets of noncomplex places
of F of even cardinality

}
.

Theorem 11.6.1 is comparable in depth and difficulty to the main theorems of
class field theory; no proof that avoids these techniques is known. Several corollaries
are important to note.
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Corollary 11.6.2. Let B be a quaternion algebra over a global field. Then the set of
places of F where B is ramified is finite and of even cardinality.

Recall the definition of the Hilbert symbol (Section 4.7). For a place v of F, we
abbreviate (a, b)Fv = (a, b)v; this symbol was computed for v an odd nonarchimedean
place (10.4.3).

Corollary 11.6.3 (Hilbert reciprocity). Let F be a global field with char F , 2 and
let a, b ∈ F×. Then ∏

v

(a, b)v = 1.

The statement of Hilbert reciprocity (Corollary 11.6.2) can be rightly seen as a
law of quadratic reciprocity for number fields; indeed, it is equivalent to the law of
quadratic reciprocity over Q, as we saw in Section 11.2.

Corollary 11.6.4. Let A, B be quaternion algebras over F. Then A � B if and only
if Ram(A) = Ram(B) if and only if Av � Bv for all (but one) places v of F.

In particular, B � M2(F) if and only if Ram(B) = ∅.

The statement of Corollary 11.6.4 is a local–global principle: the global isomor-
phism class is determined by the local behavior at primes.

Corollary 11.6.5. A finite extension K/F splits B if and only if Kw/Fv splits Bv for
all places w (over v) of K.

Proof. K splits B if and only if B⊗F K � M2(K) if and only if B⊗F Kw = Bv⊗Fv Kw �

M2(Kw) for all places w over v of K.

To prove Theorem 11.6.1, we will use the following two fact, whose proof we
delay until Chapter [[??]]: it is the case of what is known as the Hasse norm theorem
for quadratic extensions.

Claim 11.6.6. Let K/F be a separable quadratic F-algebra, and let b ∈ F×. Then
b ∈ NK/F(K×) if and only if b ∈ NKv/Fv(K

×
w ) for all places v of F.

This statement is summarized as everywhere local norms are global norms. Since

every quaternion algebra is of the form B =

(K, b
F

)
with K separable over F, and

B � M2(F) if and only if b ∈ NK/F(K×), the claim is equivalent to the statement that
B � M2(F) if and only if Ram(B) = ∅.
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11.7 Hasse–Minkowski theorem

Claim 11.7.1. Let K/F be a separable quadratic F-algebra. Then K � F × F if and
only if Kv � Fv × Fv for all places v of F.

If char F , 2, and we can complete the square to obtain K = F(
√

a) with a ∈
F×, then this claim becomes a ∈ F×2 if and only if a ∈ F×2

v for all places v of F:
everywhere local squares are global squares. This claim is the simpler, commutative
analogue of the final statement in Corollary 11.6.4.

We now use these two claims to prove the Hasse–Minkowski theorem.

Theorem 11.7.2 (Hasse-Minkowski). Let F be a field with char F , 2 and let Q be
a quadratic form over F. Then Q is isotropic if and only if Qv is isotropic over Fv for
all places v of F.

Proof. It suffices to prove sufficiency. We may assume, without loss of generality,
that Q is nondegenerate. If n = dim Q = 1, the theorem is vacuous. If n = 2,
then after scaling we may assume Q = 〈1,−a〉; the equivalence follows immediately
from Claim 11.7.1. If n = 3, then we may take Q = 〈1,−a,−b〉, and the equivalence
follows from Claim 11.6.6.

11.8 Representative quaternion algebras

Write down explicit representation of quaternion algebras and maximal orders based
on their discriminant.

Over Q, can do this with formulas.
More generally, use primes in arithmetic progression. See also [Lem11, Proposi-

tion 2.10, Proposition 6.9].

11.9 Extensions and further reading

11.9.1. Conway would tell us to take −1 as a prime.

11.9.2. Proof of quadratic reciprocity.

11.9.3. Primes in arithmetic progression.

11.9.4. Called the Hasse principle because of Hasse’s contribution over number
fields. See Fenster and SchwŁrmer [FS07]. [FS07].

11.9.5. The definitions for the preferred absolute values may seem boring, but we
will see later that they are natural from the perspective of Haar measure.
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11.9.6. Hilbert saw his reciprocity law for the product of the Hilbert symbols as an
analogue of Cauchy’s integral theorem; more precisely (according to Shafarevich), it
is the analogue of the corollary to Cauchy’s integral theorem that say that the sum of
the residues of a holomorphic differential at all points of a Riemann surfaces is zero.
In this analogy, the symbol (a, b)p is the analogue of the differential a db at the point
p.

11.10 Algorithmic aspects

Effective solution of conics, geometry of numbers.
Computing the set of ramified places.
Computing a representative algebra.

Exercises

11.1. Complete the proof of Hilbert reciprocity (Proposition 11.2.1) in the remaining
cases (a, b) = (−1, 2), (2, 2), (−1, p), (2, p). In particular, show that(−1, 2

Q

)
�

(2, 2
Q

)
� M2(Q)

and

(a, p)2 = (a, p)p =

(
a
p

)
for a = −1, 2 (cf. Paragraph para:Hilbm1m1).

11.2. Show that the law of Hilbert reciprocity (Proposition 11.2.1) implies the law of
quadratic reciprocity; with the argument given in section 11.1, this completes
the equivalence of these two laws.

11.3. Show that Legendre’s theorem can be deduced from the statement where a, b >
0 and c = −1.

11.4. Let Q = Q′ ⊥ Q′′ be an orthogonal sum of two nondegenerate quadratic forms
over a field F. Show that Q is isotropic if and only if there exists c ∈ F that is
represented by both Q′ and Q′′.

11.5. Let S be a finite set of places of Q containing∞. For each v ∈ S , let tv ∈ Q×v
be given. Show that there exists t ∈ Q× such that t ∈ tvQ×2

v for all v ∈ S and
ordp(t) = 0 for all p < S \ {∞} except (possibly) for one prime p = q.



11.10. ALGORITHMIC ASPECTS 151

By another application of primes in arithmetic progression (Exercise 11.5),
there exists t ∈ Q× such that t ∈ tpQ×2

p for all primes p | d, t and t∞ have the
same sign, and p - t for all primes p - d except for one prime q - d.

11.6. Let F = Q(
√

d) be a real quadratic field. Find a, b ∈ F× such that
(a, b

F

)
is a

division ring unramified at all finite places.

11.7. Let K ⊇ F be finite separable extension of global fields. Let B be a quaternion
algebra over K. We say that B descends to F if there exists a quaternion
algebra A over F such that A⊗F K � B. Show that B descends to F if and only
if Ram(B) is invariant under Gal(K/F).

11.8. Show without using primes in arithmetic progression that over Q all possible
(even cardinality) ramification sets can occur. Do this by using the Brauer
relation and linkage.





Chapter 12

Lattices and localization

Properties of a domain are governed in an important way by its localizations, and
consequently the structure of lattices, orders, and algebras can often be understood by
looking at their localizations and completions. This chapter develops these themes,
a local-global principle that we will carry throughout the text.

12.1 Localization of integral lattices

A lattice over the integers Z is a

12.2 Localizations

Throughout this chapter, let R be a noetherian domain with field of fractions F.
For a prime ideal p ⊆ R, we denote by

R(p) = {r/s : s < p} ⊆ F

the localization of R at p. (We reserve the simpler subscript notation for the comple-
tion, which will feature more prominently.) Since R is a domain, the map R ↪→ R(p)
is an embedding and we can recover R by

R =
⋂
p

R(p) =
⋂
m

R(m) ⊆ F (12.2.1)

where the intersections are over all prime ideals of R and all maximal ideals of R,
respectively.

We now prove a version of the equality (12.2.1) for R-lattices.
Let V be a finite-dimensional F-vector space and let M be an R-lattice in V . For

a prime p of R, let M(p) = M ⊗R R(p) = R(p)M. Then M(p) is an R(p)-lattice in V . In
this way, M determines a collection (M(p))p indexed over the primes p of R.

153
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Lemma 12.2.2. Let M be an R-lattice in V. Then

M =
⋂
p

M(p) =
⋂
m

M(m) ⊆ V

where the intersection is over all prime (maximal) ideals p.

Proof. It suffices to prove the statement for maximal ideals since M(m) ⊆ M(p) when-
ever m ⊃ p.

The inclusion M ⊆ ⋂
m M(m) is clear. So let x ∈ V satisfy x ∈ ⋂

m M(m). Let

(M : x) = {r ∈ R : rx ∈ M}.

Then (M : x) is an ideal of R. For any maximal ideal m of R, since x ∈ M(m) there
exists 0 , rm ∈ R \ m such that rmx ∈ M. Thus rm ∈ (M : x) and so (M : x) is not
contained in any maximal ideal of R. Therefore (M : x) = R and hence x ∈ M.

Corollary 12.2.3. Let M,N be R-lattices in V. Then M ⊆ N if and only if M(p) ⊆ N(p)
for all prime ideals p of R if and only if M(m) ⊆ N(m) for all maximal ideals m of R.

Proof. We have M =
⋂
p M(p) ⊆

⋂
p N(p) = N and similarly form; the other inclusion

is clear.

Lemma 12.2.4. Let B be a finite-dimensional F-algebra. An R-lattice I ⊆ B is an
R-order if and only if I(p) is an R(p)-order for all primes p of R if and only if Im is an
Rm-order for all maximal ideals m of R.

Proof. If I is an R-order then I(p) is an R(p)-order for all primes p, hence for all
maximal ideals m.

Conversely, suppose that Im is an Rm-order for all maximal ideals m. Then 1 ∈⋂
m I(m) = I and for any α, β ∈ M we have αβ ∈ ⋂

m I(m) = I, so I is a subring of B
and hence an order. The statement for prime ideals follows a fortiori.

A property like that of being an R-order is called a local property, and a lemma
like Lemma 12.2.4 is thereby called a local-global principle.

We now pass to completions. Let Rp denote the completion of R at p, and let
Fp = F ⊗R Rp be the completion of F at p and Vp = V ⊗F Fp.

Lemma 12.2.5. The map

M(p) 7→ Mp = M(p) ⊗R(p) Rp

yields a bijection between R(p)-lattices in V(p) and Rp-lattices in Vp, with inverse

Mp 7→ Mp ∩ V(p).

Proof. This lemma follows as above once we show that if M(p) is an R(p)-lattice, then
Mp ∩ V(p) = M(p): for the details, see Exercise 12.2.
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12.3 Bits of commutative algebra and Dedekind domains

So far, we have worked with finitely generated modules. We pause to consider some
relevant bits of commutative algebra in our context.

12.3.1. A free R-module is projective; the converse is true when R is a local ring
or PID. In particular, a finitely generated R-module is projective if and only if it is
locally free (since R is noetherian). The ability to argue locally and then with free
objects is very useful in our investigations (as well as many others), and so very often
we will restrict our attention to projective R-modules.

As a basic counterexample to keep in mind, let k be a field and R = k[x, y]. Then
the R-module (x, y) is not projective (Exercise 12.1). Similarly, if R = Z/n2Z for
n ∈ Z>1, then Z/nZ is not projective as an R-module.

There is a class of rings where finitely generated modules are projective, namely
when R is a Dedekind domain: a (noetherian) integrally closed domain such that
every nonzero prime ideal is maximal.

Example 12.3.2. Trivially, any field is a Dedekind domain.
The rings Z and Fp[t] are Dedekind domains. If K is a finite extension of Q or

Fp(t), then the integral closure of Z or Fp[t] in K is a Dedekind domain.
The localization or completion of a Dedekind domain R at a prime p is again a

Dedekind domain.

Suppose R is a Dedekind domain. Then every nonzero ideal a of R can be written
uniquely as the product of prime ideals (up to reordering). A fractional ideal of R is
a nonzero projective R-submodule a ⊆ F; a subset a ⊆ F is a fractional ideal if and
only if there exists d ∈ R \ {0} such that da ⊆ R is an ideal in the usual sense. If
a, b are fractional R-ideals, then a ⊆ b if and only if a ⊗R R(p) = a(p) ⊆ b(p) for all
primes p, and hence equality holds if and only if it holds locally. Indeed, we have
for any fractional ideal a that a =

⋂
p a(p). For every fractional ideal a of R, the set

a−1 = {a ∈ F : aa ⊆ R} is a fractional ideal with aa−1 = R. Therefore the set of
fractional ideals of R forms a group under multiplication.

The localization of a Dedekind domain is a discrete valuation ring (DVR), hence
a PID. Consequently, every fractional ideal of R is locally principal, i.e., if a ⊆ R is a
fractional ideal, then for all primes p of R we have a(p) = a⊗R R(p) = apR(p) for some
ap ∈ R(p).

Let M ⊆ V be an R-lattice. Then M is a projective R-module, and it follows
the structure theorem of projective modules over Dedekind domains that M is com-
pletely decomposable, i.e. there exist fractional ideals a1, . . . , an of R and elements
x1, . . . , xn ∈ V such that

M = a1x1 ⊕ · · · ⊕ anxn. (12.3.3)
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We call the elements x1, . . . , xn a pseudobasis for M with respect to the coefficient
ideals a1, . . . , an.

12.4 Lattices and localization

We now characterize in a simple way the conditions under which a collection (M(p))p
of R(p)-lattices arise from a global R-lattice, as in the first section. We will see that
just as a nonzero ideal of R can be factored uniquely into a product of prime ideals,
and hence by the data of these primes and their exponents, so too can a lattice be
understood by a finite number of localized lattices, once a “reference” lattice has
been chosen (to specify the local behavior of the lattice at the other places).

We retain the hypothesis that R is a Dedekind domain.

Proposition 12.4.1. Let M ⊆ V be an R-lattice. Then the map N 7→ (N(p))p estab-
lishes a bijection between R-lattices N and collections (N(p))p where M(p) = N(p) for
all but finitely many primes p.

This proposition gives an extension of the local-global principle for lattices: not
only can a lattice be recovered by its localizations, but any lattice is obtained from a
fixed one by making (arbitrary) choices at finitely many localizations.

Proof. Let N ⊆ V be an R-lattice. Then there exists 0 , r ∈ R such that rM ⊆ N ⊆
r−1M. But r is contained in only finitely many prime (maximal) ideals of R, so for
all but finitely many primes p we have that r is a unit in R(p) and thus M(p) = N(p).

So consider the set of collections (N(p))p where N(p) is an R(p)-lattice for each
prime p with the property that M(p) = N(p) for all but finitely many primes p of R.
Given such a collection, we define N =

⋂
(p) N(p) ⊆ V . Then N is an R-submodule

of F. We show it is an R-lattice in V . For each p such that M(p) , N(p), there exists
rp ∈ R such that rpM(p) ⊆ N(p) ⊆ r−1

p M(p). Therefore, if r =
∏
p rp is the product of

these elements, then rM(p) ⊆ N ⊆ r−1M(p) for all primes p with M(p) , N(p). On the
other hand, if M(p) = N(p) then already rM(p) ⊆ M(p) = N(p) ⊆ r−1N(p) = r−1M(p).
Therefore by Corollary 12.2.3, we have rM ⊆ N ⊆ r−1M, and so N is an R-lattice.

By Lemma 12.2.2, the association (N(p))p 7→
⋂
p N(p) is an inverse to N 7→

(N(p))p. Conversely, given a collection (N(p))p, for a nonzero prime p, we have(⋂
q Nq

)
(p) = N(p) since (Rq)(p) = F so (Nq)(p) = V whenever q , p.

In this way, we can show that the property of being a maximal order is a local
property.

Lemma 12.4.2. Let B be a finite-dimensional F-algebra. An R-order O ⊆ B is
maximal if and only if O(p) is a maximal R(p)-order for all primes p of R.
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Proof. If O(p) is maximal for each prime p then by Corollary 12.2.3 we see that O is
maximal. Conversely, supposeO is maximal and suppose thatO(p) ( O′(p) is a proper
containment of orders for some nonzero prime p. Then the setO′ = (⋂

q,pOq
)∩O′(p)

is an R-order properly containing O by Lemma 12.2.4 and Proposition 12.4.1.

12.5 Adelic completions

For a lattice M, all localizations M(p) are submodules of the vector space M(0) = V
over F, so for example, the notion of intersection makes sense. It is often helpful to
be able to do this with the completions as well; this gives us a preview for the addles,
which will feature prominently later on.

Define the restricted direct product. The module embeds diagonally and is dense.
Prove at least one nice thing.

12.6 Extensions and further reading

12.6.1. Noetherianness is only used when...

12.7 Exercises

12.1. Let k be a field and R = k[x, y]. Show that the R-module (x, y) is not projective.

12.2. Let V be a finite-dimensional vector space over F and I ⊆ V an R-lattice. Let p
be a prime of R, let R(p) be the localization of R at p and let Rp be the completion
of R at p. Show that if I(p) ⊆ V(p) is an Rp-lattice then Ip∩V(p) = I(p). Conclude
that Lemma 12.2.5 holds.

12.3. Prove Lemma 13.2.15: if R is a Dedekind domain and J ⊆ I ⊆ V are R-lattices
in a finite-dimensional vector space V over F, then [I : J] is the product of the
invariant factors (or elementary divisors) of the torsion R-module I/J.

12.4. Find R-lattices I, J ⊆ V such that [I : J] = R but I , J (cf. Proposition
13.2.14).

12.5. Consider the following ‘counterexamples’ to Proposition 12.4.1 for more gen-
eral integral domains as follows. Let R = Q[x, y] be the polynomial ring in
two variables over Q, so that F = Q(x, y). Let V = F and I = R.

a) Show that yR has the property that yR , R for infinitely many prime
ideals p of R.
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b) Consider the collection of lattices given by Jp = f (x)Rp if p = (y, f (x))
where f (x) ∈ Q[x] is irreducible and Jp = Rp otherwise. Show that⋂
p Jp = (0).

Instead, to conclude that a collection (Jp)p of Rp-lattices arises from a global
R-lattice J, one needs that the collection forms a sheaf [[cite]].



Chapter 13

Discriminants

13.1 Discriminantal notions

Let x1, . . . , xn ∈ Rn, and let A be the matrix with columns xi. Then the volume of
the box with edges vi (originating at the origin) has ordinary volume |det(A)|. In
this way, we can measure the volume of a number field F by taking the volume of a
fundamental parallelepiped for its ring of integers R: if x1, . . . , xn is a Z-basis for R
and ι : F ↪→ F⊗QR � Rn, then the volume of R in this embedding is |det(A)| where
A is the matrix with columns ι(xi).

We could compute this volume in a different way: we have

|det(A)| =
√
|det(AtA)| =

√
det(M)

where M has i jth entry equal to the ordinary dot product vi ·v j. The square volume has
some advantages: for example, the square volume of the ring of integers computed
above is the discriminant of R, an integer: indeed, the associated dot product is the
trace form (x, y) 7→ TrF/Q(xy) (with values in Z on R).

More generally, whenever we have a symmetric bilinear form T : F × F → F
(associated to a quadratic form), we have a square volume given by the determinant
det(T (xi, x j))i, j: this is the (twice-)discriminant of the quadratic form Q associated to
T (when char F , 2).

Now if B is a finite-dimensional algebra over F, we have a bilinear form (α, β) 7→
TrB/F(αβ), and so in this manner we obtain a discriminant (“square volume”) mea-
suring in some way the complexity of B.

In this section, we establish basic facts about discriminants, including how they
behave under inclusion (measuring index) and localization. For quaternion orders, it
turns out that the discriminant so defined is always a square, and there is an intrinsic
way to define the square root of this discriminant, called the reduced discriminant.

159
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13.2 Discriminant

As in the commutative case, ramification and maximality of orders is intrinsically
related to discriminants. In this section, we defined the discriminant and show that it
behaves well with respect to localization.

Let R be a noetherian domain and let F = Frac(R). Let B be a semisimple algebra
over F with dimF B = n. For elements α1, . . . , αn ∈ B, we define

d(α1, . . . , αn) = det(trd(αiα j))i, j=1,...,n.

Let O ⊆ B be an R-order.

Definition 13.2.1. The discriminant of O is the ideal disc(O) of R generated by the
set

{d(α1, . . . , αn) : α1, . . . , αn ∈ O}.

Although Definition 13.2.1 may look unwieldly, it works as well in the commu-
tative case as in the noncommutative case. We can at least see immediately that if
O ⊆ O′ are R-orders, then disc(O′) | disc(O). And the function d itself transforms
in a nice way as the systems αi vary (such as in under a change of basis), as follows.

Lemma 13.2.2. Let α1, . . . , αn ∈ B and suppose β1, . . . , βn ∈ B have the form βi =∑n
j=1 mi jα j with mi j ∈ F. Let M = (mi j)i, j=1,...,n. Then

d(β1, . . . , βn) = det(M)2d(α1, . . . , αn). (13.2.3)

Proof. By properties of determinants, if αi = α j for some i , j, then d(α1, . . . , αn) =

0. Consequently, if α1, . . . , αn are linearly dependent (over F), then d(α1, . . . , αn) =

0. So we may assume that α1, . . . , αn are linearly independent and that β1, . . . , βn are
linearly independent as well, so the matrix M, a change of basis matrix, is invertible.
But by Gaussian reduction, any invertible matrix is the product of elementary matri-
ces, so it is enough to check that the equality holds when M is an elementary matrix.
But in each of these cases (a diagonal matrix, a permutation matrix, or a transvection
matrix), the equality is immediate.

Corollary 13.2.4. If α1, . . . , αn is an R-basis for O, then

disc(O) = d(α1, . . . , αn)R.

Example 13.2.5. Suppose char F , 2. Let B =

(a, b
F

)
with a, b ∈ R. Let O =

R⊕ Ri⊕ R j⊕ Ri j.
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Then disc(O) is the principal R-ideal generated by

disc(1, i, j, i j) = det


2 0 0 0
0 2a 0 0
0 0 2b 0
0 0 0 −2ab

 = −(4ab)2.

The calculation when char F = 2 is Exercise 13.1.

13.2.6. More generally, if O is completely decomposable with

O = a1α1 ⊕ · · · ⊕ anαn

such as in (12.3.3), then from (13.2.3) we have

disc(O) = (a1 · · · an)2 disc(α1, . . . , αn).

Example 13.2.7. Let B = Mn(F) and O = Mn(R). Then disc(O) = R (Exercise
13.3).

13.2.8. It follows from Lemma 13.2.2 that disc(O) is finitely generated as an R-
module (apply d to all subsets of a set of generators for O as an R-module).

13.2.9. Equation (13.2.3) and the fact that O(p) = O ⊗R R(p) implies that

disc(O(p)) = disc(O)(p).

We also have an equality for the completions

disc(Op) = disc(O)p

because R is dense in Rp for the p-adic topology. In this way, the discriminant respects
localization and completion. Therefore, from the local-global principle (Lemma
12.2.2), we have

disc(O) =
⋂
p

disc(O)(p).

13.2.10. Let B =

(K, b
F

)
with b ∈ R and let S be an R-order in K. Let O = S + S j;

then O is an R-order in B by Exercise 8.7. Let d = disc(S ). Then disc(O) = (bd)2,
by Exercise 13.4.

Lemma 13.2.11. Suppose that B is separable. Then the discriminant disc(O) of
O ⊆ B is a nonzero ideal of R. If further O is projective as an R-module, then
disc(O) is also a projective R-module.
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Proof. Since αiα j ∈ O, we have trd(αiα j) ∈ R so d(α1, . . . , αn) ∈ R. Since O is an
R-lattice, there exist elements α1, . . . , αn which are linearly independent over F, and
since B is separable, trd is a nondegenerate bilinear pairing on F, hence disc(O) is a
nonzero ideal of R.

To show that disc(O) is projective, by Paragraph 12.3.1, we show that disc(O) is
locally principal. Let p be a prime ideal of R. Since O is a projective R-module, its
localization O(p) is free; thus from Corollary 13.2.4, we conclude that disc(O)(p) =

disc(O(p)) is principal over R(p), generated by disc(α1, . . . , αn) for any R(p)-basis
α1, . . . , αn of O.

We can compare orders by their index and discriminant; we set these up in some
useful generality. Let M,N ⊆ V be R-lattices in a finite-dimensional vector space V .

Definition 13.2.12. The R-index of N in M is the R-submodule [M : N] of F gener-
ated by the set

{det(δ) : δ ∈ EndF(V) and δ(N) ⊆ M}.

The index [M : N] is a nonzero R-module, arguing as in Paragraph 8.3.5 (Exer-
cise 13.7).

13.2.13. If M,N are free, then [M : N] is a free R-module generated by the deter-
minant of any δ ∈ EndF(V) giving a change of basis from N to M. In particular, if
N = rM with r ∈ R, then [M : N] = rnR where n = dimF V .

Proposition 13.2.14. Suppose that M,N are projective R-modules. Then [M : N] is
a projective R-module. Moreover, if N ⊆ M then [M : N] = R if and only if M = N.

Proof. By Paragraph 12.3.1, we can show that [M : N] is locally principal. So let
p be a prime of R and consider the localization [M : N](p) at p. Since M,N are
projective R-modules, they are locally free. Then by Paragraph 13.2.13, if δp ∈ F
gives a change of basis from N(p) to M(p), then [M : N](p) is generated by det(δp).

The second statement follows in a similar way. We may assume that R is local
and thus N ⊆ M are free, in which case M = N if and only if a change of basis
matrix from N to M has determinant in R×.

For Dedekind domains, the R-index measure the discrepancy between M and N,
as follows.

Lemma 13.2.15. If R is a Dedekind domain and N ⊆ M, then [M : N] is the product
of the invariant factors (or elementary divisors) of the torsion R-module M/N.

Proof. Exercise 12.3.
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We can now compare discriminants and indices, as in the following lemma.

Lemma 13.2.16. Let O,O′ be projective R-orders. Then

disc(O) = [O′ : O]2 disc(O′);

if O ⊆ O′, then equality holds if and only if O = O′.

Proof. For the first statement, we argue locally, and combine (13.2.3) and Paragraph
13.2.13. For the second statement, clearly disc(O′) ⊆ disc(O), and if O = O′ then
equality holds; and conversely, if disc(O) = [O′ : O]2 disc(O′) = disc(O′) then
[O′ : O] = R, hence O′ = O.

Using the discriminant as a measure of index, we can ensure the existence of
maximal orders in this general context as follows.

Proposition 13.2.17. There exists a maximal order O ⊆ B.

Proof. This proof does not assume Zorn’s lemma, but compare the proof with Re-
mark 8.4.2).

B has an order O by Paragraph 8.3.5. If O is not maximal, there exists an order
O′ ) O with disc(O′) | disc(O). If O′ is maximal, we are done; otherwise, we
can continue in this way to obtain orders O = O1 ( O2 ( . . . and an ascending
chain of ideals disc(O1) ( disc(O2) ( . . . of R; but since R is noetherian, the latter
terminates, a contradiction.

13.3 Reduced discriminant

Now suppose that B is a quaternion algebra over F. We have already seen that the
index of one order in another yields a difference in the index by a square. In fact, the
discriminant itself is always a square, and so by defining a reduced discriminant as a
square root of this ideal, we avoid this unnecessary exponent.

In fact, there is a way to define this square root directly.

13.3.1. For α1, α2, α3 ∈ B, we define

{α1, α2, α3} = trd((α1α2 − α2α1)α3) = (α1α2 − α2α1)α3 − α3(α2 α1 − α1 α2).

[[Brzezinski: if i, j, k have trace zero, then {i, j, k} = trd(i jk). In any case, give
some motivation! It comes from the fact that the lie algebra of the quaternion
algebra has a symmetric nondegenerate invariant bilinear form.]]
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Lemma 13.3.2. The form { } : B × B × B → F is an alternating trilinear form
which descends to such a pairing on B/F.

Proof. The form is alternating because clearly {α1, α1, α2} = 0 and

{α1, α2, α1} = trd((α1α2 − α2α1)α1) = trd(nrd(α1)α2)− trd(α2 nrd(α1)) = 0

and similarly {α1, α2, α2} = 0 for all α1, α2 ∈ B. The trilinearity follows from the
linearity of the reduced trace. Finally, from these two properties, the descent to B/F
follows from the computation {1, α1, α2} = 0 for all α1, α2 ∈ B.

(Alternatively, one can check that the pairing descends to B/F first, so that the
involution becomes α + F = −α + F, and then the alternating condition is immedi-
ate.)

13.3.3. If βi = Mαi for some M ∈ M3(F) and αi, βi ∈ B, then

{β1, β2, β3} = det(M){α1, α2, α3} (13.3.4)

by Exercise 13.6. It follows that if O ⊆ O′ are projective R-orders in B, then

discrd(O) = [O′ : O] discrd(O′).

Definition 13.3.5. The reduced discriminant of an R-orderO ⊆ B is the R-submodule
discrd(O) of F generated by

{{α1, α2, α3} : α1, α2, α3 ∈ O}.

Lemma 13.3.6. If O is a projective R-order in B, then disc(O) = discrd(O)2.

Proof. First, we claim that

{i, j, i j}2 = −d(1, i, j, i j).

If char F , 2, then we have disc(1, i, j, i j) = −(4ab)2 by Example 13.2.5 and

{i, j, i j} = trd((i j− ji)i j) = trd(2i j(i j)) = 4ab,

as claimed. See Exercise 13.1 for the case char F = 2. (This computation shows
verifies the result for the order O = R ⊕ Ri ⊕ R j ⊕ Ri j.) The lemma now follows
from (13.2.3) and (13.3.4), for it shows that

{α1, α2, α3}2 = −d(1, α1, α2, α3)

for all α1, α2, α3 ∈ B, and Exercise 13.5.

Remark 13.3.7. [[The definition of the reduced discriminant for a general semisim-
ple algebra is the reduced norm of the different?]]
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13.4 Extensions and further reading

13.4.1. We have defined the discriminant only for a separable algebra because then
we can ensure that the discriminant is nonzero (see Lemma 13.2.11 below). More
generally, can take algebra trace instead of reduced trace.

13.4.2. Fitting ideal, in place of [J : I].

13.4.3. An order in a separable algebra over a Dedekind domain has a reduced dis-
criminant.

Exercises

Let R be a noetherian domain with field of fractions F.

13.1. Let char F = 2 and let
[a, b

F

)
be a quaternion algebra over F with a, b ∈ R and

b , 0. Show that O = R + Ri + R j + Ri j is an R-order in B and compute the
(reduced) discriminant of O.

13.2. Let B be a division quaternion algebra over a nonarchimedean local field F
with uniformizer π, and letO be the valuation ring of B. Show that discrd(O) =

(π).

13.3. Let B = Mn(F) and O = Mn(R) with n ≥ 1. Show that disc(O) = R. [Hint:
Compute directly on a basis of matrix units.]

13.4. Let B =

(K, b
F

)
with b ∈ R and let S be an R-order in K. LetO = S +S j; thenO

is an R-order in B by Exercise 8.7. Let d = disc(S ). Show that disc(O) = (bd)2.

13.5. Let O be an R-order. Show that disc(O) is generated by

{d(1, α1, . . . , αn−1) : α1, . . . , αn−1 ∈ O}.

13.6. Let B be a quaternion algebra over F. Define { } : B × B × B → F by
{α1, α2, α3} = trd([α1, α2]α3) for αi ∈ B. If βi = Mαi for some M ∈ M3(F),
show that

{β1, β2, β3} = det(M){α1, α2, α3}.

13.7. Let I, J be R-lattices in an F-vector space V . Show that the index [I : J] is a
nonzero R-module.

13.8. Show that if I is an R-lattice in B then the dual I] is an R-lattice in B.





Chapter 14

Quaternion ideals over Dedekind
domains

14.1 Ideals and modules

Much like a space can be understood by studying functions on that space (the subject
of functional analysis), often the first task to understand a ring A is to understand the
ideals of A and modules over A (the subject of commutative algebra). The simplest
ideals of a ring are the principal ideals—but not all ideals are principal, and various
algebraic structures are built to understand the difference between these two. In the
next section, we consider such structures; we begin here by considering just the ideals
themselves. To get warmed up for the noncommutative situation, we consider first
the simple case of quadratic rings.

Let D ∈ Z be a nonsquare discriminant, so D ≡ 0, 1 (mod 4). Let S be the
quadratic order of nonsquare discriminant D ∈ Z, namely,

S = S (D) = Z⊕ Z[(D +
√

D)/2] ⊂ K = Q(
√

D).

The set of ideals of S has a natural commutative multiplication structure with identity
element S (it has the structure of a monoid), but this set lacks inverses and we would
surely feel more comfortable with a group structure. So more generally we consider
S -lattices a ⊂ K, and call them fractional ideals of S . To get some kind of group
structure, we must restrict our attention to the invertible fractional ideals a ⊂ K, i.e.,
those such that there exists a fractional ideal b with ab = S . If a has an inverse then
this inverse is unique, given by a−1 = {x ∈ F : xa ⊆ S }. If S is the ring of integers
of K (the maximal order), then all nonzero fractional ideals of S are invertible—in
fact, this property characterizes Dedekind domains, in that a noetherian commutative
ring is a Dedekind domain if and only if every nonzero (prime) ideal is invertible.

167
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For some purposes, one might as well assume S is a Dedekind domain and leave the
subtler issues aside.

In the quaternionic generalization, noncommutativity poses some thorny issues.
Let B be a quaternion algebra over Q and let O ⊂ B be an order. Right away, to
study ideals ofO we must distinguish between left or right ideals, and the product of
two (say) right O-ideals need not be again a right O-ideal! To address these issues,
for Z-lattices I, J ⊂ B, we say that I is compatible with J if the right order of I is
equal to the left order of J, so that what comes between I and J in the product I · J
“matches up”.

A Z-lattice I ⊂ B is invertible if there exists a Z-lattice I′ such that II′ =

OL(I) = OR(I′) and I′I = OR(I) = OL(I′), so in particular both of these prod-
ucts are compatible. The simplest kind of invertible lattices are those the principal
lattices I = OL(I)α = αOR(I). More generally, all lattices I with a maximal left
or right order are invertible. Therefore, if one is not interested in the more subtle
algebraic issues of invertibility, one can restrict to working over a maximal order O.

The set of invertible Z-lattices in B under compatible product has only a partial
product defined: and so Brandt coined the term groupoid (gruppoid) for this kind
of object, a nonempty set with an inverse function and a partial product that satisfies
the associativity, inverse, and identity properties whenever they are defined. (Despite
this humble beginning, groupoids now figure prominently in category theory, as well
as many other contexts. For a category theorist, a groupoid is a small category such
that every morphism is an isomorphism.)

In addition to studying compatible products, the major subject of this chapter will
be pinning down the notion of invertibility to make it seem both natural and concrete.
Recall that a fractional ideal a of S is invertible if and only if a is locally principal, i.e.,
a ⊗Z Z(p) = a(p) is a principal fractional ideal of the localization S (p) for all primes
p. Every locally principal ideal is invertible, and the extent to which the converse
is something that arises in an important way more generally in algebraic geometry
(comparing Weil and Cartier divisors on a scheme). In the language of commutative
algebra, a locally principal S -module is equivalently a projective S -module of rank
1. Each of these characterizations has its uses.

If S (D) is not maximal, so that D = d f 2 with d ∈ Z a fundamental discriminant
and f ∈ Z>1 the conductor of S , then there is always an ideal of S that is not
invertible. Specifically, consider the ideal f = ( f ,

√
D). Then f is a free Z-module of

rank 2, with

f = fZ +
√

DZ = f (Z +
√

DZ) +
√

D(Z +
√

DZ).

Then
f
2 = ( fZ + Z

√
D)2 = f 2Z + f

√
DZ = f f
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so if f were invertible with inverse f−1, then

f
2
f
−1 = f = ( f ) ⊆ S (D) (14.1.1)

but this is a contradiction, since

( f ) = fZ + f
√

DZ , f = fZ +
√

DZ

whenever f > 1.
This example also suggests the real issue with noninvertible modules for quadratic

orders. As an abelian group, we have

f = fZ + f
√

dZ = f · S (d),

so f is principal and hence certainly invertible as an ideal of S (d)—but not as an ideal
of the smaller order S (D). More generally, if a ⊂ K = Q(

√
D) is a Z-lattice in K

(free Z-module of rank 2), we define its multiplicator ring as

S (a) = {a ∈ K : a · a ⊆ a};

the ring S (a) is an order of K and so is also called the order of a. For example,
in the example above we have S (a) = S (d). (Sometimes, an ideal a ⊆ S is called
proper if S = S (a); the term proper is quite overloaded in mathematics, so we will
mostly resist this notion.) It turns out that every Z-lattice in K is projective over
its multiplication ring, and this statement plays an important role in the theory of
complex multiplication.

The major task of this chapter will be to investigate this notion of invertibility in
a general quaternionic context. We will prove the following theorem.

Theorem 14.1.2. Let I ⊂ B be a Z-lattice. Then the following are equivalent:

(i) I is invertible (as a Z-lattice);

(ii) I is locally principal (as a Z-lattice), i.e., I(p) is principal for all primes p; and

(iii) I is projective as a left OL(I)-module and as a right OR(I)-module.

In this theorem, we consider only lattices as (proper) modules over their full left
and right orders. Unlike the quadratic case, not every lattice I ⊂ B is projective as
a left module over its left order (or with right). In Chapter 16, we classify orders O
with the property that every lattice I with OL(I) = O is projective as an O-module.
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14.2 Locally principal lattices

The simplest lattices to understand are those that are principal; but as we saw in
Chapter 12, lattices are inherently local in nature. So instead we are led to consider
the more general class of locally principal lattices. We work first work with lattices
yet unattached to an order, and later we will sort them by their left and right orders.

To begin, we can work in quite some generality. Let R be a noetherian domain
with field of fractions F, let B be a finite-dimensional F-algebra, and let I be an
R-lattice in B.

Definition 14.2.1. An R-lattice I is principal if there exists α ∈ B such that I =

OL(I)α = αOR(I); we say that I is generated by α.

If I is generated by α ∈ B, then necessarily α ∈ B× since otherwise IF = Bα (
B, contradicting the fact that I is a lattice.

14.2.2. If I = OL(I)α, then OR(I) = α−1OL(I)α, by Exercise 14.3, so automatically

I = α(α−1OL(I)α) = αOR(I).

Therefore it is sufficient to check for a one-sided generator (and if we defined the
obvious notions of left principal or right principal, these would be equivalent to
principal).

Definition 14.2.3. An R-lattice I is integral if I ⊆ OL(I) ∩ OR(I).

Remark 14.2.4. If I ⊆ OL(I) then already II ⊆ I so I ⊆ OR(I) as well. Hence I is
integral if and only if I ⊆ OL(I) if and only if I ⊆ OR(I). (And hence we do not
define notions of left and right integral.)

If I is integral, then every element of I is integral over R (Lemma 8.3.8).

14.2.5. An R-lattice I is integral if and only if I is a right ideal of OR(I) and a left
ideal of OL(I) in the usual sense.

For any R-lattice I, there exists d ∈ R \ {0} such that dI is integral, so any R-
lattice I = (dI)/d is fractional in the sense that it is obtained from an integral lattice
with denominator.

Definition 14.2.6. Let O ⊂ B be an order. A left (resp. right) fractional O-ideal is
a lattice I ⊂ B such that O ⊆ OL(I) (resp. O ⊆ OR(I)).

Next, we extend the reduced norm to lattices.
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Definition 14.2.7. The reduced norm nrd(I) of I is the R-submodule of F generated
by the set {nrd(α) : α ∈ I}.

Lemma 14.2.8. The R-module nrd(I) is finitely generated.

Proof. Since I is an R-lattice, we have I =
∑

i Rαi generated by a finite set {αi}i as
an R-module. The R-module nrd(I) is then generated by the values aii = nrd(αi) and
ai j = nrd(αi + α j), since

nrd

∑
i

aiαi

 =
∑
i≤ j

ai jαiα j

for ai ∈ R as nrd is a quadratic form.

By the local-global property of lattices (Lemma 12.2.2), we have

nrd(I) =
⋂
p

nrd(Ip). (14.2.9)

14.2.10. If I is a principal R-lattice generated by α ∈ I then nrd(I) = nrd(α)R; more
generally, if I is an R-lattice and α ∈ B× then nrd(αI) = nrd(α) nrd(I) (Exercise
14.9).

The notion of principality naturally extends locally.

Definition 14.2.11. An R-lattice I is locally principal if I(p) = I⊗R R(p) is a principal
R(p)-lattice for all primes p of R.

We will show in the following subsections that the properties of being locally
principal, projective, and (in the presence of a standard involution) invertible are all
equivalent for a lattice I.

14.3 Compatible lattices

Now let I, J be R-lattices in B. We define the product IJ to be the R-submodule of B
generated by the set

{αβ : α ∈ I, β ∈ J}.

The product IJ is an R-lattice: it is finitely generated as this is true of I, J individually,
and there exists a nonzero r ∈ I (Exercise 8.2) so rJ ⊂ IJ and thus B = FJ =

F(rJ) ⊆ F(IJ).
If I, J are R-lattices then we have nrd(IJ) ⊇ nrd(I) nrd(J). However, we need not

have equality, as the following example indicates.
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Example 14.3.1. It is not always true that nrd(IJ) = nrd(I) nrd(J). For example, if

a ∈ R is neither zero nor a unit, then I =

(
(a) R
(a) R

)
and J =

(
(a) (a)
R R

)
are R-lattices

in M2(F) with nrd(I) = nrd(J) = (a) but IJ = M2(R) and so nrd(IJ) = R. However,
nrd(JI) = (a)2 = nrd(J) nrd(I).

The issue present in Example 14.3.1 is that the product is not as well-behaved
for noncommutative rings as for commutative rings; we need the elements coming
between I and J to “match up”.

Definition 14.3.2. We say that I is compatible with J if OR(I) = OL(J).

We will also sometimes just say that the product IJ is compatible to mean that I
is compatible with J.

The relation “compatible with” is in general not a symmetric relation.

Example 14.3.3. Continuing with Example 14.3.1, we find that OR(J) = M2(R) =

OL(I), so J is compatible with I; but

OR(I) =

(
R (a−1)

(a) R

)
and OL(J) =

(
R (a)

(a−1) R

)
,

so I is not compatible with J.

Lemma 14.3.4. Suppose that I is compatible with J and that either I or J is locally
principal. Then nrd(IJ) = nrd(I) nrd(J).

Proof. By the local–global property for norms (14.2.9) and since localization com-
mutes with multiplication, i.e.,

(ab)(p) = a(p)b(p) for all (finitely generated) R-modules a, b ⊆ F,

we may assume that either I or J is principal. Suppose I is (right) principal. Then
I = αO for some α ∈ B where O = OR(I) = OL(J). Then

IJ = (αO)J = α(OJ) = αJ

and so nrd(IJ) = nrd(α) nrd(J) = nrd(I) nrd(J) by Paragraph 14.2.10. The case
where J is principal follows in the same way.
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14.4 Invertible lattices

We are now in a position to investigate the class of invertible lattices. Let I ⊆ B be
an R-lattice.

Definition 14.4.1. An R-lattice I is invertible if there exists an R-lattice I′ ⊆ B that
is a (two-sided) inverse to I, i.e.

II′ = OL(I) = OR(I′) and I′I = OR(I) = OL(I′). (14.4.2)

In particular, both of the products in (14.4.2) are compatible.

14.4.3. If I, J are invertible lattices and I is compatible with J, then IJ is an invertible
lattice (Exercise 14.6).

14.4.4. If I is a principal lattice, then I is invertible: if I = Oα with α ∈ B× and
O = OL(I), then I′ = α−1O has

II′ = (Oα)(α−1O) = O(αα−1)O = OO = O

so I′ is a right inverse, and

I′I = (α−1O)(Oα) = α−1Oα = OR(I)

so I′ is also a left inverse.

A candidate for the inverse presents itself quite naturally. If II′ = OL(I) and
I′I = OR(I), then II′I = I. So we define

I−1 = {α ∈ B : IαI ⊆ I}. (14.4.5)

The same proof as in Paragraph 8.3.5 implies that I−1 is an R-lattice.

Proposition 14.4.6. The following are equivalent:

(i) I−1 is a (two-sided) inverse for I;

(ii) I is invertible; and

(iii) We have a compatible product II−1I = I and both 1 ∈ II−1 and 1 ∈ I−1I.

Proof. The implication (i)⇒ (ii) is clear. For the statement (ii)⇒ (i), suppose that
I′ is an inverse to I. Then I = II′I ⊆ II−1I ⊆ I, so equality holds throughout.
Multiplying by I′ on the left and right gives (I′I)I−1(II′) = I′II′ whence I−1 = I′.

Again the implication (i)⇒ (iii) is immediate. To prove (iii)⇒ (i), we need to
show that II−1 = OL(I) and I−1I = OR(I); we show the former. By compatibility,
we have OR(I−1) = OL(I) = O so if II−1 = J then J = II−1 = O(II−1)O = OJO,
so J ⊆ O is a two-sided ideal of O containing 1 hence J = O.
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Not every lattice is invertible, and it is helpful to have a counterexample at hand.

Example 14.4.7. Let a ( R be a nonzero, proper ideal, and for simplicity let O =

M2(R) ⊂ B = M2(F). Let I = a + O. Then OL(I) = OR(I) = R + aO, and
I−1 = OL(I) = OR(I) and yet II−1 = I , OL(I) (and similarly on the right), so I is
not invertible. Indeed, we have a compatible product II−1I = I, but in Proposition
14.4.6(iii) we have 1 < II−1 = I. Note interestingly that the compatible product

I2 = II = a2 + aO +O = O (14.4.8)

has OL(I2) = OR(I2) = O ) OL(I) = OR(I).

A compatible product with an invertible lattice (compare (14.4.8)) respects taking
left (and right) orders, as follows.

Lemma 14.4.9. If I is compatible with J and J is invertible, then OL(IJ) = OL(I).

Proof. We prove the first statement. Without the hypothesis of compatibility, we
have OL(I) ⊆ OL(IJ). To show the other containment, suppose that α ∈ OL(IJ), so
that αIJ ⊆ IJ. Multiplying by J−1, we conclude αI ⊆ I, so α ∈ OL(I).

Invertibility is a local property, as one would expect.

Lemma 14.4.10. I is invertible if and only I(p) is invertible for all primes p.

Proof. The implication (⇒) follows from the fact that taking products commutes
with localization. For the other implication, we show right invertibility.

Let O = OL(I) and J = (O : I)R; then J is an R-lattice (14.7.4) and IJ ⊆ O.
Since I(p) is right invertible, there exists an R(p)-lattice I′(p) such that I(p)I′(p) = O(p).
But then

O(p) = I(p)I′(p) ⊆ I(p)J(p) ⊆ O(p)

so equality holds, and thus I(p)J(p) = O(p) for all p. Intersecting, we obtain IJ = O,
so I is right invertible.

Corollary 14.4.11. If I is locally principal, then I is invertible.

To conclude this section, we note the multiplicative structure on the set of invert-
ible lattices.

Definition 14.4.12. A groupoid G is a set with a unary operation −1 and a partial
function ∗ : G → G such that ∗ and −1 satisfy the associativity, inverse, and identity
properties (as in a group) whenever they are defined.
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1. [Associativity] For all a, b, c ∈ G, such that a ∗ b is defined and (a ∗ b) ∗ c is
defined, we have that b ∗ c and a ∗ (b ∗ c) is defined and the equality

(a ∗ b) ∗ c = a ∗ (b ∗ c)

holds.

2. [Inverses] For all a ∈ G, there exists a−1 ∈ G such that a ∗ a−1 and a−1 ∗ a are
defined.

3. [Identity] For all a, b ∈ G such that a ∗ b is defined, we have

(a ∗ b) ∗ b−1 = a and a−1 ∗ (a ∗ b) = b. (14.4.13)

A homomorphism φ : G → G′ of groupoids is a map satisfying φ(a ∗ b) =

φ(a) ∗ φ(b) for all a, b ∈ G.

The products in the identity law (14.4.13) are defined by the associative and in-
verse laws, and it follows that e = a ∗ a−1 and f = a−1 ∗ a satisfy e ∗ a = a = a ∗ f .
(We may have that e , f , i.e., the left and right identities for a disagree.)

Remark 14.4.14. Equivalently, a groupoid is a small category (the class of objects in
the category is a set) such that every morphism is an isomorphism.

Example 14.4.15. The set of homotopy classes of paths in a topological space X
forms a groupoid under composition: the paths γ1, γ2 : [0, 1]→ X can be composed
to a path γ2 ◦ γ1 : [0, 1]→ X if and only if γ2(0) = γ1(1).

Proposition 14.4.16. The set of invertible lattices in B form a groupoid under com-
patible product.

Proof. For the associative law, suppose I, J,K are invertible R-lattices with IJ and
(IJ)K compatible products. ThenOR(I) = OL(J) = OL(JK) andOR(IJ) = OR(J) =

OL(K) by Lemma 14.4.9, so the products JK and I(JK) are compatible. Multipli-
cation is associative in B, and it follows that I(JK) = (IJ)K. Inverses exist exactly
because we restrict to the invertible lattices. The law of identity holds as follows: if
I, J are invertible R-lattices such that IJ is a compatible product, then (IJ)J−1 is a
compatible product since OR(IJ) = OR(J) = OL(J−1), and by associativity we have

(IJ)J−1 = I(JJ−1) = IOL(J) = IOR(I) = I,

with a similar argument on the left.
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14.5 Invertibility with a standard involution

The main result of this section is as follows.

Theorem 14.5.1. Let R be a Dedekind domain and suppose that B has a standard
involution. Then an R-lattice I is invertible if and only if I is locally principal.

We have already seen (Corollary 14.4.11) the implication (⇒) in Theorem 14.5.1;
the remaining implication is the topic of this section.

One reason to suppose that R is a Dedekind domain is the following: if a ⊂ R is
not invertible as an R-module, and O ⊂ B is any R-order, then aO is not invertible
as an R-lattice. To make the simplest kind of arguments here, we would like for all
(nonzero) ideals a ⊆ R to be invertible, and this is equivalent to the requirement that
R is a Dedekind domain.

So suppose B has a standard involution and that R is a Dedekind domain. Let
I ⊂ B be an R-lattice. The following concept will be useful in this section.

Definition 14.5.2. We say I is a semi-order if 1 ∈ I and nrd(I) ⊆ R.

Lemma 14.5.3. An R-lattice I is a semi-order if and only if 1 ∈ I and every α ∈ I is
integral over R.

Proof. We have that α ∈ I is integral over R if and only if trd(α) ∈ R and nrd(α) ∈ R
(by Corollary 8.3.11, since R is integrally closed) if and only if nrd(α) ∈ R and
nrd(α + 1) = nrd(α) + trd(α) + 1 ∈ R.

In particular, Lemma 14.5.3 implies that an order is a semi-order (by Corollary
8.3.9); we will see that semi-orders behave enough like orders that we can deduce
local principality from their structure.

14.5.4. Let I = {α : α ∈ I}. Then I is an R-lattice in B. If I, J are R-lattices then
IJ = J I (even if this product is not compatible).

If I is a semi-order, then I = I (Exercise 14.7). In particular, if O is an R-order
then O = O.

Lemma 14.5.5. We have OL(I) = OR(I) and OR(I) = OL(I).

Proof. We have α ∈ OL(I) if and only if αI ⊆ I if and only if αI = I α ⊆ I if and

only if α ∈ OR(I) if and only if α ∈ OR(I) = OR(I).

Corollary 14.5.6. If I is a semi-order, then OL(I) = OR(I).

By Lemma 14.5.5 the standard involution gives a bijection between the set of
lattices I with OL(I) = O and those with OR(I).
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14.5.7. Suppose that R is a DVR (e.g., a localization of R at a prime ideal p). We will
show how to reduce the proof of Theorem 14.5.1 to that of a semi-order.

When R is a DVR, the fractional R-ideal nrd(I) ⊆ R is principal, generated by
an element with minimal valuation, so let α ∈ I achieves this minimum. Then the
R-lattice J = α−1I now satisfies 1 ∈ J and nrd(J) = R. Thus J is a semi-order, and J
is (locally) principal if and only if I is (locally) principal.

Proof of Theorem 14.5.1. Suppose I is invertible; we wish to show that I is locally
principal. The conclusion is local, so localizing we may assume R is a DVR.

We may reduce to the case where I is a semi-order by Paragraph 14.5.7. Then
1 ∈ I. Let α1, . . . , αn be an R-basis for I.

We claim that In+1 = In. Since 1 ∈ I, we have In ⊆ In+1. It suffices then to prove
that a product of n + 1 basis elements of I lies in In. By the pigeonhole principle,
there must be a repeated term αi among them. But we have the formula (4.2.7)

αβ + βα = trd(β)α + trd(α)β− trd(αβ) (14.5.8)

for all α, β ∈ B. We can use this relation to “push” the second instance of the repeated
element until it meets with its mate, at the expense of terms lying in In. Specifically,
in the R-module I2/I, (14.5.8) implies

αiα j ≡ −α jαi (mod I)

for all i, j; it follows that in In+1/In we have

µ(αiα j)ν ≡ −µ(α jαi)ν (mod In)

for any µ, ν appropriate products of basis elements. Therefore we may assume that
the repetition α2

i is adjacent; but then αi satisfies a quadratic equation, so α2
i =

trd(αi)αi − nrd(αi) ∈ I, so in fact the product belongs to In, and the claim follows.
To conclude, from the equality In+1 = In, we multiply both sides of this equation

by (In)−1 and obtain I = O = OL(I) = OR(I). In particular, I is principal, generated
by 1.

We have the following immediate corollary of the above proof.

Corollary 14.5.9. An R-lattice I is an R-order if and only if 1 ∈ I, every element of
I is integral, and I is invertible.

14.5.10. We conclude with two important consequences.
First, let I, J be invertible R-lattices such that I is compatible with J. Then we

have nrd(IJ) = nrd(I) nrd(J), since it is enough to check this locally, and locally both
I and J are principal and we have proved the statement in this case (Lemma 14.3.4).
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Dressed up a little bit, this implies that the reduced norm is a homomorphism from
the groupoid of invertible lattices to the group(oid) of fractional R-ideals in F.

Second, in the presence of a standard involution, we can write the inverse in
another way: we have

II = nrd(I)OR(I) and II = nrd(I)OL(I)

by checking these statements locally (where they follow immediately by computing
the norm on a local generator). Since nrd(I) is a fractional R-ideal and thus invertible,
since R is a Dedekind domain, it follows that

I−1 = I nrd(I)−1.

14.6 Projective and proper modules

In this section, we move from lattices to modules, relating invertibility to projectivity.
This section is a bit technical and can be skipped for the reader who does not need
this reinterpretation. We restore the generality that R is a noetherian domain.

Definition 14.6.1. LetO be an order and let P be a leftO-module. Then P is projec-
tive (as a left O-module) if it is a direct summand of a free left O-module.

We see that a left O-module P is projective if and only if there exists a left O-
module Q such that P⊕ Q is free. This definition may seem opaque on first reading;
it turns out that projective modules are fundamental in many areas of algebra, as the
following proposition indicates.

Proposition 14.6.2. Let P be a left O-module. Then the following are equivalent:

(i) P is projective;

(ii) Every surjective homomorphism f : M → P (of leftO-modules) has a splitting
g : P→ M (i.e., f ◦ g = idP);

(iii) Every diagram
P

q

~~
p
��

N
f // M // 0

with exact bottom row can be extended (i.e., p = f ◦ q); and

(iv) HomO(P,−) is an exact functor.
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Let I ⊆ B be an R-lattice. Then I has the structure of a finitely generated left
OL(I)-module and a finitely generated right OR(I)-module.

[[Relationship between compatibility, multiplication, and tensor product]]
In the commutative case, an R-lattice a ⊆ F is invertible if and only if a is

projective as a (left and right) R-module. The same is true in this context, as follows.

Theorem 14.6.3. An R-lattice I is invertible if and only if I is projective as a left
OL(I)-module and as a right OR(I)-module.

Proof. To prove the implication (⇒), suppose that I is invertible. Then I−1I =

OR(I), so there exist αi ∈ I and α∗i ∈ I−1 such that
∑

i α
∗
i αi = 1. We may ex-

tend the set αi to generate I as a leftOL(I)-module by taking α∗i = 0 if necessary. We
define the surjective map

f : M =
⊕

i

OL(I)ei → I

ei 7→ αi.

Consider the map

g : I → M

β 7→ (βα∗i )i;

the map g is defined because we have βα∗i ∈ II−1 ⊆ OL(I) for all β ∈ I. The map g
is a splitting of f since

( f ◦ g)(β) =
∑

i

βα∗i αi = β
∑

i

α∗i αi = β.

Therefore I is a direct summand of M, so I is projective as a left OL(I)-module. A
similar argument works on the right.

Next we prove (⇐). There exists a nonzero r ∈ I ∩ R (Exercise 8.2), so to show
that I is invertible, we may replace I with r−1I and therefore assume that 1 ∈ I.

Following in similar lines as in the previous paragraph, let αi generate I as a
left OL(I)-module, and consider the surjective map f : M =

⊕
iOL(I)ei → I by

ei 7→ αi. Then since I is projective as a left OL(I)-module, this map splits by a map
g : I → M; suppose that g(1) = (α∗i )i with α∗i ∈ OL(I); then

( f ◦ g)(1) = 1 =
∑

i

α∗i αi (14.6.4)

For any β ∈ I, we have g(β) = (βα∗i )i ∈ M, so βα∗i ∈ OL(I) for all i; therefore for all
α, β ∈ I we have βα∗i α ∈ OL(I)I ⊆ I, whence α∗i ∈ I−1 by definition.
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We always have II−1I ⊆ I; to show the reverse inclusion, note that if β ∈ I
then β = ( f ◦ g)(β) =

∑
i βα
∗
i αi ∈ II−1I. Therefore we have equality II−1I = I and

1 ∈ I−1I. Repeating the argument on the right, we have also 1 ∈ II−1.
By Proposition 14.4.6, it remains only to show that the product II−1I is compat-

ible; we will show OR(I) = OL(I−1), the other following similarly. By definition,
we have OR(I) ⊆ OL(I−1), so we prove the other implication. Let µ ∈ OL(I−1), so
µI−1 ⊆ I−1, i.e., the implication

(Iα∗I ⊆ I)⇒ (Iµα∗I ⊆ I) (14.6.5)

holds for all α∗ ∈ I−1. We need to show Iµ ⊆ I. We know that each α∗i satisfies
Iα∗i I ⊆ II−1I = I, so by the implication (14.6.5) we have that Iµα∗i I ⊆ I for all i.
Thus for all β ∈ I, we have βµα∗i αi ∈ I hence by (14.6.4) we have βµ =

∑
i βµα

∗
i αi ∈

I, so µ ∈ OR(I) as desired.

14.6.6. In Theorem 14.6.3, we only considered an R-lattice I as a module over its left
and right orders. Of course, I has the structure of a leftO-module for anyO ⊆ OL(I),
and similarly on the right.

We defined invertibility for the lattice I in terms of its left and right orders. But
only OL(I) works in the definition: if I′ is an R-lattice and II′ = O for some O ⊆
OL(I), then multiplying on both sides on the left by OL(I) gives

OL(I)II′ = II′ = OL(I)O = OL(I),

with a similar statement on the right.

Lemma 14.6.7. . If I ⊂ B is projective as an O,O′-bimodule, then O = OL(I) and
O′ = OR(I).

In other words, even when interpreting an R-lattice I as a left or right module, to
get good behavior (like invertibility) we will want to take this structure over the full
left or right endomorphism ring.

Proof. Combine Theorem 14.6.3 and Paragraph 14.6.6.

Definition 14.6.8. We say I ⊂ B is proper as a O,O′-bimodule if O = OL(I) and
O′ = OR(I).

The term proper is badly overloaded in mathematics, so we will not make exten-
sive use of this term.
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Example 14.6.9. The converse of Lemma 14.6.7. Consider again Example 14.4.7.
The lattice I has the structure of a properO′,O′-module, whereO′ = R+aO module.
However, since I is not invertible, we conclude from Theorem 14.6.3 that I is not
projective as a left or right O′-module. (In [[???]], we characterize orders O for
which every lattice which is proper as a left O-module is projective: they are the
Gorenstein orders O.

14.7 One-sided invertibility

We conclude this chapter with some comments on one-sided notions of invertibility.

Definition 14.7.1. An R-lattice I is right invertible if there exists an R-lattice I′ ⊆ B,
a right inverse, such that the product II′ is compatible and II′ = OL(I) In a similar
way, we define left invertible and left inverse.

Applying the same reasoning as in Lemma 14.4.10, we see that left (or right)
invertibility is a local property.

Remark 14.7.2. The compatibility condition in invertibility is important. Consider

Example 14.3.1: we have IJ = M2(R) = OL(I), and indeed if we let J =

(
b b

R R

)
for

any nonzero ideal b ⊆ R, the equality IJ = M2(R) remains true.

Again in this context a natural potential left (and right) inverse presents itself:
if II′ = OL(I), then I′ maps I into OL(I) on the right. Accordingly, we make the
following definition.

Definition 14.7.3. The left colon lattice of I with respect to J is the set

(I : J)L = {α ∈ B : αJ ⊆ I}

and similarly the right colon lattice is

(I : J)R = {α ∈ B : Jα ⊆ I}.

14.7.4. Note that (I : I)L = OL(I) is the left order of I (and similarly on the right).
The same proof as in Paragraph 8.3.5 shows that (I : J)L and (I : J)R are indeed
R-lattices.

Left invertibility does not imply right invertibility, and so the sided notions can
be a bit slippery: see Exercise 14.12.
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Remark 14.7.5. For rings, the (left or) right inverse of an element need not be unique
even though a two-sided inverse is necessarily unique. Once can say at least there if I
has a right inverse I′ then I has a unique maximal right inverse (under inclusion); one
may hope that this maximal right inverse isI′ = (OL(I) : I)R, but the compatibility is
not clear.

In the presence of a standard involution over a Dedekind domain R—the case of
interest in this book—the sided notions of invertibility are equivalent to the two-sided
notion.

Lemma 14.7.6. Suppose R is a Dedekind domain and that B has a standard involu-
tion. Then an R-lattice I is left invertible if and only if I is right invertible if and only
if I is invertible.

Proof. We will show that if I is right invertible then I is left invertible. By localizing,
we reduce to the case where R is a DVR. By the results of Paragraph 14.5.7, we
may assume that I is a semi-order, so that OL(I) = OR(I) = O and I = I. Suppose
II′ = O. I′ = I′I = O = O, and I′ is compatible with I since

O = OR(I) = OL(I′) = OR(I′)

as desired.

Corollary 14.7.7. An R-lattice I is left invertible with I′I = OR(I) if and only if
I′ = (OR(I) : I)L = I−1.

A similar statement holds for the right inverse.

Proof. Let O = OR(I). Then we have

O = I′I ⊆ (O : I)LI ⊆ O

so equality must hold, and I′I = (O : I)LI. By 14.7.6, I is invertible, and multiplying
both sides by I−1 gives I′ = (O : I)L as desired.

14.8 Extensions and further reading

14.8.1. Cox [Cox89, §7] discusses orders in quadratic fields and the connections to
quadratic forms and class numbers.

14.8.2. Due to Kaplansky [Kap69]; he calls our compatible product instead concor-
dant.
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14.8.3. To relax the condition that R is noetherian, one could work instead with
Prüfer domains (generalizing Dedekind domains to the non-noetherian context).

14.8.4. This is really all about Morita equivalence.
Proposition 14.6.3 also goes by the name “dual basis” lemma in other places.

14.8.5. Groupoids are fun, and show up in stacks. There is a slight difference with the
notion of a Brandt groupoid and a groupoid, but we are careful about the distinction.

14.8.6. [[Link the inverse to the dual of a lattice.]]

Exercises

Unless otherwise specified, throughout these exercises let R be a domain with field
of fractions F, let V be an F-vector space, and let B be an F-algebra.

14.1. Let D ∈ Z \ {0, 1} be a discriminant, and let S (D) = Z[(D +
√

D)/2] be the
quadratic ring of discriminant D. Suppose that d = d f 2 with f > 1. Show
that the ideal ( f ,

√
D) of S (D) where is not invertible. (In particular, there are

number rings with class number 1 that are not PIDs!)

14.2. Let I ⊆ B be a principal R-lattice. Show that if α generates I then α ∈ B×.

14.3. Show that if I = OL(I)α ⊆ V then OR(I) = α−1OL(I)α.

14.4. Let I ⊆ B be an R-lattice. Show that if OL(I) is maximal, then OR(I) is
maximal. Show that all maximal orders are connected.

14.5. Let I ⊂ M2(F) be a lattice with OR(I) = M2(R). By considering I ⊗R F show
that

I ⊆
(
F F
0 0

)
M2(R)⊕

(
0 0
F F

)
M2(R).

Now suppose that R is a PID. Conclude that I is principal. Conclude (again)
that all maximal orders in M2(F) are conjugate.

14.6. Show that if I, J are invertible and I is compatible with J, then IJ is invertible
and (IJ)−1 = J−1I−1.

14.7. Let B be an F-algebra with a standard involution . Show that if I is a semi-
order then I = I.
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14.8. Let I be an R-lattice, and let α1, . . . , αn generate I as an R-module. Give an
explicit example where nrd(I) is not generated by nrd(αi) (cf. Lemma 14.2.8).
Moreover, show that for any R-lattice I, there exists a set of R-module genera-
tors αi such that nrd(I) is in fact generated by nrd(αi).

14.9. Show that if I is an R-lattice and α ∈ B then nrd(αI) = nrd(α) nrd(I). Conclude
that if I is a principal R-lattice, generated by α ∈ I, then nrd(I) = nrd(α)R.

14.10. Let R be a Dedekind domain with field of fractions F, let K ⊃ F be a quadratic
field extension and let S be an R-order in K. Let S K be the integral closure of
R in K.

a) Show that there exists a (unique) ideal f = f(S ) ⊂ S K (called the conduc-
tor ) such that S = R + fS K .

b) Now let b ⊂ K be a fractional S -ideal. Show that the following are
equivalent:

(i) b is a locally principal S -ideal;
(ii) b is invertible as a fractional S -ideal, i.e., there exists a fractional

ideal b−1 such that bb−1 = S (necessarily b−1 = (S : b));
(iii) There exists d ∈ K× such that db + f ∩ S = S ; and
(iv) b is proper, i.e., S = O(b) = {x ∈ K : xb ⊆ b}.

14.11. Let O ⊆ B be an R-order.

a) Let α ∈ B×. Show that I = Oα is a lattice with OL(I) = OR(I) = O if
and only if α ∈ B× and Oα = αO. Conclude that the set of invertible
two-sided principal lattices I with OL(I) = OR(I) = O forms a group.

b) Show that the normalizer of O,

N(O) = {α ∈ B× : αOα−1 = O}

is the group generated by α ∈ B× such that Oα is a two-sided O-ideal.

14.12. Let R be a DVR with field of fractions F, and let a ∈ R be neither zero nor a
unit. Consider the R-lattice

I =

 (a) (a) R
(a2) (a2) R
R R R

 ⊂ B = M3(F)

Show that I is left invertible but is not right invertible.
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14.13. Let I be an R-lattice in B over F, let K be a finite extension field of F, and let
S be a domain containing R with field of fractions K. Show that

disc(I ⊗R S ) = disc(I)⊗R S = disc(I)S .





Chapter 15

Classes of quaternion ideals

15.1 Composition laws and ideal multiplication

Following the previous chapter, we now study classes of quaternion ideals. To guide
these investigations, we first appeal to the quadratic case: it is quite instructive to see
how the theory is built in the simpler but still incredibly rich commutative case.

Let D ∈ Z be a discriminant. A subject of classical interest was the set of integral
primitive binary quadratic forms of discriminant D, namely

Q(D) = {ax2+bxy+cy2 : a, b, c ∈ Z, b2 − 4ac = D, and gcd(a, b, c) = 1} ⊂ Z[x, y].

Of particular interest to early number theorists (Fermat, Legendre, Lagrange, and
Gauss) was the set of primes represented by a quadratic form Q ∈ Q(D)—inquiries
of this nature proved to be foundational, giving rise to the law of quadratic reciprocity
and the beginnings of the theory of complex multiplication and class field theory.

An invertible (oriented) change of variables on a quadratic form Q ∈ Q(D) does
not alter the set of primes represented, so one is naturally led to study the classes of
quadratic forms under the action of the group SL2(Z) given by

(g−1 · Q)(x, y) = Q(px + qy, rx + sy) for g =

(
p q
r s

)
∈ SL2(Z).

The set Cl(D) of SL2(Z)-classes of forms in Q(D) is finite, by reduction theory:
every form in Q(D) is equivalent under the action of SL2(Z) to a reduced form with
|b| ≤ a ≤ c (and further b ≥ 0 in the boundary cases a = |b| or a = c). To study this
finite set, Gauss defined a composition law on Cl(D), giving Cl(D) the structure of
an abelian group by an explicit formula.

Today, we see this composition law as a consequence of a natural identification
of Cl(D) with a set with an obvious group structure. There is a bijection between
Cl(D) and the narrow class group Cl+(S ) = Cl+(S (D)), the group of

187
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invertible fractional ideals of the quadratic order S under multiplication

modulo the subgroup of

nonzero principal fractional ideals generated by a totally positive element

(i.e., one that is positive in every embedding into R—if D < 0 then this is no condi-
tion). Specifically, to the class of the quadratic form Q = ax2 + bxy + cy2 ∈ Q(D),
we associate the class of the ideal

a = aZ +

−b +
√

D
2

Z ⊂ S (D).

Conversely, the quadratic form is recovered as the norm form on K = Q(
√

D) re-
stricted to a:

N
ax +

−b +
√

D
2

y

 = ax2 + bxy + cy2, where c =
b2 − D

4a
∈ Z.

Much of the same structure can be found in the quaternionic case, with several
interesting twists. Historically, it was Brandt who first asked if there was a composi-
tion law for (integral, primitive) quaternary quadratic forms: it would arise naturally
from some kind of multiplication of ideals in a quaternion order, with the analogous
bijection furnished by the reduced norm form, and we group together lattices based
on orders that are connected to one another, as follows.

Let B be a quaternion algebra over Q. Recall we have defined the notion of a
compatible product on the set of lattices I ⊂ B. In the consideration of classes of such
lattices, we make a choice and consider lattices as right modules—considerations on
the left are analogous. We say that lattices I and J are in the same right class , and
write I ∼ J, if there exists α ∈ B× such that αI = J. The relation∼ is an equivalence
relation, and the class of a lattice I is denoted [I]. If I is invertible, then every lattice
in the class [I] is invertible and we simply call the class invertible. We say that [I] is
compatible with [J] if there exists I′ ∈ [I] and J′ ∈ [J] such that OR(I′) = OL(J).

Now let O ⊂ B be an order. We say that O′ is connected to O if there exists an
invertible lattice I with OL(I) = O and OR(I) = O′. If I′ ∈ [I], then OR(I′) = OR(I)
and we write simply OR([I]).

Theorem 15.1.1. The set

B(O) = {[I] : OR([I]) connected to O} (15.1.2)

has the structure of a finite groupoid under compatible product.
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We call the set B(O) in (15.1.2) the Brandt groupoid ofO. The Brandt groupoid
is strongly connected : for all [I], [K] ∈ B(O), there exists [J] ∈ O such that [I] is
compatible with [J] and [I][J] = [K].

Theorem 15.1.1 follows from general principles in the geometry of numbers.
The methods of the geometry of numbers do not provide a sharp bound on #B(O); in
Chapter 18, we consider a more refined approach that gives a weighted formula for
the number of classes.

In this way, one recovers a partial composition law on certain classes of quater-
nary quadratic forms by restricting the reduced norm nrd to a representative ideal in
each class.

Example 15.1.3. Consider the quaternion algebra B =

(−1,−11
Q

)
and the maximal

order O generated by i and ( j + 1)/2,

O = Z + iZ + Z
j + 1

2
Z + i

j + 1
2
Z.

The set of orders connected to O has exactly two isomorphism classes, represented
by O1 = O and

O2 = Z + 2iZ +
1− 2i + j

2
Z +

2− i− i j
2

Z.

The Brandt groupoid associated to (the class of orders containing) O has four ele-
ments, represented by O1, O2, the right ideal

I = 2O +
1− 2i− j

2
O

with right order O1 and left order O2, and its inverse I−1 with these reversed, so the
products I−1I = O1 and II−1 = O2 are compatible.

We can visualize this groupoid as a graph as follows, with directed edges for
multiplication:

1 2

I

I
−1

O1 O2

(One could consider the dual graph, interchanging edges for vertices, if preferred.)
Restricting the reduced norm to these lattices, we then have a description of the
partial composition law on classes of quaternary quadratic forms of discriminant 112:

nrd |O1 = x2 + xw + y2 + yz + 3z2 + 3w2

nrd |O2 = x2 + xy + xz + y2 + yz + yw + 4z2 + 4zw + 4w2

nrd |I � nrd |I−1 = 2x2 + 2xy + xz + 2y2 + yz + yw + 2z2 + 2zw + 2w2
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In the final part of this book, we will see that by counting the representation
of primes represented by quaternary quadratic forms we uncover deep arithmetic
structure: the Brandt groupoid encodes a space of modular forms.

15.2 Two-sided ideals

To get warmed up for the one-sided notion of classes, we begin by considering first
the two-sided notions, where we will be able to define a group structure.

Let R be a noetherian domain with field of fractions F, let B be an F-algebra, and
let O be an R-order in B.

15.2.1. Let I, J be invertible two-sided fractional O-ideals (cf. Definition 14.2.6).
Then IJ is also an invertible two-sided fractional O-ideal by Lemma 14.4.9, as
OL(IJ) = OL(I) = O and OR(IJ) = OR(J) = O.

Let I(O) be the set of invertible two-sided fractional O-ideals. Then multipli-
cation defines an associative bilinear operation on I(O) with identity element O, so
I(O) has the structure of a group.

Lemma 15.2.2. The group I(O) is abelian.

Proof. Let I, J ∈ I(O). Consider IJI−1 ∈ I(O). There exists a nonzero r ∈ R ∩ I
(Exercise 8.2), so J = rJr−1 ⊆ IJI−1. Similarly, we have J ⊆ I−1JI so IJI−1 ⊆ J,
so equality holds and I(O) is abelian.

Definition 15.2.3. The Picard group of the R-order O, denoted PicR(O), is the quo-
tient of I(O) by the subgroup of principal two-sided fractional O-ideals.

A principal fractional O-ideal is invertible by Paragraph 14.4.4. Note that if I, J
are two-sided fractional O-ideals then they are in the same two-sided ideal class in
PicR(O) if and only if IJ−1 is a principal two-sided fractional O-ideal.

At this point, we cannot say much more about PicR(O), and we introduce it first
just for comfort; we will return later to its study.

15.3 One-sided ideals

We now study one-sided notions. Let I, J ⊂ B be invertible right fractionalO-ideals.

Definition 15.3.1. We say I, J are in the same (right) ideal class, and we write
I ∼ J, if there exists α ∈ B× such that αI = J.
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Clearly ∼ defines an equivalence relation on the set of invertible right fractional
O-ideals, and we let Cl RO denote the set of equivalence classes under this equiva-
lence.

Lemma 15.3.2. I is isomorphic to J as a right O-module if and only if I and J are
in the same ideal class if and only if (J : I)L = JI−1 is principal.

Proof. Suppose that φ : I ∼−→ J is an isomorphism of right O-modules. Then φF :
I⊗R F = B ∼−→ J⊗R F = B is an automorphism of B as a right B-module. Then as in
Example 6.2.14, such an isomorphism is obtained by left multiplication by α ∈ B×,
so by restriction we have φ is given by this map as well. Conversely, if αI = J then
left multiplication by α gives an isomorphism I ∼−→ J by associativity in B

For the second equivalence, suppose αI = J with α ∈ B×. Then α(II−1) =

αOL(I) = JI−1, andOR(JI−1) = OR(I−1) = OL(I), so JI−1 is indeed principal. The
converse follows similarly.

We will interchangeably use the language of ideal classes and isomorphisms.
It makes sense to identify isomorphic orders, as the isomorphism will identify

these ideal classes.

Definition 15.3.3. Two ordersO,O′ are of the same type if there exist x ∈ B× such
that O′ = x−1Ox.

Lemma 15.3.4. Let B be a central simple F-algebra. Then two orders O,O′ ⊆ B
are isomorphic as R-algebras if and only if they are of the same type.

Proof. If φ : O ∼−→ O′ is an isomorphism of F-algebras, then extending scalars to
F we obtain an F-algebra automorphism of B which is given by conjugation by the
theorem of Skolem–Noether.

Definition 15.3.5. Let O,O′ ⊆ B be R-orders. We say that O,O′ are connected if
there exists an invertible fractional O,O′-ideal in B, called a connecting ideal.

Lemma 15.3.6. Suppose that B has a standard involution. Then the orders O,O′
are connected if and only if Op and O′p are of the same type for all primes p.

Proof. Let I be an invertible fractional O,O′-ideal I. Then I is locally principal, so
Ip = Opxp and consequently O′p = OR(Ip) = x−1

p Opxp. Conversely, since Op = O′p
for all but finitely many primes p, if we haveO′p = x−1

p Opxp then the R-lattice I with
Ip = Opxp is an invertible fractional O,O′-ideal.

Remark 15.3.7. Note that if two R-orders O,O′ are isomorphic then they are con-
nected, but the converse is not in general true. We will return to this question in
earnest in section [[??]].
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Lemma 15.3.8. Let O,O′ be connected R-orders. Then there exists a bijection
Cl(O) ∼−→ Cl(O′) of sets and an isomorphism PicR(O) � PicR(O′) of groups.

Proof. Let J be an invertible fractional O,O′-ideal, so that OL(I) = O and OR(I) =

O′. The map I 7→ IJ induces a bijection between the set of rightO-ideals and the set
of right O′-ideals, with inverse given by I′ 7→ I′J−1, since each of the products are
compatible. This induces a bijection Cl(O) ∼−→ Cl(O′), since is compatible with left
multiplication in B, i.e., (αI)J = α(IJ) for all α ∈ B×.

In a similar way, the map I 7→ J−1IJ yields an isomorphism from the group of
invertible two-sided fractional ideals of O to those of O′. [[This respects classes.]]

Remark 15.3.9. There is no reason to expect a bijection of pointed sets. [[Draw a
picture of a graph.]]

Proposition 15.3.10. The map

Cl(O)→ T (O)

[I] 7→ [OL(I)]

has fiber canonically identified with PicR(O′) for [O′] ∈ T (O). In particular,

# Cl(O) =
∑

[O′]∈T (O)

# Pic(O′).

Proof. Let I be an invertible right fractionalO-ideal. ThenOL(I) � Oi for a uniquely
determined i, so OL(I) = x−1Oix for some x ∈ B×. But then Ii = xKI where
K = x−1IiI−1 is a two-sided invertible fractionalOL(I)-ideal, and so I ∼ KIi ∼ Ji, jIi

for some j, again uniquely determined.

Corollary 15.3.11. LetO be an R-order. LetOi be representatives of the orders in B
connected toO, up to isomorphism. For each i, let Ii be a connecting ideal forOi,O,
and let Ji, j be representatives of the two-sided invertible fractional Oi-ideal classes.

Then the set {Ji, jIi}i, j is a complete set of representatives of ClO.

15.4 Minkowski theory

[[Also known as Jordan-Zassenhaus]]

Now suppose that F is a number field and R is the ring of integers in F. Let B be
a quaternion algebra over F and let O be an R-order in B. We will show that the set
ClO of invertible right (fractional) O-ideals is finite. This proof will be drastically
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improved upon in section [[??]] by considering the zeta function of O; the proof in
this section, using the geometry of numbers, is nevertheless worth giving.

We argue roughly as follows: if J is an invertible right O-ideal, then there exists
x ∈ J−1 with the property that xJ = I has NF/Q(nrd(I)) ≤ C where C ∈ R>0 depends
only on O. The result will then follow from the fact that there are only finitely many
right O-ideals of bounded norm.

A subset D ⊆ Rn is convex if tx + (1− t)y ∈ D whenever x, y ∈ D and t ∈ [0, 1]
and is symmetric if −x ∈ D whenever x ∈ D. A lattice L in Rn is a discrete
additive subgroup; the rank of L is the dimension of L ⊗Z R as an R-vector space.
The covolume covol(L) of a lattice is equal to the volume of the quotient Rn/L or
equivalently if ai = (ai1, . . . , ain) is a basis for L then covol(L) = |det(ai j)|.

Theorem 15.4.1 (Minkowski). Let D ⊆ Rn be a closed, convex, symmetric subset of
Rn, and let L be a lattice inRn. If µ(D) ≥ 2n covol(L), then there exists 0 , x ∈ L∩D.

Let B =

(a, b
F

)
. For an infinite place v of F and u = x + yi + z j + wi j, define

Qv(u) = |v(x)|2 + |v(a)||v(y)|2 + |v(b)||v(z)|2 + |v(ab)||v(w)|2. (15.4.2)

We then define the absolute reduced norm by

Q : B→ R
u 7→ ∑

vQv(u);

by construction, the form Q is positive definite and gives an R-lattice the structure of
a lattice of full rank in R4n, where n = [F : Q]. Note that |v(nrd(u))| ≤ Qv(u) ≤ Q(u)
for all infinite places v so |NF/Q(nrd(u))| ≤ Q(u)n for all u ∈ B.

Lemma 15.4.3. For all invertible fractional O-ideals I in B we have covol(I) =

NF/Q(nrd(I))2 covol(O).

Proof. First, by definition we have

covol(I) = [O : I]Z covol(O)

where [O : I]Z denotes the index as lattices. But we have [O : I]Z = NF/Q([O : I])
where now the index is taken as R-modules, and [O : I] = nrd(I)2 since this can
be checked locally and then if Ip = xpOp then the F-endomorphism of B given by
left multiplication by xp has determinant nrd(xp)2. Putting these together, we have
covol(I) = NF/Q(nrd(I))2 covol(O).

Proposition 15.4.4. There exists C ∈ R>0 such that every right ideal class of ClO
is represented by an integral right O-ideal with NF/Q nrd(I) ≤ C.
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Proof. Let J be an invertible right fractional O-ideal. Then

covol(J−1) = N nrd(J)−2 covol(O).

Let D be the convex body {x ∈ R4n : Q(x) ≤ 1}, and let a > 0 be such that

a4n vol(D) = 24n covol(J−1) = 24n N nrd(J)−2 covol(O).

By Minkowski’s theorem, there exists 0 , x ∈ J−1 ∩ aD. Therefore

|NF/Q(nrd(x))|1/n ≤ Q(x) ≤ a2.

Consequently

N nrd(xJ)2 = |N nrd(x)|2 N nrd(J)2 ≤ a4n N nrd(J)2

= 24n covol(O) vol(D)−1 = C2.

Since x ∈ J−1, the ideal xJ = I is an O-ideal in the same ideal class as J, which
completes the proof.

Lemma 15.4.5. For any fractional ideal a of R, there are only finitely many right
O-ideals with nrd(I) = a.

Proof. We may assume a ⊆ R. Since nrd(I) = a we see that aO ⊆ I ⊆ O. But
O/aO is a finite set, so there only finitely many possibilities for I.

[[Cite Markus]]
[[This is like an “almost Euclidean algorithm”, analogous to the class group

of a number field. The pigeonhole principle should work, too.]]

15.5 Extensions and further reading

15.5.1. Cox [Cox89, §7] discusses orders in quadratic fields and the connections to
quadratic forms and class numbers.

15.5.2. The composition law on binary quadratic forms can be understood quite con-
cretely using 2× 2× 2 Rubik’s cubes, by a beautiful result of Bhargava [[cite]].

[[Manjul and Melanie take a different approach, and consider oriented quadratic
rings and ideal classes. Is this really any different?]]

Remark 15.5.3. The notation Picent(O) is also used for PicZ(O)(O) where Z(O) is
the center ofO and we considerO as a Z(O)-algebra [[reference a remark on orders
over rings that are not domains]].
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Exercises

Unless otherwise specified, throughout these exercises let R be a domain with field
of fractions F, let V be an F-vector space, and let B be an F-algebra.

[[Some explicit computations.]]

15.1.





Chapter 16

Quaternion orders over Dedekind
domains

In this section, we begin to classify orders over a Dedekind domain.

16.1 Classifying orders

Let B be a quaternion algebra over Q. A maximal order in B is analogous to the ring
of integers in a number field, but because of noncommutativity, maximal orders in B
are not unique (and in general, not unique even up to conjugation in B). Restricting
our investigations to maximal orders would come at a cost, as many natural orders
are not maximal: even the Lipschitz order quaternions Z+Zi +Z j +Zk, which arises
when considering if a positive integer is the sum of four squares, is not maximal,
contained inside the Hurwitz order Z + Zi + Z j + Z(1 + i + j + k)/2.

How do we classify quaternion orders? In Chapter 4 (see Theorem 4.4.5), we
saw that quaternion algebras over a field F (with char F , 2) are classified by ternary
quadratic forms over F. It should come as no surprise, then, that quaternion orders
over a Dedekind domain R are classified by ternary quadratic modules over R (The-
orem 16.3.1). The “module” part of this statement account for the possibility that R
may not be a PID, and so some aspects of the class group of R creep in. Over Z, we
have an especially simple statement:

Theorem 16.1.1. There is a discriminant-preserving bijection{Quaternion orders over Z
up to isomorphism

}
←→

{ Nonsingular ternary quadratic forms over Z
up to sign under the action of GL3(Z)

}
where GL3(Z) acts on quadratic forms by the natural change of variable.

197
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The bijection is defined by restricting the reduced norm, as follows. Let O ⊂ B
be a quaternion order over Z with reduced discriminant D = D(O) ∈ Z, a quantity
well defined up to sign. Let 1, i, j, k be a Z-basis for O: we do not assume that these
are standard generators! Let 1

2 , i
], j], k] be the dual basis with respect to the standard

bilinear form α, β 7→ trd(αβ), arising from the reduced norm. So,

trd(i]) = 0, trd(ii]) = 1, trd(i j]) = trd(ik]) = 0, etc.

We then associate to O the quadratic form

Q(x, y, z) = D nrd(xi] + y j] + zk]),

defined up to sign. This quadratic form has discriminant D.
Conversely, to the quadratic form Q

Q(x, y, z) = ax2 + by2 + cz2 + uyz + vxz + wxy ∈ Z[x, y, z]

up to sign, we associate the quaternion order O with basis 1, i, j, k where

i2 = ui− bc jk = ai = a(u− i)

j2 = v j− ac ki = b j = b(v− j)

k2 = wk − ab i j = ck = c(w− k);

(16.1.2)

this quaternion order has reduced discriminant

D = disc(Q) = 4abc− uvw− au2 − bv2 − cw2 , 0,

defined up to sign. (Note that if we scale the quadratic form by−1, the multiplication
laws (16.1.2) do not change!) Completing the square, since Q is nonsingular, we see
that at least one of the discriminants

u2 − 4bc, v2 − 4ac, w2 − 4ab

is nonzero; assuming w2 − 4ab , 0, we have

O ⊂ B =

(w2 − 4ab, aD
Q

)
as well as the others by symmetry (when they apply).

The formulas may seem a little involved, so it is clarifying to work out the diag-

onal case. Let B =

(b, a
Q

)
(the interchange is deliberate!), and let

O = Z + Zi + Z j + Zk ⊂ B
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be the tame order generated by the standard generators with

i2 = a, j2 = b, k = i j = − ji, k2 = −ab.

Then O has reduced discriminant D = −4ab. The dual basis is

i] = − i
2b
, j] = − j

2a
, k] =

k
2ab

and the reduced norm on this basis is

D nrd(xi] + y j] + zk]) = −4ab
(
−b
4b2 x2 +

−a
4a2 y

2 +
ab

4(ab)2 z2
)

= ax2 + by2 − z2.

Conversely, to the quadratic form Q(x, y, z) = ax2 + by2 − z2, we recover the order
Z + Zi + Z j + Zk with multiplication (16.1.2) by taking u = v = w = 0 and c = −1.

Why not just take the reduced norm restricted to the trace zero sublattice O0 of
O? In general, taking the trace zero subspace is not a good thing to do with respect
to the prime 2. For example, we cannot recover O from its trace zero subspace: the
Lipschitz and Hurwitz orders both have trace zero subspace spanned by i, j, k. The
second more serious problem is that taking the trace zero quadratic form does not
preserve discriminants: for the tame order, we have Q(x, y, z) = nrd(xi + y j + zk) =

−bx2−ay2 + abz2 of discriminant 4(ab)2, not 4ab. We could recover the above form
by taking instead

−(ab)−1Q(ax, by, z) =
a2bx2 + ab2y2 − abz2

ab
= ax2 + by2 − z2,

but this change of variables is achieved by taking the dual basis above, in a more
natural way!

Just as in the case of fields, the translation from quaternion orders to ternary
quadratic forms makes the classification problem potentially easier: we replace the
potentially complicated notion of finding a lattice closed under multiplication in a
quaternion algebra with the simpler notion of choosing coefficients of a quadratic
form. Using the local-global correspondence, in the next chapter, we tackle the clas-
sification problem for ternary quadratic forms over a local ring, where we can be
quite explicit.

However, before we do so, we take a tour of the zoo of orders and identify those
with good properties. To start, recall that a Dedekind domain R is a (commutative)
domain that is hereditary : every submodule of a projective module is again pro-
jective. (Hence the name: projectivity is inherited by a submodule.) A domain is
hereditary if and only if every ideal of R is projective, or equivalently, that any sub-
module of a free R-module is a direct sum of ideals of R. This property is used in
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the proof of unique factorization of ideals and makes the structure theory of modules
over a Dedekind quite nice. (Note, however, that any order which is not maximal in
a number ring is not hereditary.)

This definition carries over to the quaternionic context: an orderO is right hered-
itary if every right ideal of O is projective as a right O-module. The standard invo-
lution turns a right ideal into a left ideal, and so right hereditary is equivalent to the
obvious notion of left hereditary, and so we simply refer to an order as hereditary.

There is a simple numerical criterion to test if an order is hereditary.

Theorem 16.1.3. A Z-orderO is hereditary if and only if discrd(O) is squarefree; in
particular, a maximal order O is hereditary.

Orders O with squarefree discriminant are easily described, via their comple-
tions: they are orders of elements that are upper triangular modulo p for a finite set
of primes p - disc(B). More precisely, let B be a quaternion algebra of discriminant
D and let O(1) be a maximal order in B, so discrd(O(1)) = D. Let N be a squarefree
integer coprime to disc(B), and let O ⊆ O(1) be an order with squarefree discrimi-
nant discrd(O) = DN. Then at all primes p - N, we have Op = O(1)p is maximal.
For the primes p | N, there exists an isomorphism O(1)p � M2(Zp) such that

Op =

{(
a b
pc d

)
: a, b, c, d ∈ Zp

}
⊂ M2(Zp).

We can combine these into one, and write simply

ON �

{(
a b

Nc d

)
: a, b, c, d ∈ ZN

}
⊂ M2(ZN)

where ZN �
∏

p|N Zp is the completion at N.
More generally, Eichler considered those orders for which

ON �

{(
a b

Nc d

)
: a, b, c, d ∈ ZN

}
for an integer N coprime to D but not necessarily squarefree: these orders are called
Eichler orders . Equivalently, an Eichler order is the intersection of two maximal or-
ders. From the perspective of matrices, these are those which are not endomorphisms
of a full rank 2 module but preserve an incidence modulo N.

There is one final way of classifying rings that extends nicely to the noncommuta-
tive context. By way of analogy, note that orders in quadratic fields are characterized
simply by their conductor. Let K = Q(

√
D), where D ∈ Z is a fundamental discrim-

inant. Then the maximal order in K is Z +Zw where w = (D +
√

D)/2. Any order S
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in K is of the form Z + f S = Z + Z fw, where f ∈ Z≥1 is the conductor of S , and
the discriminant of S is d = f 2D. Even in classical considerations, these orders arise
naturally when considering binary quadratic forms of nonfundamental discriminant.
The condition that f = 1, which ensures maximality, also ensures that the dual is
projective, in other words, that S is Gorenstein. Gorenstein rings are natural from a
linear algebra point of view.

An order O is Gorenstein if its dual O] is projective as a right O-module. In a
similar way, to a Z-order O ⊂ B, there is a unique maximal integer f = f (O) ∈ Z≥1
such that O = Z + fO′ where O′ ⊂ B is a superorder of O. We call f the conductor
of the order; it is also sometimes called the Brandt invariant after Brandt. An order
is Gorenstein if and only if f = 1. An Eichler order is Gorenstein, but there are
Gorenstein orders that are not Eichler. If O = Z + fO′ where f = f (O) is the
conductor of O, then we call O′ ⊇ O the Gorenstein closure of O. To understand
orders, therefore, it is enough to understand Gorenstein orders. In the language of
quadratic forms, an order is Gorenstein if and only if its associated quadratic form is
primitive, meaning the greatest common divisor of its coefficients is 1. Because of
the importance of the Gorenstein property, we say that an order O is Bass if every
order that contains O is Gorenstein.

To summarize, we have

maximal =⇒ hereditary =⇒ Eichler =⇒ Bass =⇒ Gorenstein

and each of these implications is strict.
Finally, for a number ring R there is an ideal d of R called the different whose

norm is the discriminant; the different has better behavior under base extension.
(There is probably some intrinsic geometric thing that the different measures.) Give
the basic review; over quadratic fields, the different is just the difference between the
squareroots.

In a same way, we define the different of a quaternion order D(O), a two-sided
ideal. [[It is also just the commutator of the order, at least for a nice enough class
of orders?]]

16.2 Quadratic modules over rings

To begin, we consider the theory of quadratic modules; this generalizes the theory
of quadratic forms in Section 8.6 by keeping track of the codomain (target) of the
quadratic map.

Let R be a (commutative) noetherian domain with field of fractions F.

Definition 16.2.1. A quadratic map is a map Q : M → N between R-modules,
satisfying:
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(i) Q(rx) = r2Q(x) for all r ∈ R and x ∈ M; and

(ii) The map T : M × M → N defined by

T (x, y) = Q(x + y)− Q(x)− Q(y)

is R-bilinear.

The map T in (ii) is called the associated bilinear map.
A quadratic module over R is a quadratic map Q : M → L where M is a

projective R-module of finite rank and L is an invertible R-module. A quadratic
form over R is a quadratic module with L = R.

Example 16.2.2. Let Q : V → F be a quadratic form. Let M ⊆ V be an R-
lattice such that Q(M) ⊆ L where L is an invertible R-module. Then the restriction
Q|M : M → L is a quadratic module over R.

Conversely, if Q : M → L is a quadratic module over R, then the extension
Q : M ⊗R F → L⊗R F � F is a quadratic form over F.

Example 16.2.3. If Q : M → L is a quadratic module and c ⊆ R is a projective
R-ideal, then Q extends naturally by property (i) to a quadratic module aM → a2L.

Definition 16.2.4. A similarity between quadratic modules (M, L,Q) and (M′, L′,Q′)
is a pair of R-module isomorphisms f : M ∼−→ M′ and g : L ∼−→ L′ such that
Q′( f (x)) = g(Q(x)) for all x ∈ M, i.e., such that the diagram

M
Q //

fo
��

L

o g
��

M′
Q′ // L′

commutes. An isometry between quadratic modules is a similarity with L = L′ and
g the identity map.

Remark 16.2.5. Similarity and isometry are different notions of “isomorphism” for
quadratic modules where either you are allowed to move the codomain or not.

A similarity is a uniform These are just different notions of isomorphism, de-
pending on if you can move the target or not. The notion of “isometry” comes from
the connection with measuring lengths.

Think of a similarity like in the quaternion algebra case, where we can post mul-
tiply by any nonzero element of the field and we get an isomorphic conic. This may
change the values of the quadratic form: q(x) and uq(x) are similar but not necessarily
isometric.

If free, then the same theory works fine.
Discriminant, odd and even dimensions.
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16.3 Connection with ternary quadratic forms

In this section, we classify quaternion orders over R in terms of ternary quadratic
modules, due to Brzezinski. There is a further connection with quaternary forms, but
this is for ideals; see the next section.

There are actually two different ways of doing it. I would

attribute them to the authors as follows.

The one of Brandt/Eichler/Peters/Brzsinski which rescales

the lattice by nr(L)ˆ-1 in the definition of O(L). This way

O(L)=O(aL) for each fractional ideal a. This works for any

Dedekind ring and induces bijections between similarity

classes of forms and isomorphism classes of Gorenstein orders.

The other one used by Pall/Nipp/Lemurell. Their definition of

O(L) does not use the factor nr(L)ˆ-1.

Over a PID this induces a bijection between similarity classes

of forms and isomorphism classes of arbitrary orders.

There is a very detailed description by Shimura that works out

the image of this second map over non PIDs.

We return to the notation we have used throughout this section (except the previ-
ous one, where we allowed more generality): let R be a Dedekind domain with field
of fractions F and let O be an R-order in a quaternion algebra B over F.

Theorem 16.3.1. There is a discriminant-preserving bijection between quaternion
orders O over R and twisted isometry classes of ternary quadratic modules over R
with nonzero discriminant.

We can be more specific; it’s also functorial.
Let O] ⊂ B be the dual of O. Then

(O])0 = O] ∩ B0 = {α ∈ O] : trd(α) = 0}

is projective (locally free) of rank 3 so projective. We associate to O the quadratic
map Q(O) = nrd : O] ∩ B0 → d−2. [[This should be the same thing as taking the
inverse different!]]

Remark 16.3.2. Over a field, this is the same. See also Lucianovic’s thesis. Over odd
characteristic fields this makes no difference.

Lemma 16.3.3. Q(O) is a quadratic module.
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Proof.

Compute an explicit representation when free. Check morphisms (similarity).

Example 16.3.4. The Clifford functor respects morphisms of quadratic spaces but
the inverse does not. In particular, maximal quadratic spaces do not correspond to
maximal orders: the correspondence is only in one direction. There’s a specific
example where bad things happen at 2, but the problem is more general than that.

To show we get a bijection, we work in reverse. Let M = a1e1 ⊕ a2e2 ⊕ a3e3 and
I = R and the quadratic form Q : M → R by

Q(xe1 + ye2 + ze3) = Q(x, y, z) = ax2 + by2 + cz2 + uyz + vxz + wxy, (16.3.5)

with a, b, c, u, v, w ∈ R. We just write down an algebra:

B = R⊕ Ri⊕ R j⊕ Rk

with multiplication laws

i2 = ui− bc jk = ai = a(u− i) k j = j k = −vw + ai + w j + vk

j2 = v j− ac ki = b j = b(v− j) ik = k i = −uw + wi + b j + uk (Q)

k2 = wk − ab i j = ck = c(w− k) ji = i j = −uv + vi + u j + ck

Check various things (exercise). This construction has been attributed to Eichler and
appears in Brzezinski [Brz83] in the case R = Z. In this association, the reversal map
corresponds to the standard involution on B.

Remark 16.3.6. In fact, this is the Clifford algebra of M.

Proof. Finish proof.

OK, now to read off invariants.

Proposition 16.3.7. If Q′ = bQ then b(O′) = bb(O). In particular, if Q is primitive
then b(O′) = (b) and G(O′) = O.

Remark 16.3.8. Relationship to the discriminant quadratic form.

Musing: is there any relationship to representation numbers for this form? E.g.
splitting?
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16.4 Hereditary orders

Definition 16.4.1. An order O is hereditary if every right fractional O-ideal is in-
vertible.

[[Nope! Hereditary is for one-sided ideals. Unless these are related?]]

16.4.2. Let O ⊆ B be a maximal order. Then I ⊆ O is a (maximal) invertible
two-sided ideal if and only if Ip is so for all primes p.

We have two cases: either Bp � M2(Fp) or Bp is a division ring. In the former
case, we have that Op � M2(Rp) and Ip = M2(ap) = apM2(R) for some ap ⊆ Rp,
and such an ideal is principal since ap is. If Bp is a division ring, then all (two-sided)
ideals of the maximal orderOp are generated by a power of the unique maximal ideal
Pp which is also principal.

Thus, all two-sided fractional O-ideals are locally principal, so O is hereditary,
and the group of invertible two-sided fractional O-ideals is generated by {Pp ∩ O :
p ramified in B} ∪ {pO : p ⊆ R prime}.

[[Same with ideal classes?]]

Definition 16.4.3. Let P be a two-sided integral O-ideal and suppose P , O. We
say that P is prime if IJ ⊆ P implies I ⊆ P or J ⊆ P, where I and J are two-sided
integral O-ideals.

Theorem 16.4.4. Suppose thatO is hereditary. Then the set of two-sided (invertible)
fractional O-ideals of B forms an abelian group under multiplication, generated by
the prime ideals.

Proof. Let I be a two-sided integral O-ideal. Then since O is a finitely generated
R-module and R is noetherian, we conclude that I is contained in a proper maximal
(integral)O-ideal M. From I ⊆ M we conclude that IM−1 ⊆ O, so IM−1 is integral.
But nrd(IM−1) = nrd(I)/ nrd(M) | nrd(I). It follows that I can be written as the
product of maximal ideals M by induction (on the reduced norm).

We will now show that in fact a maximal O-ideal is prime. For suppose that
IJ ⊆ M and that I * M. Then I + M is a two-sided O-ideal strictly containing M so
I + M = O. But then J = IJ + MJ ⊆ M. Conversely, if P is prime and P ⊆ I where
I is a proper two-sided integral O-ideal, then P = I(I−1P), but I−1P ⊆ P implies
I−1 ⊆ O which is impossible so I ⊆ P hence P = I.

To conclude, we show that this group is abelian. Let P,Q be prime ideals. Then
PQ ⊆ P, so as above PQP−1 is integral, say PQP−1 = Q′. If Q′ = O then Q = O,
a contradiction. But then choosing 0 , p ∈ P ∩ R then Q = pQp−1 ⊆ Q′, but Q is
maximal so Q = Q′. Thus PQ = Q′P, so the group is abelian.
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16.5 Eichler orders

An Eichler order is the intersection of two maximal orders, and it is this class of
orders which we will study throughout. The level of an Eichler order O is the ideal
N ⊆ R satisfying d = DN; the level N is coprime to the discriminant D of B. Alter-
natively, given a maximal order O ⊆ B, an ideal N coprime to D and an embedding
ιN : O ↪→ M2(ZF,N) where ZF,N denotes the completion of ZF at N, an Eichler order
of level N is given by

O0(N) = {γ ∈ O : ιN(γ) is upper triangular modulo N} , (16.5.1)

and all Eichler orders arise in this way up to conjugation. In particular [Rei03, Theo-
rem 39.14], an order O is hereditary (all one-sided ideals of O are projective) if and
only if O is an Eichler order with squarefree level.

Being Eichler is a local condition.
Two orders O,O′ are conjugate (also isomorphic or of the same type) if there

exists ν ∈ B∗ such that O′ = ν−1Oν, and we write O � O′.

Proposition 16.5.2 ([Vig80, Corollaire III.5.5]). The number of isomorphism classes
of Eichler orders O ⊆ B of level N is finite.

16.6 Gorenstein orders

Definition 16.6.1. O is Gorenstein if O] = Hom(O,R) = {α ∈ B : trd(αO) ⊆ R}
[[why is this equivalent?]] is projective as a (left or) right O-module.

Lemma 16.6.2. O is Gorenstein if and only if Op is Gorenstein for all primes p.

Let O be an order.

Proposition 16.6.3. There exists a unique Gorenstein order G(O) ⊂ O and a unique
ideal b(O) ⊂ R such that

O = R + b(O)G(O).

Proof.

Lemma 16.6.4. We have O � O′ if and only if b(O) = b(O′) and G(O) � G(O′).

Proof.

Explicit example (Santi Molina).
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16.7 Different

As in the commutative case, the discriminant can be realized as the norm of the
different, which here is two-sided and invertible.

Let B be a separable F-algebra and let I be an R-lattice in B.

Definition 16.7.1. The dual of I is

I] = {α ∈ B : trd(αI) = trd(Iα) ⊆ R}.

In particular, we have trd(I]I) ⊆ R.

16.7.2. I] is an R-lattice in B (Exercise 13.8). Clearly, if I ⊆ J then I] ⊃ J]. For all
β ∈ B× we have (βI)] = I]β−1.

16.7.3. We have I ⊆ (I])], since if α ∈ I and β ∈ I] then trd(αβ) ⊆ R so α ∈ (I])].

Lemma 16.7.4. We haveOR(I) ⊆ OL(I]) ⊆ OR((I])]), so equality holds if I = (I])].

Of course, a similar statement holds in Lemma 16.7.4, interchanging left and
right.

Proof. Let α ∈ OR(I); then Iα ⊆ I, so I]Iα ⊆ I]I so

trd(αI]I) = trd(I]Iα) ⊆ trd(I]I) ⊆ R

hence αI] ⊆ I] and α ∈ OL(I]). Conversely, if α ∈ OL(I]) so αI] ⊆ I], then
(αI])] = (I])]α−1 ⊇ (I])] so (I])] ⊇ (I])]α and α ∈ OR((I])]).

Now let O be an R-order.

Definition 16.7.5. We define the different of O to be O∗ = (O : O])L = (O : O])R.

[[Would Lenstra use a † here? What is ((O)])]?]]

Lemma 16.7.6. We have O∗ is a two-sided integral ideal of O with nrd(O∗)2 =

disc(O).

In particular, we may define the reduced discriminant of O to be discrd(O) =

nrd(O∗) and this agrees with the definition in the quaternion case.
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16.8 Other orders

Definition 16.8.1. An order is Bass if every order O′ ⊇ O is Gorenstein.

Gorenstein is weaker than Bass is weaker than Eichler is weaker than hereditary
is weaker than maximal.

Lemma 16.8.2. O is Bass if and only if Op is Bass for all primes p.

Finally, Eichler introduced a class of orders. Eichler

Definition 16.8.3. An order O is primitive if it contains a maximal R-order of a
quadratic subfield of B.

Lemma 16.8.4. A primitive order is a Bass order.

Proof.

Is every Bass order primitive? True in the local case and for rational orders

Lemma 16.8.5. O is primitive if and only if Op is primitive for all primes p of R.

Proof. Local global.

16.9 Extensions and further reading

Condition (ii) can be given purely in terms of Q

Q(x + y + z) = Q(x + y) + Q(x + z) + Q(y + z)− Q(x)− Q(y)− Q(z)

for all x, y, z ∈ M.

16.9.1. In some lattice contexts, with R a Dedekind domain, a quadratic form with
values in a fractional ideal a is called an a-modular quadratic form. Given the over-
loaded meanings of the word modular, we do not employ this terminology. In the
geometric context, a quadratic module is called a line-bundle valued quadratic form.
Sometimes called a-modular quadratic form or something. Sometimes you just want
to keep track of where the image lies.

First construction is due to Brandt clarified by Peters and generalizing a result of
Latimer General form due to Brandt Lemurell (also writing under the previous family
name Johansson), discusses the relationship between quaternion algebras and orders
and ternary quadratic forms [Lem11]. Also consult history in Gross and Lucianovic.

For more on quadratic forms over rings, see O’Meara, Knus, Scharlau, ...
Other treatment by Gross and Lucianovic. Most general theorem is work of the

author [Voi11a].
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Exercises

16.1. Finite intersection of maximal orders?

16.2. Let E be a field and let A be a F a finite extension of E [[Lassina’s exercise:
there exists a Galois stable maximal order.]]

16.3. Prove the statement in Example 16.2.3. Conclude that up to similarity, the
target of a quadratic module only depends on Pic(R)/2 Pic(R). Twisted dis-
criminants.





Chapter 17

Quaternion orders over local PIDs

Carry out explicit local descriptions of all orders. Throughout, let F be a nonar-
chimedean local field, R its ring of integers, p = (π) its maximal ideal, and k = R/p
its (finite) residue field.

17.1 Eichler symbol

Let O be an R-order. We want to know if the order gives rise to a split, ramified, or
inert extension of the residue field.

Let J(O) be the Jacobson radical of O.

Lemma 17.1.1. J(O) = O if and only if O � M2(R).

Proof. Exercise, using Wedderburn.

Suppose now that J(O) , O; then J(O) ⊇ pO and O/J(O) is a semisimple
k-algebra, and hence a product of fields.

Exercise: only three possibilities.
Accordingly, we make the following definition.

Definition 17.1.2. Define the Eichler symbol

e(O) =


1, if J(O) = R or O/J(O) � k × k;
0, if O/J(O) � k;
−1, if O/J(O) is a quadratic field extension of k.

.

Remark 17.1.3. Recall the definition of the discriminant quadratic form (Remark
16.3.8). Then: e(O) = 0 if and only if ∆ is identically zero modulo p; and if ∆ is not
identically zero, then e(O) = 1 or −1 according as if

(
∆(α)
p

)
= −1 for some α ∈ O.

211
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This is like wanting the separable quadratic field extension inside the quaternion
algebra, which was so important in Chapter ...

In the language of quadratic forms, the Eichler symbol becomes:

ep(O) =


−1, if q modulo p is irreducible
0, if q modulo p is the square of a linear factor
1, if q modulo p is the product of two different linear factors.

(17.1.4)
This is just recording the reduction type of the associated conic in the plane, and
hence also the definition (inert, ramified, split).

17.2 Odd characteristic

By Lemma 16.6.4, it is enough to characterize local Gorenstein orders, and by ...
these correspond to similarity classes of primitive ternary quadratic forms over R.
We begin with the case where k has odd characteristic.

Let ε be a quadratic nonresidue modulo p, so that R×/R×2 is represented by the
classes of 1, ε.

Proposition 17.2.1. Let Q be a primitive nondegenerate ternary quadratic form.
Then Q is similar to a unique quadratic form

Q ∼ 〈1, uπe, vπ f 〉

where u, v ∈ {1, ε} and 0 ≤ e ≤ f satisfying

???

Proof. Diagonalize the form.

We call a form as in Proposition 17.2.1 is in standard form.

Proof. Immediate from (17.1.4).

Lemma 17.2.2. The associated quaternion order O = C0(Q) is maximal if and only
if r = s = 0 or (r = s = 1 and v = ε) and Bass if and only if r ≤ 1.

Proof. Computation.

Tree of orders.
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17.3 Even characteristic

Atomic. Do explicitly for some cases like unramified extension of Z2 and totally
ramified extension Z2[

√
2]?

17.4 Extensions and further reading

Discussed by Lemurell [Lem11, §5].

Exercises

17.1. Let O be a local quaternion order. Show that if O is not a local Bass order,
then e(O) = 0.

17.2. Prove Lemma 17.2.2.

17.3. Let Q be a ternary quadratic form in standard form and let O = C0(Q) be the
associated quaternion order. Then

e(O) = ±1 if and only if e = 0 and f ≥ 1 and (−u/p) = ±1.





Chapter 18

Zeta functions and the mass
formula

In this chapter, we introduce zeta functions of a quaternion order and use them to
investigate the class number of a totally definite quaternion order.

18.1 Zeta functions of quadratic fields

Gauss, in his investigation of binary quadratic forms was led to conjecture that there
were finitely many imaginary quadratic orders of class number 1. There are many
approaches to this problem, involving some beautiful and deep mathematics. Given
that we want to prove some kind of lower bound for the class number in terms of the
discriminant, it is natural to seek an analytic expression for this class number: this
is provided by the analytic class number formula of Dirichlet, and it turns the class
number problem of Gauss into a (still hard, but tractable) problem of estimation. In
a similar way, we may ask: what are the definite quaternion orders of class number
1? The method to prove Dirichlet’s formula generalizes to quaternion orders as well,
as pursued by Eichler in his mass formula.

In this chapter, we treat these topics in detail. To introduce the circle of ideas,
let K = Q(

√
d) be a quadratic field of discriminant d ∈ Z and let R be its ring of

integers. We encode information about the field K by its zeta function. Over Q, we
would consider the Riemann zeta function

ζ(s) =

∞∑
n=1

1
ns (18.1.1)

as the prototypical such function; this series converges for Re s > 1, by the compari-

215
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son test. By unique factorization, we have an Euler product

ζ(s) =
∏

p

(
1− 1

ps

)−1

where the product is over all primes p. The function ζ(s) can be meromorphically
continued to the right half-plane Re s > 0 using the fact that the sum

ζ2(s) =

∞∑
n=1

(−1)n

ns

converges for Re s > 0 and

ζ(s) + ζ2(s) = 21−sζ(s)

so that
ζ(s) =

1
21−s − 1

ζ2(s)

and the right-hand side makes sense for any Re s > 0 except for possible poles where
21−s = 1. For real values of s > 1, we have

1
s− 1

=

∫ ∞

1

dx
xs ≤ ζ(s) ≤ 1 +

∫ ∞

1

dx
xs =

s
s− 1

so
1 ≤ (s− 1)ζ(s) ≤ s;

therefore, as s →+ 1, we have (s − 1)ζ(s) → 1, so ζ(s) has a simple pole at s = 1
with residue ress=1 ζ(s) = 1.

For the field K, modeled after (18.1.1) we define the Dedekind zeta function by

ζK(s) =
∑
a⊆R

1
N(a)s (18.1.2)

where the sum is over all nonzero ideals of R and the series is defined for Re s > 1.
We can also write this as a Dirichlet series

ζK(s) =

∞∑
n=1

an

ns

where an is the number of ideals of norm n in R. By unique factorization of ideals,
we again have an Euler product expansion

ζK(s) =
∏
p

(
1− 1

N ps

)−1

, (18.1.3)

the product over all nonzero prime ideals p ⊂ R.
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18.2 Analytic class number formula for imaginary
quadratic fields

In order to introduce a formula that involves the class number, we group the ideals in
(18.1.2) by their ideal class: for [b] ∈ Cl(K), we define

ζK,[b](s) =
∑
a⊆R

[a]=[b]

1
N as

so that
ζK(s) =

∑
[b]∈Cl(K)

ζK,[b](s). (18.2.1)

In general, for [b] ∈ Cl(K), we have [a] = [b] if and only if there exists a ∈ K× such
that a = ab, but since a ⊆ R, in fact we have

a ∈ b−1 = {a ∈ R : ab−1 ⊆ R};

this gives a bijection
{a ⊆ R : [a] = [b]} ↔ b−1/R×,

(since the generator of an ideal is unique up to units). Thus

ζK,[b](s) =
1

N bs

∑
0,a∈b−1/R×

1
(N a)s . (18.2.2)

for each class [b] ∈ Cl(K).
Everything we have done so far works equally as well for real as for imaginary

quadratic fields. But here, to make sense of b−1/R× in the simplest case, we want
R× to be a finite group, which means exactly that K is imaginary quadratic. So from
now on this section, we assume d < 0. Then w = #R× = 2, except when d = −3,−4
where w = 6, 4, respectively.

Under this hypothesis, the sum (18.2.2) can be transformed into sum over lattice
points with the fixed factor w of overcounting. Before estimating the sum over recip-
rocal norms, we first estimate the count. Let Λ ⊂ C be a lattice. We can estimate the
number of lattice points λ ∈ Λ with |λ| ≤ x by the ratio πx2/A, where A is the area
of a fundamental parallelogram P for Λ: roughly speaking, this says that we can tile
a circle of radius x with approximately πx2/A parallelograms P.

More precisely, we have the following lemma.
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Lemma 18.2.3. Let Λ ⊂ C be a lattice with coarea area(C/Λ) = A. Then there is a
constant C such that for all x > 1, we have∣∣∣∣∣∣#{λ ∈ Λ : |λ| ≤ x} − πx2

A

∣∣∣∣∣∣ ≤ Cx.

We leave this lemma as an exercise (Exercise 18.1) in tiling a circle with radius
x with fundamental parallelograms for the lattice Λ.

Now we apply this lemma to a lattice b−1 ⊂ C. We write

ζK,[b](s) =
1

w(N bs)

∞∑
b=1

bn

ns

where
bn = #{a ∈ b−1 : N a = n}.

Since N a = |a|2, for all x > 1 we have∑
n≤x

bn = #{a ∈ b−1 : 0 < |a| ≤
√

x};

from Lemma 18.2.3, we conclude∣∣∣∣∣∣∣∣
∑
n≤x

bn −
πx
A

∣∣∣∣∣∣∣∣ ≤ C
√

x

where A is the coarea of b−1 and C is a constant that does not depend on x. We
compute that

A = N(b−1)

√
|d|
2

.

Now consider the Dirichlet series

f (s) =
1

w(Nb)s

∞∑
n=1

(
bn −

π

A

) 1
ns .

Then the estimate ∣∣∣∣∣∣∣∣
∑
n≤x

(
bn −

π

A

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
n≤x

bn −
πx
A

∣∣∣∣∣∣∣∣ ≤ C
√

x

by the comparison test implies that f (s) converges for all Re s > 1/2 and in particular
f (s) converges at s = 1. For s > 1, we have

f (s) = ζK,[b](s)− π

Aw(Nb)s ζ(s)
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so

ζK,[b](s) = f (s) +
2π

w
√
|d|

(Nb)1−sζ(s).

hence

ress=1 ζK(s) = lim
s→+1

(s− 1)ζK,[b](s)

= lim
s→+1

(s− 1) f (s) +
2π

w
√
|d|

lim
s→+1

(s− 1)(Nb)1−sζ(s)

= 0 +
2π

w
√
|d|
· 1 =

2π

w
√
|d|
.

In particular, ζK,[b](s) has a simple pole at s = 1 with residue independent of [b].
Summing the residues over [b] ∈ Cl(K), from (18.2.1) we have the following result.

Theorem 18.2.4 (Analytic class number formula for imaginary quadratic field). Let
K = Q(

√
d) be an imaginary quadratic field with discriminant d < 0. Let h be the

class number of K and w the number of roots of unity in K. Then

ress=1 ζK(s) =
2πh

w
√
|d|
.

This formula simplifies slightly if we cancel the pole at s = 1 with ζ(s), as
follows. Like in the Dirichlet series, we can combine terms in (18.1.3) to get

ζK(s) =
∏

p

∏
p|p

(
1− 1

N ps

)−1

and

Lp(s) =
∏
p|p

(
1− 1

N ps

)−1

=


(
1− p−s

)−2
, if (p) = pp′ splits in K;(

1− p−s
)−1

, if (p) = p2 ramifies in K;(
1− p−2s

)−1
, if (p) is inert in K.

We condition of being split, ramified, or inert in K is recorded in a character:

χ(p) = χd(p) =


1, if p splits in K;
0, if p ramifies in K;
−1, if p is inert in K
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for prime p and extended to all positive integers by multiplicativity. If p - d is an odd
prime, then

χ(p) =

(
d
p

)
is the usual Legendre symbol, equal to 1 or−1 according as if d is a quadratic residue
or not modulo p. Then

Lp(s) = (1− p−s)(1− χ(p)p−s).

Expanding the Euler product term-by-term and taking a limit, we have

ζK(s) = ζ(s)L(s, χ) (18.2.5)

where

L(s, χ) =
∏

p

(
1− χ(p)

ps

)−1

=
∑

n

χ(n)
ns .

The function L(s, χ) is in fact holomorphic for all Re s > 0; this follows from the
fact that the partial sums

∑
n≤x χ(n) are bounded and the mean value theorem. So in

particular the series

L(1, χ) = 1 +
χ(2)

2
+
χ(3)

3
+
χ(4)

4
+ . . .

converges (slowly). Combining (18.2.5) with the analytic class number formula
yields:

L(1, χ) =
2πh

w
√
|d|
.

For example, taking d = −4, so χ(2) = 0 and χ(p) = (−1/p) = (−1)(p−1)/2, we have

L(1, χ) = 1− 1
3

+
1
5
− 1

7
+

1
9
− 1

11
+ · · · =

∏
p≥3

(
1− (−1)(p−1)/2

p

)−1

=
π

4
= 0.7853 . . . .

Remark 18.2.6. The fact that L(1, χ) , 0, and its generalization to complex char-
acters χ, is the key ingredient to prove Dirichlet’s theorem on primes in arithmetic
progression (Theorem 11.2.8), used in the classification of quaternion algebras over
Q. The arguments to complete the proof are requested in Exercise 18.8.4.

To approach the class number problem of Gauss, we would then seek lower
bounds on L(1, χ) in terms of the discriminant |d|. Rather than go into these esti-
mates here, we refer to the additional reading in Paragraph 18.8.1.
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18.3 Eichler mass formula over the rationals

We are now prepared to consider the analogue of the above for quaternion orders.
Let B be a quaternion algebra over Q and let O be a maximal order in B. We define
the zeta function of O to be

ζO(s) =
∑
I⊆O

1
N(I)s , (18.3.1)

the sum over all nonzero right ideals in O. A maximal order is hereditary, so every
right ideal is projective hence locally principal (and invertible), and here we need not
concern ourselves with the subtler aspects of ideal theory as in Chapter 14.

Let an be the number of right ideals in O of reduced norm (n) for n > 0. Then
N(I) = nrd(I)2, so

ζO(s) =

∞∑
n=1

an

n2s .

To establish an Euler product for ζO(s), we will give a kind of factorization formula
for right ideals of O, but by necessity, writing an ideal as a compatible product will
involve the entire set of orders connected to O; in any case, we will show that amn =

aman whenever m, n are coprime. Next, we will count the ideals of a given reduced
norm q = pe a power of a prime: the answer will depend on whether p is ramified or
not in B. As a result, we will find

ζO(s) =
∏

p

ζO,p(s)

where

ζO,p(s) =


(
1− p−2s

)−1
, if p is ramified;(

1− p−2s
)−1 (

1− p1−2s
)−1

, if p is unramified.
(18.3.2)

In particular, this formula shows that ζO(s) does not depend on the choice of maximal
order O, so we may also write ζB(s) = ζO(s). From (18.3.2), we have

ζO(s) = ζ(2s)ζ(2s− 1)
∏
p|D

(
1− 1

p2s−1

)

where D > 0 is the discriminant of B. In particular, we have

ress=1 ζO(s) = lim
s→+1

(s− 1)ζO(s) =
ζ(2)

2

∏
p|D

(
1− 1

p

)
=
π2

12

∏
p|D

(
1− 1

p

)
. (18.3.3)
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(We could also look to cancel the poles of ζO(s) in a similar way to define an L-
function, holomorphic for Re s > 0.)

Now we break up the sum (18.3.1) according to right ideal class:

ζO(s) =
∑

[J]∈Cl(O)

ζO,[J](s)

where
ζO,[J](s) =

∑
I⊆O

[I]=[J]

1
N(I)s .

Since [I] = [J] if and only if I = αJ for some invertible α ∈ J−1, and µJ = J if and
only if µ ∈ OL(J)×, we have

ζO,[J](s) =
1

N(J)s

∑
0,α∈J−1/OL(J)×

1
N(α)s .

In order to proceed, we assume that B is definite (ramified at∞) or equivalently
that #OL(J)× < ∞. Let wJ = #OL(J)/{±1}. We again argue by counting lattice
points to prove the following proposition.

Proposition 18.3.4. The function ζO,[J](s) has a simple pole at s = 1 with residue

ress=1 ζO,[J](s) =
π2

wJD
.

Rather than give a proof of this proposition (which will be proven in this chapter
in greater generality), we only give a sketch of the idea. Using a Tauberian theorem,
we will show that

ress=1 ζO,[J](s) =
1

2wJ N(J)

vol(R4
≤1)

covol(J)
where

vol(R4
≤1) = vol({x ∈ R4 : |x| ≤ 1}) = 2π2

and J ↪→ J⊗R � H � R4 has the structure of a lattice in R4 with covol(J) =

covol(O)/N(J) = D/N(J). Putting all of these facts together, we have

ress=1 ζO,[J](s) =
2π2

2wJ N(J)
N(J)

D
=

π2

wJD
.

Combining Proposition 18.3.4 with (18.3.3), we have

ress=1 ζO(s) =
π2

D

∑
[J]∈Cl(O)

1
wJ

=
π2

12

∏
p|D

(
1− 1

p

)
and we conclude the following theorem.
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Theorem 18.3.5 (Eichler mass formula). Let O be a maximal order in a definite
quaternion algebra over Q of discriminant D. Then∑

[J]∈Cl(O)

1
wJ

=
φ(D)
12

where wJ = #OL(J)/{±1} and φ is the Euler φ-function.

The Eichler mass formula does not quite give us a formula for the class number;
rather, it gives us a formula for a “weighted” class number (we can think of wJ

as the order of the nonscalar automorphism group of J), and this is still useful for
applications.

Corollary 18.3.6. We have # Cl(O) = 1 if and only if D = 2, 3, 5, 7, 13.

Proof. We have # Cl(O) = 1 if and only if

1
w

=
φ(D)
12

where w = #O/{±1}. For the cases D = 2, 3, we have seen already that the maximal
order O is fact Euclidean and w = 12, 6, respectively; this independently verifies
the Eichler mass formula in these cases. We will see in Section 21.1 that if D > 3
then w ≤ 3. By elementary arguments with the Euler φ function (Exercise 18.2), we
have φ(D)/12 = 1/w with w ≤ 3 only if D = 5, 7, 13, 42, and we can check each

discriminant in turn. For D = 5, we may take B =

(−5,−3
Q

)
and a maximal order

O containing Z[(−1 + j)/2], so w = 3 and # Cl(O) = 1. The other cases follow
similarly; the details are requested in Exercise 18.3.

In Section 18.6, we go farther and find all definite quaternion orders of class
number 1, following Brzezinski.

18.4 Analytic class number formula

Let F be a number field with r real places and c complex places, so that [F : Q] =

n = r + 2c. Let R be the ring of integers in F. Define the Dedekind zeta function for
s ∈ C with <(s) > 1 by

ζF(s) =
∑
a⊆R

1
Nas =

∏
p

(
1− 1

Nps

)−1
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where the sum is over all nonzero ideals of R, the product is over all primes of R, and
Na is the absolute norm. Then ζF admits an analytic continuation to all of C with a
simple pole at s = 1 with residue

ζ∗F(1) = lim
s→1

(s− 1)ζF(s) =
2r1(2π)r2

w
√

dF
hFRegF (18.4.1)

where wF is the number of roots of unity in F, hF = # Cl R is the class number of F,
RegF is the regulator of F, and dF is the absolute discriminant of F

More generally, for a ∈ Cwe write ζ∗F(a) for the leading coefficient in the Laurent
series expansion for ζF at s = a.

The formula (18.4.1) is known as Dirichlet’s analytic class number formula (even
though Dirichlet’s theorem concerned quadratic forms rather than classes of ideals).
Using the functional equation for ζF , we can also write this more simply as

ζ∗F(0) = lim
s→0

s−(r1+r2−1)ζF(0) =
hFRegF

wF
;

here, ζF has a zero at s = 0 of order r1 + r2 − 1.
In the situation where F is an imaginary quadratic field (r1 = 0 and r2 = 1), we

have RegF = 1, so we find that

hF = wFζF(0)

and in particular if dF > 4 then hF = 2ζF(0).
In brief, this formula is proved as follows. We write the Dedekind zeta function

as a sum over ideals in a given ideal class: we define the partial zeta function

ζF,[b](s) =
∑
a⊆R

[a]=[b]

1
Nas

so that
ζF(s) =

∑
[b]∈Cl R

ζF,[b](s).

Now note that [a] = [b] if and only if a = ab for some nonzero

a ∈ b−1 = {x ∈ F : xb ⊆ R},

so we have a bijection between nonzero ideals a ⊆ R such that [a] = [b] and the set
of nonzero elements in b−1/R×. So

ζF,[b](s) =
1

Nbs

∑
0,a∈b−1/R×

1
|Na|s

.
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One now reduces to a problem concerning lattice points after choosing a fundamental
domain for the action of R×, which reduces to a volume computation (an exercise in
multivariable integration with polar coordinates): one finds that

ζ∗F,[b](s) =
2r1(2π)r2

w
√

dF
RegF

(independent of [b]!) and Dirichlet’s formula follows.

18.5 Zeta functions of quaternion algebras

We now mimic the above proof in our quaternionic setting.
Recall from strong approximation that if F is a function field, or if F is a number

field and B satisfies the Eichler condition—i.e., that there is an unramified archime-
dean place for B—then one may identify the class number of any order O ⊆ B with
a suitable class group.

So only one case remains to consider. Let F be a totally real number field and let
B be a quaternion algebra which is ramified at all real places of F; we say that B is a
(totally) definite (and otherwise we say B is indefinite).

Remark 18.5.1. To extend the analogy, we also note that this situation is analogous
to one without a regulator term (as would be necessary, as otherwise the unit groups
would be infinite and noncommutative!).

Let O be an order in B.
Let I be an integral right O-ideal, so that I ⊆ O. We define N(I) = #(O/I). We

have N(I) = NF/Q nrd(I)2. For example, if a ⊆ R is a nonzero ideal then N(aO) =

NF/Qa
4. Note this agrees with the covolume computation in Lemma 15.4.3.

We then define the zeta function of O to be

ζO(s) =
∑
I⊆O

1
N(I)s =

∑
n

an
N(n)2s (18.5.2)

where the first sum is over all (nonzero) integral right O-ideals I and in the second
sum an is the number of right O-ideals I with nrd(I) = n.

Our first order of business is to establish an Euler product for ζO(s).

Lemma 18.5.3. Let I be an integral O-ideal with nrd(I) = ab and a and b coprime.
Then I can be uniquely written as a compatible product I = I(a)I(b) with nrd(I(a)) =

a and nrd(I(b)) = b.

Proof. Let O′ = OL(I). Define I(a) = I + aO′ and I(b) = I + bO. The statement
holds if and only if it holds locally, so let p be a prime of R. If p - ab then Ip = Op =
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I(a)p = I(b)p. If p | a, then I(a) = Ip and I(b)p = Op and so nrd(I(a)p) = nrd(Ip) and
(I(a)I(b))p = IpOp = Ip and the product is compatible. We have a similar statement
for p | b. The result follows.

If we factor an O-ideal into a product of ideals whose norms are powers of a
prime, then these ideals will have orders which will be in general different than O.
Of course, if O and O′ are connected (locally isomorphic) orders, then since ideals
can be recovered from its localizations there is a bijection between the right ideals of
O and of O′ of any reduced norm a.

Suppose that O is hereditary. Then when we factor I into a product of ideals of
prime power norm, each left and right order that appears in the product is connected
to O, since each ideal is locally principal. It follows that if an is the number of
right O-ideals of norm an, then amn = aman whenever m and n are relatively prime.
Consequently

ζO(s) =
∏
p

ζOp(s)

where

ζOp(s) =
∑

Ip⊆Op

1
N(Ip)s =

∞∑
e=0

ape

Np2s .

We are now reduced to counting ideals locally.

Lemma 18.5.4. LetOp be a maximal order in Bp and let q = pe be a prime power of
R.

If p is ramified in B, then there is a unique (left or) right integralO-ideal of norm
q.

If p is unramified in B, then the number of (left or) right integral O-ideals of
norm p is equal to 1 + Np + · · · + Npe.

Proof. If p is ramified then the unique maximal order Op has a unique (two-sided)
maximal ideal P with nrd(P) = p and all ideals of Op are powers of P.

So suppose that p is split in B. Let Ip = xpOp be a right integralOp-ideal of norm
pe and let π be a uniformizer for p. Then we can write

xp =

(
πe− f 0

r π f

)
for unique f ∈ Z≥0 and r ∈ R/p f (Exercise 19.5. Since #R/p f = Np f , it follows
that the number of such ideals is equal to 1 + Np + · · · + Npe.
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From this lemma we have

ζOp(s) =

(
1− 1

Np2s

)−1

if p is ramified, and

ζOp(s) =

∞∑
e=0

1 + Np + · · · + Npe

Np2es =

(
1− 1

Np2s

)−1 (
1− 1

Np2s−1

)−1

if p is split.
Recall that

ζF(s) =
∏
p

(
1− 1

Nps

)−1

.

Thus

ζO(s) =
∏
p

ζOp(s) = ζF(2s)ζF(2s− 1)
∏
p | D

(
1− 1

Np2s−1

)
where D is the discriminant of B. (Here one needs to break up the sum into ideals of
norm ≤ X and those > X and show that the product converges, etc.)

Since the ζF has only a simple pole at s = 1, there is a single simple pole of ζO
at s = 1, and we conclude that

ζ∗O(1) = lim
s→1

(s− 1)ζO(s) =
ζF(2)

2
ζ∗F(1)

∏
p|D

(1− Np−1). (18.5.5)

We now write ζO(s) as a sum over right ideal classes and analyze the residue
at s = 1 by a volume a computation as with the analytic class number formula.
Combining this with (18.5.5), we will obtain a mass formula for the order O.

For an integral right O-ideal J, let

ζO,[J](s) =
∑
I⊆O

[I]=[J]

1
N(I)s .

Then obviously
ζO(s) =

∑
[J]∈ClO

ζO,[J](s).

We have [I] = [J] if and only if I � J if and only if I = xJ for nonzero x ∈ J−1

(recall that B is a division ring since it is ramified at its real places). Since uJ = J if
and only if u ∈ OL(J)× (Exercise 19.7), it follows that

ζO,[J](s) =
1

N(J)s

∑
0,x∈J−1/OL(J)×

1
N(x)s .
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But nowOL(J)×/R× is finite since B is totally definite. Let w(J) = #OL(J)×/R×.
Then

ζO,[J](s) =
1

w(J)N(J)s

∑
0,x∈J−1/R×

1
N(x)s .

Proposition 18.5.6. ζO,[J](s) has a simple pole at s = 1 with residue

ζ∗O,[J](1) =
2n(2π)2nRegF

8w(J)d2
F ND

.

With this lemma in hand, we find that

ζ∗O(1) =
2n(2π)2nRegF

8d2
F ND

∑
[J]∈ClO

1
w(J)

=
ζF(2)

2

(
2n

2
√

dF
hFRegF

)∏
p|D

(
1− 1

Np

)
since wF = 2 (F is totally real) so since D is squarefree we have∑

[J]∈ClO

1
w(J)

= ζF(2)
2

(2π)2n hFd3/2
F

∏
p|D

(Np− 1).

By the functional equation for ζF , we have

ζF(−1) =

(
−1
2π2

)n

d3/2
F ζF(2)

so we can also write ∑
[J]∈ClO

1
w(J)

= 21−n|ζF(−1)|hFΦ(D)

where we define
Φ(D) =

∏
p|D

(Np− 1),

the generalization of Euler’s Φ-function. We have proven the following theorem.

Theorem 18.5.7 (Eichler’s mass formula). We have∑
[J]∈ClO

1
[OL(J)× : R×]

= 21−n|ζF(−1)|hFΦ(D).

Corollary 18.5.8. If O is the maximal order in a definite quaternion algebra of dis-
criminant D over Q, then ∑

[J]∈ClO

1
#OL(J)×

=
1
24
φ(D).
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In the (unlikely) situation where OL(J)× = u is independent of J, we would
conclude that

# ClO = H = u21−n|ζF(−1)|hFΦ(D).

[[As an approximation, H is roughly d3/2
F ND/2n.]]

Proof of Proposition 18.5.6. We first prove this statement in the case F = Q, since
then we can see the main ideas minimizing technicalities. We will come back and
treat the general case. [[Sucker!]]

In this situation, our formula greatly simplifies and we need to show that ζO,[J](s)
has a simple pole at s = 1 with residue π2/(w(J)D) where D is the discriminant of B.
We have written

ζO,[J](s) =
1

w(J)N(J)s

∑
0,x∈J−1/{±1}

1
N(x)s .

The key technical fact is the following. Let X ⊆ Rn be a cone and suppose
0 < N(X). Suppose that X≤1 = X ∩ {x ∈ Rn : N(x) ≤ 1} is bounded and has volume
vol(X≤1). Let L ⊆ Rn be a lattice of full rank in Rn and has covolume covol(L). Let

ζL,X(s) =
∑

x∈X∩L

1
N(x)s .

Then ζL,X(s) converges for Re s > 1 and has a simple pole at s = 1 with residue

ζ∗L,X(1) = lim
s→1+

(s− 1)ζL,X(s) =
vol(X≤1)
covol(L)

.

Whew! In our case, we consider the lattice

J−1 ↪→ B⊗Q R � H � R4.

The choice of sign allows us to choose the first coordinate to be positive, so we take
X = R≥0 × R3. We have vol(X) = 1/2(2π2) = π2. From the previous section on
Minkowski theory, we have covol(J−1) = covol(O)/N(J). And almost by definition
we have covol(O) =

√
discO = D. Putting this together with the technical fact, we

have

ζ∗O,[J](1) = f rac1w(J)N(J)
π2N(J)

D
=

π2

w(J)D

as claimed.
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18.6 Class number 1 problem

The list of all definite quaternion orders of class number 1 over the integers was
determined by Brzezinski [Brz95] in the language of ternary quadratic forms.

(

Theorem 18.6.1 (Brzezinski). There are 25 isomorphism classes of definite quater-
nion orders over Z with class number 1.

Proof. Mass formula for maximal orders.

Also work with Markus.

It turns out

that there are no non-principal Euclidean ideal classes for maximal

Z-orders in definite rational quaternion algebras.

But the way things worked out was somewhat interesting: the class

number 2 (reduced) discriminants are 11, 17, 19, 30, 42, 70, 78.

For 11, 17, 19, it turns out that the type number is also 2. This

means that the Brandt groupoid has the following structure:

there are the two nonsiomorphic maximal orders, say O1 and O2. The

right Picard set [I think you might call this the "left Picard set in

your notes", and you might well be right; anyway you get the point] of

O1 consists of O1 together with an ideal I with left order O1 and

right order O2. Similarly, the right Picard set of O2 consists of O2

together with an ideal I’ with left order O2 and right order O1. Thus

in the Brandt groupoid I’ is the inverse of I, whereas O1 and O2 are

self-inverse.

[So the picture is a graph with two vertices and four oriented edges,

two of which are loops and a pair of mutually inverse edges running

between the two vertices.]

These four "arrows" in the groupoid represent three different

quadratic forms: an ideal and its inverse give rise to the same

quadratic form. In fact these three quadratic forms comprise a full

genus (I checked that independently on the quadratic lattice side).

Before I was looking only at one of the maximal orders and was very

confused as to why MAGMA was telling me that the class number of the

associated quadratic form was equal to 3. I think I get it now!

Note that this means that the two-sided Picard group of each of O1 and

O2 is trivial (in particular they are isomorphic!),
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and this means that if there is any Euclidean ideal class, then there

would be a Euclidean order, forcing the class number to be 1 rather

than 2. (Of course I checked this by computing the Euclidean minima

of the 3 forms in question: they are all bigger than 1, although not

tremendously so.)

For 30,42,70,78, it turns out that the type number is 1. So in this

case the Brandt groupoid is simply equal to the two-sided Picard

group, which has cardinality 2. In other words there is a unique

nonprincipal two-sided ideal, which is a candidate for being a

Euclidean ideal class...but it turns out not to be. (On the other

hand, I think I could invert a suitable small set of primes in Z in

such a way as to keep the class numbers, type numbers, etc. the same

but make the nonprincipal ideal class be Euclidean. I should probably

do that: it would be nice to have an actual example.)

You might want to use this example in your book. (Or you might not:

just a late night idea.)

Let me say that although obviously the first three discriminants have

one prime factor and the last four have three prime factors, in and of

itself this doesn’t explain to me why the two Picard groups have

different structures. I happen to know that the two-sided Picard

group is an elementary abelian two-group whose F_2-dimension is *at

most* the number of ramified primes, but that doesn’t explain

everything here: certainly there are examples of quaternion algebras

of prime discriminant with nontrivial two-sided Picard group, e.g. D =

73, 89. (If there is some clear answer as to when the Picard group

is trivial and when it has order 2 in the prime discriminant case, I

am not aware of it.)

Best regards,

Pete

18.7 Zeta functions over function fields

18.8 Extensions and further reading

18.8.1. Further reading for Gauss class number 1 problem.

18.8.2. Eichler mass formula and supersingular elliptic curves.
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18.8.3. The primes p = 2, 3, 5, 7, 13 in Corollary 18.3.6 are also the primes p such
that the modular curve X0(p) has genus 0. This is not a coincidence, and reflects a
deep correspondence between classical and quaternionic modular forms.

18.8.4. Prove the theorem on primes in arithmetic progression (Theorem 11.2.8)
using the nonvanishing L(1, χ) , 0 for characters χ, as follows.

18.8.5. More generally, we can replace the orthogonal group with another compact,
semisimple Lie group G∞, an integral model for it GZ, and ask for the weighted sum
of the class set of objects with automorphism group GZ. (For example, unitary group
and Hermitian lattices, symplectic group, G2, etc.) Weil conjectured a formula for
this in terms of a product, and Langlands, Lai, and Kottwitz proved general state-
ments for number fields. The right way to formulate this is in terms of double cosets,
where the final answer comes down to a Tamagawa number calculation.

The function field equivalent is a problem in topology.

Exercises

18.1. Prove Lemma 18.2.3 as follows.

a) Let P be a fundamental parallelogram for Λ, and for λ ∈ Λ let Pλ = P+λ.
For x > 1, let D(x) = {z ∈ C : |z| ≤ x}, and

N(x) = #{λ ∈ Λ : λ ∈ D(x)}
NP(x) = #{λ ∈ Λ : Pλ ⊆ D(x)}
N+

P (x) = #{λ ∈ Λ : Pλ ∩ D(x) , ∅}.

Show that
N(x) ≤ NP(x) ≤ N+

P (x).

b) Show that NP(x) ≤ πx2/A ≤ N+
P (x).

c) Let d be the length of a long diagonal in P. Show that for any λ ∈
Λ ∩ D(x), we have Pλ ⊆ D(x + d), so

N(x) ≤ NP(x + δ) ≤ π(x + d)2

A
.

Similarly, show that if Pλ ∩ D(x− d) then Pλ ⊆ D(x) and λ ∈ D(x), so

π(x− d)2

A
≤ N+

P (x− d) ≤ N(x).
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d) Conclude that Lemma 18.2.3 holds with C = π/A(2x + x2). See [Wes,
Lemma 1.19].

18.2. Show that if D is a squarefree integer with an odd number of prime factors
with φ(D)/12 ∈ {1, 1/2, 1/3}, then D ∈ {5, 7, 13, 42}.

18.3. Using the explicit description of maximal orders, show that maximal orders
of discriminant D = 5, 7, 13 have class number 1 and a maximal order of
discriminant 42 has class number > 1.





Chapter 19

Adelic framework

19.1 Adeles and ideles

We have already seen that the local-global dictionary is a powerful tool in under-
standing the arithmetic of quaternion algebras. In this section, we formalize this
connection by consideration of ideles.

Throughout this section, let F be a global field. For a place v of F, we denote
by Fv the completion of F at the place v, with preferred (normalized) associated
absolute value | |v so that the product formula holds in F. If v is nonarchimedean,
we let Rv = {x ∈ Fv : |x|v ≤ 1} be the valuation ring of Fv, where by abuse of
notation we write v also for the discrete valuation associated to the place v. If v is
archimedean, we write v | ∞.

19.2 Adeles

The adele ring of F is

AF =
∏′

v

Fv = {(xv)v ∈
∏

vFv : |xv|v ≤ 1 for all but finitely many v} .

The product AF is given a topology as follows: U ⊆ AF is open if and only if for all
a ∈ AF , one has that the set

(a + U) ∩
(∏

v|∞Fv ×
∏

v-∞ Rv
)

is open in the product topology.
We embed F ⊆ AF by x 7→ (x)v; this map is well-defined because |x|v > 1 for

only finitely many places v of F. The image of F in AF has the discrete topology

235
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and hence it is closed in AF ; the quotient AF/F is a connected, compact Hausdorff
topological group; we say that F is cocompact in AF . (In some sense, this is like
how Z sits in R: the quotient is the compact circle group R/Z.)

Let S be a finite set of places of F containing the infinite places. We will often
write

AF = F̂S ×
∏
v∈S

Fv,

where F̂ =
∏′

v<S
Fv; we call F̂ the S -finite adele ring of F.

19.2.1. We define

Ẑ = lim←−
n
Z/nZ

=
{
(an)∞n=1 ∈

∏∞
n=1(Z/nZ) : for all n | m, am ≡ an (mod n)

}
.

We give each Z/nZ the discrete topology, and
∏

n(Z/nZ) the product topology.
This product is compact, as a result of the theorem of Tychonoff (the product of
compact topological spaces is itself compact); the restriction Ẑ is therefore itself
compact, as Ẑ is closed in

∏
n(Z/nZ). The ring homomorphism Z → ∏

n(Z/nZ)
which takes every element to its reduction modulo n realizes Ẑ as the closure of Z in
the product

∏
n(Z/nZ).

By unique factorization, we obtain a ring isomorphism Ẑ ∼−→ ∏
p Zp. This no-

tation is justified, since we have Q̂ =
∏′

p
Qp � Q ⊗Z Ẑ. More generally, we

have
F̂ � F ⊗Q Q̂ = F ⊗Z Ẑ.

19.3 Ideles

We pass now to the multiplicative situation. The idele group of F is

JF =
{
(xp)p ∈

∏
pF
×
v : |xv|v = 1 for all but finitely many v

}
.

We have JF = F̂× ×∏
v|∞ F×v .

In the relative topology of JF in AF , inversion is not a continuous operation! To
get the correct topology, we declare instead that U ⊆ JF is open if and only if for all
a ∈ JF , the set

aU ∩
(∏

v|∞ F×v ×
∏

v-∞ R×v
)

is open in the product topology.
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Remark 19.3.1. In general, if A is a topological ring, A× becomes a topological group
when A× is given the relative topology from

A× ⊆ A× A

x 7→ (x, x−1).

(See Exercise 19.15.)

Just as F ⊆ AF is discrete, F× ⊆ JF is also discrete, but this time it is not quite
cocompact: the group CF = JF/F×, called the idele class group, warrants further
study.

As above, if S is a finite set of places containing the archimedean places, we

define F̂×S =
∏′

v<S
F×v so that JF = F̂×S ×

∏
v∈S F×v .

Example 19.3.2. Take the example K = Q. We have a canonical isomorphism

Q×p � 〈p〉 × Z×p
defined by taking the p-adic valuation. If we identify Z � 〈p〉, then

JQ = R× ×
∏

p

′
Q×p � {±1} × R>0 ×

∏
p

Z×p ×
⊕

p

Z.

(A direct sum appears because an element of the restricted direct product is a p-adic
unit for all but finitely many p.)

We project JQ onto the product of the first and last factor:

JQ → {±1} ×
⊕

p

Z→ 0.

Looking at Q× ⊆ JQ, if we write r = ε
∏

p pn(p), where ε ∈ {±1} and n(p) =

ordp(r), then r 7→ (ε, (n(p))p) in the projection. Therefore Q× is canonically identi-
fied with {±1} ×

⊕
p Z in JQ. Putting these together, we see that

JQ � Q× × R>0 ×
∏

p

Z×p .

By the logarithm map, we have an isomorphism R>0 � R of topological groups,
therefore

JQ � Q× × R× Ẑ×

and JQ/Q× � R× Ẑ×.
In a similar way, we see that Q̂×/Q×+ � Ẑ×, where Q×+ = {x ∈ Q : x > 0}.
(We have used that Z has unique factorization and Z× = {±1}; for a general

number field, we face problems associated with units and the class group of the field,
and the exact sequence will not split!)
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19.3.3. If F is a number field, we have seen that even for F = Q the idele class
group is neither profinite or compact; but the noncompactness is only because of the
presence of the term R (a volume term). We therefore map

JF → R>0

(xv)v 7→
∏
v

|xv|v.

This map is clearly surjective, so we obtain an exact sequence

1→ J0
F → JF → R>0 → 1.

In fact, the kernel J0
F is compact, a statement equivalent to the Dirichlet unit theorem

and the finiteness of the class group. This exact sequence splits, and so JF � R×J0
F as

topological groups. Since F× ⊆ J0
F (by the product formula), we have CF � R×C0

F .

19.3.4. [[Function field case]]

19.4 Idelic class field theory

Let F be a separable closure of F. The main theorem of idèlic class field theory is as
follows. We have a bijection

{K ⊆ F : K ⊃ F finite abelian} ↔ {H ⊆ CF : H open subgroup}
K 7→ NK/FCK .

What are these open subgroups? Let f =
∏
p p

n(p) be a cycle, a formal product
where n(p) ≥ 0 for all p, n(p) = 0 for almost all p, and

n(p) =

0 or 1, p real,
0, p complex.

Given such a cycle f, we have an open subgroup Wf ⊆ JF , where

Wf =
∏′

n(p)=0

F×p ×
∏
p real

n(p),0

F×
p,>0 ×

∏
p<∞

n(p)>0

(1 + pn(p)).

A subgroup of JF is open if and only if it contains an Wf: one can read this
off almost immediately from the definition of the topology. Note that for such an
open subgroup, at every complex place one has the entire component and at every
real place one has the component up to finite index. We may take the image W f =
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(WfF×)/F× ⊆ CF , and we see that a subgroup of CF is open if and only if it contains
W f for some f. Then under the above correspondence, we have the isomorphisms
Gal(K/F) � CF/H and CF/W f � Clf, where Clf is the ray class group of conductor
f.

Combining the surjections CF → Gal(K/F), we obtain a surjective map

CF → lim←−
L

Gal(K/F) = Gab
F

where Gab
F is the Galois group of the maximal abelian extension of F in F. Let DF be

the connected component of 1 in CF . Then DF is a closed subgroup, and it is exactly
the kernel of the above map, so CF/DF � Gab

F . In fact, the topological group DF is
isomorphic to

DF � R× (R/Z)r2 × Sr1+r2−1

where r1 is the number of real primes, r2 the number of complex primes, and S is the
solenoid defined in the exercises.

19.5 Adelic dictionary

Let S be a finite, nonempty set of places of F containing the archimedean places, and
let R = RS denote the ring of S -integers. Then R is a Dedekind domain with field of
fractions F.

To an invertible fractional ideal a ⊆ F of RS , we consider the product of its
images in the completions

(ap)p<S ⊆
∏′

p<S

Fp = F̂S .

(The image indeed lies in the restricted direct product since ap = Rp for all but finitely
many primes p.) But recall that a fractional ideal of R is invertible if and only if it is
locally principal. Therefore we can write (ap)p = (xpRp)p for some x̂ = (xp)p ∈ F̂×,
and â = aR̂ = x̂R̂ ⊆ F̂. Recall that we can recover a from â as a = â ∩ F. We
have shown therefore that the group of invertible fractional ideals is isomorphic to
F̂×S /R̂

×
S .

The principal (invertible) fractional ideals correspond to the image of F× in F̂×.
Therefore we have a canonical isomorphism

Cl RS
∼−→ F̂×S /R̂

×
S F×.

More generally, one may restrict to a subgroup of principal fractional ideals. For
example, if we restrict to the subgroup of principal fractional ideals which have a
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totally positive generator, then we obtain instead the narrow (or strict) class group

Cl RS
∼−→ F̂×S /R̂

×
S F×+ .

(This is the quotient of the usual strict class group by the nonarchimedean primes
in S .) Indeed, the open subgroups of F̂×S /F

×
+ correspond to the open subgroups

of CF/DF = JF/F×DF in which one takes the full component F×p for all nonar-
chimedean primes p ∈ S . Therefore, for every open subgroup H ⊆ F̂×S /F

×
+ , there

exists an abelian extension K of F with the property that

Gal(K/F) ∼−→ ClH RS = F̂×S /HF×+ .

Remark 19.5.1. [[Remark on the idele class group à la Schoof.]]

Now let B be a quaternion algebra over F. In this section, we extend the above
notions to B. Let O be an R-order in B.

The adele ring of B is AB = B ⊗F AF = B ⊗Q AQ and the idele ring of B is
JB = A×B with the topology as in Remark 19.3.1. [[The topology is induced from a
choice of order...]]

Lemma 19.5.2. The set of invertible right fractional O-ideals are in bijection with
B̂×/Ô×.

The set ClO of isomorphism classes of right invertible fractional O-ideals is in
bijection with B×\B̂×/Ô×.

Proof. Let I be an invertible right fractional O-ideal. Then Ip = xpOp is principal
for all primes p of R, so to I we associate (xpOp)p = x̂Ô ⊆ B̂. The generator x̂ is
well-defined up to O×p , so to I we obtain an element of B̂×/Ô×. Conversely, given
x̂ ∈ B̂×/Ô× we recover I as I = x̂Ô ∩ B.

The principal (invertible) right fractional O-ideals are the image of B×, and so
the second statement follows.

Remark 19.5.3. Of course on the left we have instead Ô×\B̂×, and the map x̂ 7→ x̂
yields a bijection between these two sets.

19.5.4. In a similar way, we see that the group of invertible two-sided O-ideals is in
bijection with

Ô×\N(Ô)/Ô× = N(Ô)/Ô× = Ô×\N(Ô)

where
N(Ô) = {x ∈ B̂× : xÔ = Ôx}

is the normalizer of Ô.
The group of isomorphism classes of invertible two-sided O-ideals is therefore

in bijection with N(O)\N(Ô)/Ô× where N(O) = {x ∈ B× : xO = Ox}.
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[[B×\B̂× is compact and Ô× is open so the double coset is finite.]]

19.6 Norms

Let B be a quaternion algebra over F. Let O be an R-order.
In order to understand the set ClO, we examine the effect of the reduced norm

on the double coset B×\B̂×/Ô×. For this, we will need to determine the image on
each component.

Note that if v is a place of F then nrd(B×) ⊆ nrd(B×v ) ⊆ F×v . So we first
characterize the groups nrd(B×v ) ⊆ F×v for v place of F.

Lemma 19.6.1. Let v be a place of F. If v is a ramified real place, then nrd(B×v ) =

R×
>0. Otherwise, nrd(B×v ) = F×v ; moreover, if Ov ⊆ Bv is a maximal order, then

nrd(O×v ) = R×v .

Proof. If v is split, then Bv � M2(Fv) and clearly nrd(B×v ) = det(GL2(Fv)) = F×v .
So suppose v is ramified. If v is real then Bv � H and nrd(B×v ) = R×

>0. If v is nonar-

chimedean, then Bv �
(Kv, πv

Fv

)
where Kv is the unramified quadratic extension of Fv

and πv is a uniformizer. But F×v = R×v × 〈πv〉, and we have nrd(K×v ) = NKv/Fv(K
×
v ) =

R×v × 〈π2
v 〉 and nrd( j) = πv, so the result follows by multiplicativity of the norm. The

second clause follows similarly.

It follows from this lemma that nrd(B̂×) = F̂×. Now we turn to the image of
nrd(B×) ⊆ F×. Let F×(+) denote the set of x ∈ F such that v(x) > 0 for all ramified
(real) archimedean places v | ∞. We have just seen that nrd(B×) ⊆ F×(+). The
following converse is due to Eichler.

Theorem 19.6.2 (Theorem on norms). We have nrd(B×) = F×(+).

We will use the following lemmas.

Lemma 19.6.3. Let v be a noncomplex place of F. Let n ∈ F×v , and if v is real
suppose n > 0. Then there exists t ∈ Fv such that T 2 − tT + n is separable and
irreducible over Fv.

Proof. We must show that there exists t ∈ Fv such that t2 − 4n < F×2
v . We suppose

that char Fv , 2 and leave the other case as an exercise (Exercise 19.18. If v is
real, or if v is nonarchimedean and v(n) is odd, we may take t = 0. So suppose v is
nonarchimedean and without loss of generality that ordv(n) = 0. Let e ∈ R×v \ R×2

v .
Then there exists a solution to the quadratic form x2− 4ny2 = ez2 with t, u, z ∈ Rv by
previous results; note y ∈ R×v . The element t = x/y is then the desired element.



242 CHAPTER 19. ADELIC FRAMEWORK

Lemma 19.6.4 (Weak approximation for global fields). Let v1, . . . , vr be places of F,
let ai ∈ Fvi , and let ε > 0. Then there exists a ∈ F such that |a− ai|vi

< ε for all i.

Proof. This is just the Chinese remainder theorem in drag.

Proof of Theorem 19.6.2. Let n ∈ F×(+) we will construct a separable quadratic ex-
tension K/F with K ↪→ B such that n ∈ NK/F(K×); it suffices to find K/F with the
property that Kv splits B for all ramified places v of F. It is enough to find K/F such
that Kv is a field for each ramified v.

By the first lemma above, for each ramified place v of B, there exists tv ∈ Fv

such that T 2 − tvT + n is separable and irreducible over Fv. By the second lemma,
there exists t ∈ F which is arbitrarily close to tv for each v. It follows that such a t
exists so that T 2 − tT + n is irreducible over each Fv. Let K be the extension of F
obtained by adjoining a root of this polynomial. Then Kv is a field for each ramified
v, as desired.

19.6.5. The surjectivity of nrdv : B×v → F×v follows, so the reduced norm yields a
surjective map

nrd : B×\B̂×/Ô× → F×(+)\F̂
×/ nrd(Ô×).

If we let H = nrd(Ô×)F×(+), then H is an open subgroup of F̂×/F×, and so there
exists a class field K for H, i.e. there exists a surjective map

nrd : ClO → Gal(K/F).

Example 19.6.6. Suppose F is a number field, and S consists of the archimedean
places of F, so that R is the full ring of integers in F. Suppose that O is maximal.
Then we have H = F×(+)R̂

×, and we obtain a surjective map

nrd : ClO → Cl(+) R

where Cl(+) is the strict class group of R corresponding to the cycle given by the
product of the real places of F which ramify in B. In particular, if B is unramified at
all real places, then we have a surjection nrd : ClO → Cl R.

It is a fundamental result of Eichler that if there exists a place v ∈ S such that B is
unramified at v then this map is injective, and the reduced norm is in fact a bijection;
we pursue this in the next chapter.

19.7 Extensions and further reading

Cassels and Frohlich, Chapter 2. Several exercises above were taken from Lorentz
workshop. Lenstra and Stevenhagen.
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Exercises

19.1. Show that B×Ô× ∩ B̂×1 = B×1 Ô
×
1 if and only if nrd(O×) = F×(+) ∩ nrd(Ô×)

(Remark 20.1.6).

19.2. Let B a quaternion algebra over a global field and suppose that S satisfies the
Eichler condition for B. Let O be a norm-maximal order. Give a direct proof
using strong approximation that if O ⊆ B is an R-order and I is an invertible
right fractional O-ideal, then I is principal if and only if [nrd(I)] is trivial in
Cl(+) R. [Hint: If x ∈ B× satisfies nrd(x)R = nrd(I), consider x−1I.]

19.3. Give another proof of Lemma 19.6.1 using quadratic forms (as in Section
10.3).

19.4. Prove an integral version of Eichler’s theorem of norms as follows. Let B a
quaternion algebra over a global field and suppose that S satisfies the Eichler
condition for B. Let O be a norm-maximal order. Show that nrd(O) = R ∩
(F(+) ∪ {0}).

19.5. Let I be a (invertible) integral right M2(R)-ideal where R is a DVR with uni-
formizer π. Show that I is generated by

x =

(
πe− f 0

r π f

)
where e, f ∈ Z≥0 and r ∈ R/π f are unique.

19.6. Show that for |q| > 1 and s ∈ C with Re s > 1 we have

∞∑
e=0

1 + q + · · · + qe

q2es =

(
1− 1

q2s

)−1 (
1− 1

q2s−1

)−1

.

19.7. Show that if J is an R-lattice in B then uJ = J if and only if u ∈ OL(J)×.

19.8. Let F be a global field and let K be a finite separable extension of F.

a) Show that AK � AF ⊗F K. [Hint: Use the fact that Fv ⊗F K �
∏

w Kw

where w denotes the places above v.]

b) Show that we have

AK = K ⊗F AF =
{
(xw)w ∈

∏
wKw : |NKw/Fv xv|v ≤ 1 for almost all v

}
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so AK , but that the corresponding statement is not true for a quaternion
algebra B̂: i.e., that the inclusion

AB = B⊗F AF ⊂ {(xv)v ∈
∏

vBv : |nrd(xv)|v ≤ 1 for almost all v}

is strict.

19.9. For a prime p, let p̂ = (1, . . . , 1, p, 1, . . . , p) ∈ AQ be the adele which is equal
to p in the pth and∞th component and 1 elsewhere. Show that the sequence p̂,
ranging over primes p, does not converge in JQ (so in particular JQ is not com-
pact). However, show that this sequence does have a convergent subsequence
(converging to 1) in JQ/Q×.

19.10. Recall that we have Ẑ = lim←−n
Z/nZ �

∏
p Zp.

a) Prove that each x̂ ∈ Ẑ has a unique representation as x̂ =
∑∞

n=1 cnn!
where cn ∈ Z and 0 ≤ cn ≤ n.

b) Prove that Ẑ× � Ẑ ×∏∞
n=1 Z/nZ as profinite groups. [Hint: Consider

the product of the p-adic logarithm maps and use the fact that for every
prime power pe there are infinitely many primes q such that pe ‖ (q−1).]

c) Prove that for every positive integer n the natural map Z/nZ → Ẑ/nẐ is
an isomorphism.

d) Prove that there is a bijection from the set of positive integers to the set
of open subgroups of Ẑ mapping n 7→ nẐ.

e) Can you classify all closed subgroups of Ẑ?

19.11. View Z as a subgroup of R × Ẑ by identifying n ∈ Z with (n, n). Give R × Ẑ
the product topology, and give S = (R × Ẑ)/Z the quotient topology. The
topological group S is called the solenoid.

a) Prove that S is compact, Hausdorff, and connected.

b) Prove that S has the structure of a vector space over Q. [Hint: Show it is
torsion-free and divisible.]

c) Prove that Ẑ � End(Q/Z) (as rings).

d) Prove that S � Hom(Q,R/Z) (as groups).

e) Prove that S � AQ/Q (as topological groups).

19.12. Show that if O is an R-order in B that

AB = {(xv)v ∈
∏

vBv : xv ∈ Ov for all but finitely many v}
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and
JB =

{
(xv)v ∈

∏
vBv : xv ∈ O×v for all but finitely many v

}
and therefore that this definition is independent of the choice of O.

19.13. Show that B is discrete in AB and B× is discrete in JB. [Hint: F is discrete in
AF by the product formula.]

[[Generalization/consequence: if V is a vector space over F then F is discrete
in AV = V ⊗F AF and AV/V is compact. Reduce to the case V = F = Q.]]]

[[Let F be a topological field. Show that the coarsest topology in which
multiplication on M2(F) is continuous is given by the induced (coordinate)
topology.]]

19.14. Give a fundamental system of neighborhoods of 0 in B̂ and of 1 in B̂×.

19.15. Let A be a topological ring. Suppose that A× ⊆ A has the induced topology.
Show that the map x 7→ x−1 on A× is not necessarily continuous.

Embed A× ↪→ A × A by x 7→ (x, x−1) and give A× the subspace topology.
Show that A× in this topology is a topological group.

19.16. Show that the topology on JF agrees with the subspace topology induced on
JF ↪→ AF × AF by x 7→ (x, x−1).

19.17. Let O be an R-order in B with R = RS the ring of S -integers in F. Show that
the set of R-orders which are connected to O is in bijection with B̂×/N(Ô),
where N(Ô) is the normalizer of Ô in B̂.

19.18. Let Fv be a local field with char Fv = 2. Let n ∈ Fv. Show that there exists
t ∈ Fv such that T 2 − tT + n is separable and irreducible.





Chapter 20

Strong approximation

20.1 Strong approximation

In this section, we prove the following important result characterizing the class group
in many cases.

Let F be a global field and let S be a finite set of places of F containing all
archimedean places. Let R = RS be the ring of S -integers in B. Let B be a quaternion
algebra over F, and let O ⊆ B be an R-order. Then by Paragraph 19.6.5, the reduced
norm map

nrd : ClO = B×\B̂×/Ô× → F×(+)\F̂
×/ nrd(Ô×) (20.1.1)

is surjective, where we recall that F̂× is an abbreviation for F̂×S =
∏′

v<S
F×v , etc.

Quite surprisingly, as mentioned at the end of the previous section, in many situ-
ations this map is in fact bijective!

Let us investigate the injectivity of the reduced norm map above; it is only a map
of sets, after all, but we will show it suffices to look at an appropriate kernel.

Remark 20.1.2. For any ŷ ∈ B̂×, the map x̂O 7→ x̂Oŷ−1 gives a bijection

ClO = B×\B̂×/Ô× ←→ B×\B̂×/Ô′× = ClO′

where O′ = B ∩ ŷÔŷ−1 is connected (locally isomorphic) to O. So it is sensible to
consider the maps (20.1.1) for all orders O′ connected to O.

Let
B̂×1 = {x̂ ∈ B̂× : nrd(x̂) = 1}

be the kernel of nrd : B̂× → F̂× (and define similarly B×1 , etc.).

247
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Lemma 20.1.3. Let Λ ⊆ B be an R-order. Then the map (20.1.1) is injective for all
orders O which are locally isomorphic to Λ if and only if B̂×1 ⊆ B×Ô× for all such
orders O.

Proof. One direction is easy: if (20.1.1) is injective then given x̂ ∈ B̂×1 we have
nrd(x̂Ô×) = nrd(Ô×) so x̂Ô× = zÔ× for some z ∈ B× so x̂ ∈ zÔ× ⊆ B×Ô×.

For the converse, since nrd : B× → F×(+) and nrd : Ô× → nrd(Ô×) are both

surjective, to show nrd is injective for O we may show that if nrd(x̂) = nrd(̂y) ∈ F̂×

then x̂Ô× = ẑyÔ× for some z ∈ B×. We consider ( x̂̂y−1)(̂yÔŷ−1) = ( x̂̂y−1)Ô′ where
as above O′ = B ∩ ŷÔŷ−1 is locally isomorphic to O and hence also to Λ. Since
x̂̂y−1 ∈ B̂×1 , by hypothesis we have x̂̂y−1 = ẑu′ = z(̂ŷûy−1) where z ∈ B× and
u ∈ Ô×, and consequently x̂Ô = ẑŷuÔ = ẑyÔ, and hence the map is injective.

Remark 20.1.4. Above is just the idelic proof of the following statement: if B̂×1 ⊆
B×Ô×, then a right invertible fractional O-ideal I is principal if and only if the class
of nrd(I) in F(+)\F̂/ nrd(Ô) is trivial.

In order to compare two such ideals I, J with the same norm and show they are
isomorphic, we need to show that the colon ideal (I : J)L = IJ−1 is principal; but this
colon ideal has right order equal to O′ = OL(J) (which is by definition connected to
O), and so in order to apply the previous statement we need to know B̂×1 ⊆ B×Ô′×.

Question 20.1.5. Can one prove directly that B̂×1 ⊆ B×O× for one order O implies
the same statement for all connected orders?

Remark 20.1.6. We have B×Ô ∩ B̂×1 = B×1 Ô
×
1 if and only if nrd(O×) = F×(+) ∩

nrd(Ô×) (Exercise 19.1.

If B =

(a, b
F

)
, then B×1 = {(x, y, z, w) ∈ F4 : x2 − ay2 − bz2 + abw2 = 1}.

20.1.7. We could hope that B×1 is already dense in B̂×1 . This would imply in fact that
B̂×1 ⊆ B×1 Ô

×
1 , since if x̂ = (xv)v ∈ B̂×1 then xv ∈ Ô×1 for all but finitely many places

v, and thus by density there exists y ∈ B×1 which is arbitrarily close to x for these
finitely many v and such that y ∈ (Ôv)×1 for all other v, hence for y sufficiently close
to x we have xvy−1

v ∈ (Ov)×1 for all v (since O×v contains some neighborhood of 1).

Example 20.1.8. Let F = Q and take S = {∞} so that R = Z.
If B = M2(Q) and O = M2(Z), then one can show using Hensel’s lemma (and

the Chinese remainder theorem) that indeed B×1 = SL2(Q) is dense in B̂×1 = SL2(Q̂)
[[Exercise]]. We recover the fact that every right ideal in M2(Z) is principal.
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Example 20.1.9. Now let p, q be odd primes with q > p. Consider the quaternion

algebra B =

(−p,−q
Q

)
and letO = Z⊕Zi⊕Z j⊕Zi j. Then we claim B̂×1 * B×Ô×.

Indeed, let ` be a prime such that (−p/`) = (−q/`) = 1 and `2 < p, and suppose

a2 + pb2 = c2 + qd2 = t`

with a, b, c, d, t ∈ Z and ` - t. Now let x̂ = (xv)v ∈ B̂× be such that

x` = (a + i)(b + j)−1 =
(a + i)(b− j)

t`

and xv = 1 if v , `. Then nrd(x̂) = 1 so x̂ ∈ B̂×1 . We claim that x̂ < B×Ô×. Indeed,
suppose that x̂ = ŷu with y ∈ B× and û ∈ Ô×. Since nrd(O×) ∩ Q× = {±1}, we
may assume y ∈ B×1 . Then ` x̂̂u−1 = `y = z ∈ B ∩ Ô = O; thus nrd(z) = `2. But
nrd |O = 〈1,−p,−q, pq〉 only represents `2 by ±`, a contradiction.

We now state the main result.

Definition 20.1.10. Let F be a global field and let S be a finite set of places of F
containing all archimedean places. Let B be a quaternion algebra over F. Then we
say S satisfies the Eichler condition for B if S contains a place which is unramified
in B. If F is a number field, we say B satisfies the Eichler condition if the set of
archimedean places satisfies the Eichler condition for B.

Theorem 20.1.11 (Strong approximation). Let B be a quaternion algebra over a
global field and let S satisfy the Eichler condition for B. Then B×1 is dense in B̂×1 .

From the discussion above (Paragraph 20.1.7), we have the following important
resulting proposition.

Proposition 20.1.12. If S satisfies the Eichler condition for B, then the map (20.1.1)
is a bijection for all R-orders O ⊆ B.

We say that an R-order O ⊆ B is norm-maximal if nrd(Ô×) = R̂×.

Corollary 20.1.13. Let F be a number field and let S = {v : v | ∞} consist of the
archimedean places of F. Let S satisfy the Eichler condition for B and let O ⊆ B be
a norm-maximal R-order. Then nrd : ClO → Cl(+) R is a bijection.

Corollary 20.1.14. Let F be a global field. Let S be a set of places of F and let
O ⊆ B be a norm-maximal R-order. Let T be a set of primes which generate Cl(+) R
and suppose S ∪ T satisfies the Eichler condition for B. Then every ideal class in
ClO contains an integral O-ideal whose reduced norm is supported in T .
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Proof. Let RT denote the localization of R at the primes in T , that is to say, RT is the
ring of S ∪T -integers in F. We apply the above corollary to the orderOT = O⊗R RT :
then we have a bijection ClOT → Cl RT . But Cl RT is the quotient of Cl R by the
primes in T and so is trivial. Therefore if I is a right O-ideal, then IT = I ⊗R RT

satisfies IT = xOT for some x ∈ B×. But now J = x−1I is now a right fractional
O-ideal in the same class as I and (x−1I)p = Op for any prime p < T and so J has
reduced norm supported in T . Replacing J by aJ with a ∈ R supported in T , we may
suppose further that J is integral.

Example 20.1.15. Let B be a definite quaternion algebra over a totally real field F,
let S = {v : v | ∞} so that R is the ring of integers of F. LetO be a norm-maximal R-
order in B. Suppose that Cl(+) R = {1} and let p be a prime of R which is unramified
in B. Then every ideal class in ClO contains an integralO-ideal whose reduced norm
is a power of p.

20.1.16. One can think of strong approximation from the following informal perp-
sective: if we are allowed to “forget” at least one unramified place of B, or equiv-
alently a place where (Bv)×1 is not compact, then there is enough room for B×1 to
“spread out” so that B×1 is dense in the S -finite part B̂×1 . In other words, we need
(B̂S )×1 =

∏
v∈S (Bv)×1 to be noncompact. (Recall that

JB = B̂S × B̂S =
∏
v∈S

B×v ×
∏′

v<S

B×v ;

we consider each factor embedded in JB by extension by 1.) This condition is indeed
necessary: If B×1 was dense in (B̂S )×1 , then the closure of B×1 (B̂S )×1 would be all of
JB; but if (B̂S )×1 is compact, then B×1 (B̂S )×1 would be a closed subgroup of (JB)1 not
equal to (JB)1, since B×1 is discrete in (JB)1, a contradiction.

Now we proceed with the proof; we follow roughly the same lines as in the proof
of Eichler’s theorem on norms, but here instead we will be concerned with traces.

Proof of Theorem 20.1.11 (Strong approximation). Let O be an R-order in B. We
need to show that for any open set U ⊆ B̂×1 that B×1 ∩ U , ∅.

For this, it suffices to consider open neighborhoods. Let x̂ = (xv)v ∈ B̂×1 and let
U be an open neighborhood of x̂, which we can take to be of the form

U =
∏
v∈S U

xvUv ×
∏′

v<S U

(Ov)×1

where S U is a finite set of places disjoint from S and Uv is an open neighborhood
of 1 ∈ B×v . Therefore, we may assume xv = 1 for v < S U : in other words, every
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neighborhood of an element x̂ is also a neighborhood of an element which is 1 at
all but finitely many places). We can shrink U so that U2

v ⊆ Uv, therefore we may
further assume that xv < F×v for v ∈ S U , multiplying xv by any element of Uv \ F×v .

Let t̂ = trd(x̂) = (tv)v, so that tv = 2 for v < S U . For each v ∈ S U such that B
is ramified, the minimal polynomial T 2 − tvT + 1 of xv is irreducible, since Bv is a
division ring and xv < F×v . For each v ∈ S in which v is ramified, choose any tv ∈ Fv

such that T 2− tvT + 1 is irreducible. By hypothesis, there exists a place w ∈ S which

is unramified in B. Since F is dense in F̂{w} =
∏′

v,w
Fv, there exists u ∈ F such

that uv is arbitrarily close to tv for all places v such that v < S or v ramified in B. (We
do not require anything at places v ∈ S where v , w and v is unramified!)

It follows that the polynomial f (t) = T 2 − uT + 1 is irreducible at all places v
where B is ramified, so defines a quadratic extension that embeds in B as in the proof
of Eichler’s theorem of norms. Let y ∈ B×1 have minimal polynomial f (t). Then
since trd(yv) has been made arbitrarily close to tv = trd(xv) for v < S , and since trd is
an open map, there exists x̂′ = (x′v)v ∈ U such that trd(yv) = trd(x′v) for all v < S . It
follows that yv and x′v have the same minimal polynomial for all v < S and so y and
x̂′ are conjugate in B̂×, say ĉ ∈ B̂× satisfies y = ĉ−1 x̂′̂c.

We have therefore shown that for every open neighborhood U of x̂, there exists
ĉ ∈ B̂× such that B×1 ∩ ĉ−1Uĉ , ∅.

Now let Un be open neighborhoods of x̂ such that
⋂

n Un = {x̂}, and let

B×1 3 yn = ĉ−1
n x̂′n̂cn ∈ ĉ−1

n Un̂cn.

Then x̂′n → x̂.
By the geometry of numbers, the set ClO = Ô×\B̂×/B× is finite, so B̂×/B× is

compact. Restricting to a subsequence, we may write ĉn = d̂nzn with zn ∈ B× and
d̂n → d̂ = (dv)v ∈ B̂×.

Now B× is dense in B̂×S U
by weak approximation, so there exists a sequence

dn ∈ B× such that (dn)v → dv for all v ∈ S U . Therefore

B×1 3 (d−1
n zn)yn(z−1

n dn) = d−1
n d̂n x̂′nd̂−1

n dn → x̂;

for v ∈ S U this follows since (dn)v → dv, and for v < S U we have (x′n)v → xv = 1 so
(d−1

n )vdv(x′n)vd−1
v (dn)v → 1 as well.

So we have shown that x̂ ∈ B×1 and hence B×1 ∩ U , ∅.

20.2 Maps between class sets

WhenO′ ⊆ O, we have a maps comparing ClO to ClO′ by restriction and extension.
Strong approximation tells you what these look like.
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20.3 Extensions and further reading

Exercises



Chapter 21

Unit groups

21.1 Quaternion unit groups

Having dealt with the question of class numbers, we now turn to another important
object associated to a quaternion order: the unit group. By way of analogy, we
consider what happens for quadratic orders. In this case, just as with class groups,
the behavior of unit groups is quite different depending on if the asociated quadratic
field K is real or imaginary.

In the imaginary case, the unit group is finite, as the norm equation NK/Q(α) = 1
has only finitely many solutions for integral α: these are elements of a 2-dimensional
lattice in C with bounded size. And an element of finite order in K× ↪→ C× is a root
of unity that satisfies a quadratic equation over Q, and the only such roots of unity
have orders 1, 2, 4, 6. Therefore, only two imaginary quadratic orders have units other
than ±1: the Gaussian order Z[

√
−1] of discriminant −4 and the Eisenstein order

Z[(−1 +
√
−3)/2] of discriminant −3.

[[pictures of lattices]]
Orders O in a definite quaternion algebra B over Q behave like orders in an

imaginary quadratic field. The unit group of such an order is finite, as the solutions
to nrd(α) = 1 with α ∈ O are elements of a 4-dimensional lattice in R4 again with
bounded size.

As with quadratic orders, we can say more: now this unit group embeds as a
finite subgroup of H×1 = SU(2) and so O×1 /{±1} ↪→ SO(3) is a finite group of
rotations in R3. But these groups have been classified by Dickson: they are either
cyclic, dihedral, or exceptional, a subgroup of A4, S 4, or A5 corresponding to the
symmetry groups of the tetrahedron, octahedron, or icosahedron. In this chapter, we
take up the task of describing explicitly the noncyclic subgroups, working of course
in the context of a general definite quaternion order.

253
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However, here we can say what happens over Q quite neatly. Among the cyclic
groups, only subgroups of order 2, 4, 6 are possible over Q for the same reason as
the commutative case: an element of B× \Q also satisfies a quadratic equation with
rational coefficients (it generates an imaginary quadratic field!). The question of
whether or not there is a unit of specified order is the question of whether or not the
Gaussian order or the Eisenstein (quadratic) order embeds in the quaternion orderO,
and these embedding questions are the subject of Chapter 25.

Suppose that O× is dihedral, and let j ∈ O× \ {±1} act by inversion (equiv-
alently, conjugation) on a cyclic group (of order 4 or 6). Let K be the (imaginary
quadratic) field generated by this group. We have j2 ∈ Q so j2 = −1, and so jα = α j

for all α ∈ K. Thus we have B �
(K,−1
Q

)
, and this leaves only two possibilities.

(i) B �
(−1,−1

Q

)
with discriminant 2, and O contains the order generated by i, j.

If equality holds, andO has reduced discriminant 4, thenO× is the quaternion
group Q8 of order 8. Otherwise, up to isomorphism the orderO is the Hurwitz
order (Chapter 9) and O× is an exceptional group of order 24 containing A4
with index 2.

(ii) B �
(−3,−1

Q

)
with discriminant 3, and O contains the order generated by

(1 + i)/2 and j which is maximal in B. In this case, O× � D12 is a dihedral
group of order 12.

Therefore, we conclude that if O is a definite quaternion order over Z with reduced
discriminant greater than 4, then O× is cyclic.

Now we turn to the indefinite case, which like the commutative case is quite
different. For the real quadratic order Z[

√
d] with d > 0, the units are again given by

solutions to the Pell equation x2 − dy2 = ±1 with x, y ∈ Z. All solutions up to sign
are given by powers of a fundamental solution which can be computed explicitly
using continued fractions; consequently, Z[

√
d]× = 〈−1, u〉 � Z/2Z ⊕ Z where

u = x + y
√

d is the fundamental unit . However, the fundamental unit is often (but
not always) very large, being of exponential size in the discriminant, by theorems of
Schur and Siegel.

In a similar way, we consider units in an order O = Z ⊕ Zi ⊕ Z j ⊕ Zi j in an

indefinite quaternion algebra B =

(a, b
Q

)
with a, b > 0. The norm equation then reads

t2 − ax2 − by2 + abz2 = ±1

with t, x, y, z ∈ Z. Amusingly, this “quaternion Pell equation” combines Pell equa-
tions for Z[

√
a] and Z[

√
b] by restriction, and in fact by considering embeddings
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of quadratic orders (the subject of Chapter 25), we see that this equation combines
all Pell equations satisfying certain congruence conditions. Combining these Pell
equations, we see that the group of solutions is an infinite, noncommutative group.

We seek understand the group O× by its action on a suitable space, and in this
way we are led to consider groups acting discretely on symmetric spaces; we will
discover that the group O× is finitely presented. This investigation is detailed but
fruitful, involving the theory of Fuchsian and Kleinian groups, and it the focus of
our investigation in Part III of this text. In this chapter, we discuss a few issues
concerning the structure of these groups.

21.2 Structure of units

Throughout this chapter, let F be a global field, let S be a nonempty set of places of
F containing the archimedean places, and let R be the ring of S-integers in F.

21.2.1. From Dirichlet’s unit theorem (and its generalization to the function field
case), the group R× of units of R is a finitely generated abelian group of rank #S − 1,
so that R× � Z/wZ⊕ Z#S−1 where w is the number of roots of unity in F.

Let B be a quaternion algebra over R, and let O be an R-order in B. We are inter-
ested in the structure of the groupO×: as this group is (in general) noncommutative,
it is much more difficult to describe than for R×! Its description will depend on the
set S , and in particular in the number field case on the number of real and complex
places. To begin, we consider some basic structure of this group.

Since the center of B× is F×, the center ofO× is R×. We understand the structure
of R× by Dirchlet’s unit theorem (Paragraph 21.2.1), so we turn first to understand
the group O×/R×.

Example 21.2.2. If B = M2(F) and O = M2(R), then O× = GL2(R) and O×/R× =

PGL2(R).

The reduced norm gives a map nrd : O× → R×. The image of the reduced
norm is determined by Eichler’s theorem of norms (the integral version is discussed
in Exercise 19.4): we have an exact sequence

1→ O×1 → O
× nrd−−→ R×(+)

where O×1 = {x ∈ O× : nrd(x) = 1} and

R×(+) = {x ∈ R× : v(x) > 0 for all real v ∈ Ram(B)}.
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Now we have R× ⊆ O×, and nrd(R×) = R×2 soO×1 ∩R× = {±1}, so this yields
an exact sequence

1→
O×1
{±1}

→ O
×

R×
nrd−−→

R×(+)

R×2 (21.2.3)

Example 21.2.4. If B = M2(F) and O = M2(R), then the exact sequence (21.2.3)
becomes

1→ PSL2(R)→ PGL2(R) det−→ R×/R×2 → 1.

The group R× is finitely generated, so the group R×(+)/R
×2 is a finite, elementary

abelian 2-group, isomorphic to a Cartesian power of Z/2Z. If F is a function field,
then R(+) = R×.

Remark 21.2.5. If F is a number field, then the group R×(+)/R
×2 is a class group;

specifically, if Cl(+) ZF denotes the ray class group of F with modulus equal to
the real places in F ramified in B, then R×(+)/R

×2 is isomorphic to the quotient of
Cl(+) ZF/ClZF by the finite primes in S .

In general, the exact sequence (21.2.3) does not split, so in general the group
O×/R× will be an extension of O×1 /{±1} by an elementary abelian 2-group: see
already Example (21.2.4).

21.3 Units in definite quaternion orders

We now begin our investigation of the unit group.
First, we recall the proof of Dirichlet’s unit theorem: we embed R× modulo

torsion as a discrete subgroup of a nice topological group. To build intuition, consider
the case where F is a number field with r real places and c complex places, and S is
the set of infinite places so that R is the ring of integers of F. Then we embed

F ↪→ F∞ = Rr × Cc (21.3.1)

and R sits discretely inside F∞ as a Z-lattice; this is the embedding of R into its
completions at all places in S . Consequently, we have a map R× → Rr+c given by
x 7→ (log |x|v)v; the kernel of this map is the group of roots of unity and the image is
still discrete. What is more, the image of this map is cocompact inside the hyperplane∑
v xv = 0, and consequently it is isomorphic to Zr+c−1. From this, we see that the

most basic question about R×, whether it is finite or infinite, is determined by the set
S : we have #R× <∞ if and only if r + c− 1 = 0, which leaves only the possibilities
(r, c) = (1, 0) (and F = Q) or (r, c) = (0, 1) (and F is an imaginary quadratic field).
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One might say that R× is finite only when the completions provide no room
for the unit group to become infinite. With this in mind, we make the following
definition.

Definition 21.3.2. A quaternion algebra B over a global field F is S-definite if every
place in S is ramified in B.

Since a complex place is necessarily unramified, we see that if B is S-definite
over F then in particular F is a totally real number field.

Proposition 21.3.3. The group O×/R× is finite if and only if B is S-definite.

Proof of Proposition 21.3.3. By the exact sequence (21.2.3), the group O×/R× is
finite if and only if the group O×1 is finite.

First, suppose B is not S-definite. Then there is an place v ∈ S that is unramified.
Therefore there exists a separable quadratic field extension K of F that embeds in B
such that v splits in K: if v is infinite, then either v is complex or v is real and there
are two real places above v in K. Let S be the integral closure of R in K (note that the
ring S is not the set S). Then by the Dirichlet S-unit theorem (Paragraph 21.2.1), the
rank of S×/R× is at least 1. The order S ∩O has finite index in S , so S×/(S ∩O)×

is a finite group. Therefore, if a sufficiently high power of any S× \ R× will lie in
S× ∩ O× = (S ∩ O)×, so O× is infinite.

Now suppose that B is S-definite. Then by definition, for each v ∈ S , the com-
pletion Bv = Dv is a division algebra over Fv. Consider the setup in analogy with
Dirichlet’s unit theorem. We consider the embedding of B into the completions at all
places in S :

B ↪→ BS =
∏
v∈S

Dv.

Since R is discrete in FS =
∏

v∈S Fv (in the number field case, S contains all
archimedean places), the ring O is discrete in BS (Exercise 23.1). Consequently,
O× is discrete in B×

S
and O×1 sits discretely in∏

v∈S
(Dv)×1 .

But each (Dv)×1 is compact, from the discussion in Section 10.6. Therefore O×1 is a
discrete subgroup of a compact group and hence finite.

Example 21.3.4. Let B =

(−1,−1
Q

)
and let O be the Z-order generated by i, j, so

that S = {∞}. Then O× = 〈i, j〉 � Q8 is the quaternion group of order 8.
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Now invert 5, and consider S = {5,∞} and the order O[1/5] over R = Z[1/5].
Then O contains the element 1 + i of norm 5 ∈ R×, and this element has infinite
order.

On the other hand, now invert 2. Then O[1/2]× � 〈2, i, j, 1 + i〉 so the group
O[1/2]×/〈−1, 2〉 is an extension of Q8 by Z/2Z (Exercise 21.1).

21.4 Explicit definite unit groups

If B is definite, then O×1 is a finite subgroup of H×1 . The exact sequence

1→ {±1} → H×1 → SO3(R)→ 1

implies that O×1 /{±1} is a subgroup of a Coxeter group, and can be realized inside
the automorphism group of a regular polyhedron (Platonic solid) and so is a subgroup
of one of the following groups: cyclic, dihedral, or one of the three exceptional
groups A4, S 4, or A5.

Cyclic, dihedral, tetrahedral, octahedral, icosahedral and their extensions; these
have presentations as triangle groups.

Can detect cyclic groups because we must have Q(ζ2m)+ ⊆ F and

B �
(−1, λ2

2m − 4
F

)
.

Dihedral can happen. So for F = Q and “most” fields, just cyclic groups of order
4, 6.

For A4, S 4, A5, we must have B =

(−1,−1
F

)
and F ⊇ Q,Q(

√
2),Q(

√
5), re-

spectively.
Consider the extensions.

21.5 Extensions and further reading

21.5.1. Quaternion Pell equation investigated by [Jah10].

Exercises

21.1. Let B =

(−1,−1
Q

)
and let O be the Z-order generated by i, j. Prove that

O[1/2]× � 〈2, i, j, 1+ i〉 and describeO[1/2]×/Z[1/2]× as an extension of Q8
by Z/2Z.
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Picard groups

22.1 Locally free class groups

Now we really want a group, not a set, so we consider the Grothendieck group. Let
B be a quaternion algebra and O ⊂ B be an order.

Definition 22.1.1. A right O-module M is locally free if M̂ = M ⊗O Ô � Ôr (as
right O-modules) for some r ∈ Z≥1, called the rank r = rk M.

What about rank 0? Compare with other definitions.

Definition 22.1.2. Two projective rightO-modules M and M′ of finite rank are stably
isomorphic if there exists an isomorphism

M ⊕Os �M′ ⊕Os

for some s ∈ Z≥0.
M is stably free if M is stably isomorphic to Or (for r = rk M).

What about s, s′? This should just follow from the Grothendieck formalism.
Let PicO be the set of stable isomorphism classes of right O-modules.

Theorem 22.1.3. Let M be a locally free rightO-module. Then there exists a locally
free (fractional) O-ideal I such that

M � Or−1 ⊕ I.

Proof.

259
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It follows that if I1, I2 are right O-ideals, then there exists a locally free right
O-ideal I3 such that

I1 ⊕ I2 � O ⊕ J. (22.1.4)

Probably you can be much more explicit in this quaternion case.
This gives a group law and a map to Z on the Grothendieck group. Maybe it’s

better to call it K0?

Proposition 22.1.5. Pic(O) is a finite group.

Proof. Geometry of numbers, or the Jordan-Zassenhaus theorem.

Lemma 22.1.6. If O,O′ are of the same type, then Pic(O) � Pic(O′).
If O′ ⊆ O then the extension map gives a surjection Pic(O′)→ Pic(O).

Reduced norm map, comparison between Pic1 and Cl given by (22.1.4).

22.2 Cancellation

Now the version of the class number 1 problem.

Definition 22.2.1. O has the cancellation property if for all rightO-modules M1,M2,N
of finite rank, we have M1 ⊕ N � M2 ⊕ N implies M1 � M2.

Lemma 22.2.2. The following are equivalent:

(i) O has the cancellation property;

(ii) M is stably free if and only if M is free; and

(iii) Cl(O) = Pic1(O).

It follows from Lemmas 22.1.6 and 22.2.2(c) that if O′ ⊆ O and O′ has the
cancellation property, then so does O.

Theorem 22.2.3 (Eichler, Jacobinski). If B satisfies the Eichler condition, then O
has the cancellation property.

Proof. (Don’t we need class number 1 for this?)

In 1962, Swan gave an example. (See work of Smertnig.)

Theorem 22.2.4 (Vignéras, Hallouin–Maire, Smertnig). There are finitely many iso-
morphism classes of definite quaternion orders for which the cancellation property
holds. There are exactly 128? definite Eichler orders with the cancellation property.

Proof.
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22.3 Extensions and further reading

Exercises





Part III

Arithmetic geometry
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Chapter 23

Geometry

23.1 Arithmetic groups

[[Adelic measure is the statement]]

π2

6
=

∏
p

1
1− 1/p2 .

So we turn to the groups O×1 when B is indefinite. From the above, O×1 is a
discrete subgroup of

(BR)×1 � (H×1 )d × SL2(R)r−d × SL2(C)c;

However, since H×1 is compact, it follows that O×1 is a discrete subgroup of the
product SL2(R)r−d × SL2(C)c (Exercise 23.6). It follows that

Γ(O) = O×1 /{±1} ↪→ PSL2(R)r−d × PSL2(C)c.

It follows that any projection down to a smaller group is not discrete (Exercise
23.3).

Definition 23.1.1. A Fuchsian group is a discrete subgroup of PSL2(R).
A Kleinian group is a discrete subgroup of PSL2(C).

We see that when d = r−1 and c = 0, i.e. F is totally real and B is ramified at all
but one real place, the group Γ(O) is a Fuchsian group; and when d = r and c = 1,
i.e. F has exactly one complex place and B is ramified at all real places of F, the
group Γ(O) is a Kleinian group. In fact, these statements are equivalences. [[Losing
a factor loses discreteness.]]

265
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The groups PSL2(R) and PSL2(C) arise in geometry as groups of orientation-
preserving isometries of hyperbolic two- and three-space.

A small class of groups, as there are only finitely many conjugacy classes of
arithmetic Fuchsian groups of any signature or with bounded coarea.

For nonarithmetic groups, the commensurator is finite (theorem of Margulis), so
there the correspondences/Hecke operators are finite.

Detecting arithmetic groups: theorem of Takeuchi. More generally, can always
define a trace field, S -integral group.

23.2 Fuchsian groups

We consider first the simplest case of Fuchsian groups.
First, a brief review of hyperbolic geometry. We define the upper half-plane

H = {z = x + iy ∈ C : <(z) = y > 0}.

This space is equipped with the hyperbolic metric given by

ds2 =
dx2 + dy2

y2 =
|dz|2

(Im z)2 .

Thus, the hyperbolic area of a region D ⊆ H is given by

area(D) =

∫ ∫
D

dx dy
y2 .

[[As in the Iwasawa-Tate style treatment of zeta functions of number fields
and residue of first pole as volume of idele class group (with the non-compact
”ray” removed), this volume is essentially the residue of the leading pole of the
zeta function of the quaternion algebra, and this zeta function factors as zeta
and a shift of zeta of the groundfield, up to finitely-many factors depending on
ramification of the quaternion algebra. This kind of computation is treated in
Weil’s ”Basic Number Theory”, and also in his ”Adeles and Algebraic Groups”.]]

The group PSL2(R) acts onH as orientation-preserving isometries by linear frac-
tional transformation

z 7→ az + b
cz + d

with
(
a b
c d

)
∈ PSL2(R). A discrete subgroup Γ ⊆ PSL2(R) acts discontinuously on

H, i.e. for each compact subset K ⊆ H, the set K ∩ gK = ∅ for all but finitely many
g ∈ Γ. Thus, the stabilizer of a point is finite.

The topology on SL2(R) and PSL2(R) is determine by matrix entries.
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Definition 23.2.1. A Fuchsian group is a discrete subgroup of PSL2(R).

Remark 23.2.2. First and second kind.

Example 23.2.3. [[Exercise!]] Compute the area of the usual fundamental domain
for the action of SL2(Z):

D = {z ∈ H : |<z| ≤ 1 and |z| ≥ 1.

Now let F be a totally real number field and let B be a quaternion algebra which
is ramified at all but one real place. Let O be a maximal order in B. Then by the
above, we have an embedding

Γ(O) = O×1 /{±1} ↪→ PSL2(R)

realizing Γ(O) as discrete subgroup.
It is another exercise in multivariable integration to prove the following formula

using the zeta function.

Proposition 23.2.4 (Volume formula). The group Γ(O) has finite coarea inH, and

area(Γ(O)\H) =
8π

(4π2)n d3/2
F ζF(2)Φ(D)

where Φ(D) =
∏
p|D(Np− 1).

The quotient Γ(O) \ H can be given the structure of a Riemann surface, called a
Shimura curve.

Theorem 23.2.5. Γ(O) \ H is compact if and only if B is a division ring.

Definition 23.2.6. Two subgroups are commensurable if their intersection is of finite
index in both, and commmensurable in the wide sense if conjugates of the groups
are commensurable.

Commensurable groups are related by correspondences on the Riemann surfaces,
and the commensurability class is the quaternion algebra.

Example of PSL2(Z).
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23.3 Kleinian groups

In a similar way, we can identify the group PSL2(C) as a group of isometries. Here,
we define hyperbolic three-space by

H3 = {(z, t) ∈ C× R : t > 0}.

The hyperbolic metric onH3 is induced from the line element ds by

ds2 =
dx2 + dy2 + dt2

t2 .

The space H3 is the unique three-dimensional connected and simply connected Rie-
mannian manifold with constant sectional curvature −1. The volume element is
accordingly (dx dy dt)/t3.

The group PSL2(C) acts as orientation-preserving isometries of H3 by linear
fractional transformations: letting w = z + t j, we have

w 7→ (aw + b)(cw + d)−1

for
(
a b
c d

)
∈ PSL2(C) (normalized so that ad − bc = 1?).

Now let F be a number field with one complex place and let B be a quaternion
algebra over F which is ramified at all real places of F. Let O be a maximal order in
B. Then by the above, we have an embedding

Γ(O) = O×1 /{±1} ↪→ PSL2(C)

realizing Γ(O) as discrete subgroup.
It is another exercise in multivariable integration to prove the following formula

using the zeta function.

Proposition 23.3.1 (Volume formula). The group Γ(O) has finite covolume in H3

and
vol(Γ(O)\H3) =

1
(4π2)n−1 d3/2

F ζF(2)φ(D).

[[Example of PSL2(Z[i]).]]

23.4 Arithmetic groups, revisited

There is a more general notion of arithmetic group, defined for a reductive group; in
this section, we show that this definition is equivalent to ours.
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23.5 Orthogonal group

Rephrase in terms of orthogonal group, with an eye toward generalizations.
[[I’m pretty sure that this implies that an automorphism of a quaternion algebra

has to be inner, giving a quadratic forms proof of Skolem–Noether.]]

23.6 Extensions and further reading

Exercises

In these exercises, we maintain the notation in this section: let F be a number field
with ring of integers R, and let O be an R-order in a quaternion algebra B over F.

23.1. Show that R is discrete in FR = F ⊗Q R. [Hint: it is enough to show this for
a neighborhood of 0, and then use the fact that the norm must be an integer.]
Use this to show that O is discrete in B⊗Q R.

23.2. Let d ∈ R \ Q. Show that Z[
√

2] is not discrete in R. (This gives a reason to
worry about discreteness of number fields when we project.)

23.3. Show that the image ofO×1 in a projection to any proper factor of SL2(R)r−d×
SL2(C)c is not discrete.

23.4. Let B =

(a, b
F

)
be a quaternion algebra over a number field F ↪→ R. LetO ⊂ B

be an order. Show that O×1 is discrete in SL2(R) if and only if k is totally real
and for all nonidentity real places v, we have v(a), v(b) < 0.

23.5. In this exercise, we give a direct argument for the discreteness of an arithmetic

Fuchsian group. Let B =

(a, b
F

)
be a quaternion algebra over a totally real

number field F ↪→ R. Let O ⊂ B be an order. Suppose that B is ramified at
all nonidentity real places. We will show that O×1 is discrete in SL2(R).

a) Suppose not: then there exists a sequence αn = tn + xni + yn j + zni j→ 1
with tn, xn, yn, zn ∈ F with bounded denominators. Multiplying through,
assume that all coordinates are integral. Thus for n sufficiently large, all
of the coordinates are integral and bounded.

b) Show that for all nonidentity v, the coordinates of v(αn) are also bounded
using compactness.
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c) Show that there are only a finite number of elements in R that are bounded
in each coordinate (all conjugates are bounded); look at the coefficients
of a minimal polynomial. Derive a contradiction.

23.6. If H ↪→ G1,G2 is a subgroup of topological groups G1 and G2, H ↪→ G1×G2
is discrete, and G1 is compact, then H ↪→ G2 is discrete.
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Fuchsian and Kleinian groups:
examples

24.1 Triangle groups
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Chapter 25

Embedding numbers

25.1 Representation numbers

Of binary quadratic forms by indefinite quaternary forms or integers by indefinite
ternary quadratic forms.

25.2 Selectivity

25.3 Isospectral, nonisometric orbifolds

Sunada and Vignéras.

25.4 Extensions and further reading

Exercises

25.1.
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Chapter 26

Formalism of Shimura varieties

In this section, we introduce quaternionic Shimura varieties which give a geometric
way of viewing quaternion algebras over number fields. Roughly speaking, the unit
group of an order in a quaternion algebra acts on a hyperbolic space and the quotient
is an arithmetic manifold.

26.1 Modular curves

As motivation, we consider the case of classical modular curves. This case corre-
sponds to the simplest situation, that where F = Q and B = M2(Q). The order
O = M2(Z) is maximal in B and any maximal order is conjugate in B to O.

We have AB � M2(AQ) � M2(Q̂) × M2(R). We have seen that B = M2(Q)
sits discretely in AB � M2(AQ) and the quotient M2(AQ)/M2(Q) � M2(AQ/Q) is
compact—and like the adeles themselves, not very interesting (from this perspec-
tive).

We turn then to JB = GL2(AQ) � GL2(Q̂)×GL2(R). In the previous section, we
understood the double quotient space

B×\B̂×/O× = GL2(Q)\GL2(Q̂)/GL2(Ẑ) = Cl M2(Z) = {1}

as identifying the set of right invertible fractionalO-ideals up to isomorphism, i.e. the
set of Z-lattices I in B with End(I) � M2(Z) (acting on the right), up to isomorphism.

But this description leaves out the real archimedean place! Indeed, we have B×R =

(B⊗Q R)× � GL2(R), and B× = GL2(Q) ↪→ GL2(R). From this description, we see
that a Z-lattice I ⊆ B embeds as I ↪→ I ⊗Z R � M2(R).

So what does the set

B×\(B×R × B̂×/O×) = GL2(Q)\(GL2(R)× GL2(Q̂)/GL2(Ẑ))
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represent? Here, note that O× acts by right multiplication on B̂× but B× acts by left
multiplication (embedded diagonally) on both factors B×R × B̂×.

As it stands, this is not yet interesting: by the above
Other orders include those defined by congruence conditions: for example, for

each N ∈ Z>0, we have

O0(N) =

{(
a b
c d

)
: N | c

}
and

O(N) =

{(
a b
c d

)
: N | c,N | b, a ≡ d (mod N)

}
.

To introduce the adelic description, we first give its derivation for the space
Y(1)C. We have seen that Y(1)C is in bijection with the set of lattices in C up to
isomorphism, which we denote � \Lat(C). But in fact a lattice in C is really a lat-
tice in R2 together with a complex structure ψ : C → EndR(R2), and these are

in bijection with C \ R = H± as follows: choose M =

(
a b
c d

)
∈ M2(R) such that

M
(

0 1
−1 0

)
M−1 = ψ(i); then we take τ =

ai + b
ci + d

∈ H±. Therefore Y(1)C is in

bijection with

� \(H± × Lat(R2)) = GL2(R)\(H± × Lat(R2)).

And for every lattice Λ ∈ Lat(R2), we can find an M ∈ GL2(R) such that MΛ ⊆
Q2 ⊆ R2, so this set is also in bijection with GL2(Q)\(H± × Lat(Q2)).

Next, we introduce the adeles. For a Z-module S , we define Ŝ = S ⊗Z Ẑ, where
Ẑ = lim←−Z/nZ. We then see that the map

Lat(Q2)→ Lat(Q̂2)

Λ 7→ Λ̂

is a bijection, with inverse Λ̂ 7→ Λ̂ ∩ Q2. Now since GL2(Q̂) acts transitively on
Lat(Q̂2), with stabilizer of a lattice Λ̂ given by GL2(Ẑ), we have in sum a bijection

Y(1)(C)↔ GL2(Q)\(H± ×GL2(Q̂)/GL2(Ẑ)).

This gives a description for the quaternion algebra B = M2(Q). For any indefinite
quaternion algebra B over Q with maximal order O, we have in a similar way the set

B∗\(H± × B̂∗/Ô∗).
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This description can be seen exactly as the set of (real) lattices inside B⊗QR together
with a complex structure, up to isomorphism.

One then proves that this set has the structure of a complex manifold, and we
have:

Theorem 26.1.1 (Deligne). There exists a curve XB
Q defined over Q, and an analytic

isomorphism
XB
Q(C) ∼−→ B∗\(H± × B̂∗/Ô∗).

Remark 26.1.2. It is more natural to define a Shimura curve by giving an incoherent
quaternion algebra.

26.2 Modular forms

26.3 Global embeddings

26.4 Extensions and further reading

Exercises





Chapter 27

Definite quaternion algebras

27.1 Class numbers

Class number 1

27.2 Two-sided ideals

Exercise from Kimberly.

27.3 Theta functions

Application to sums of squares, the level is the minimal integer N such that NQ−1 is
integral. For individual quadratic forms, get an explicit answer. For general quadratic
forms, estimate the coefficients.

27.4 Brandt matrices

27.5 Jacquet-Langlands correspondence

[[Trace formula for GL2(F) in Ling’s book; Zagier]]. [[Hijikata, “Explicit for-
mula”]].

27.6 Relationship to elliptic curves

In this section, we discuss the relationship between endomorphism rings of supersin-
gular elliptic curves and quaternion algebras, with applications to modular forms.
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Let E be an elliptic curve over field k. For each (nonzero) isogeny (finite surjec-
tive homomorphism) f : E → E′, there exists a dual isogeny f∨ : E′ → E such that
f∨ ◦ f is equal to multiplication by the degree deg f ∈ Z>0. In particular, the dual ∨

on End(E) = Endk(E) yields a nonsingular standard involution on End(E).
The Q-algebra End(E)Q = End(E) ⊗Z Q is a division ring, and therefore from

previous work, it follows that End(E)Q is either Q, an imaginary quadratic field K,
or a quaternion algebra over Q.

In fact, the latter possibility can only occur when char k = p, and we say E is
supersingular : equivalently,

(i) End(E)Q has rank 4 as a Q-algebra;

(ii) E[p](k) = 0;

(iii) Tr(φ) ≡ 0 (mod p) where φ is the Frobenius endomorphism.

If #k = p ≥ 5 then E is supersingular if and only if #E(k) = p + 1.
Let E be a supersingular elliptic curve; then E may be defined over a finite field

k of characteristic p. We will start from (i) and show in fact that End(E) is a maximal
order in the quaternion algebra ramified at p and∞; this result is due to Deuring, but
we follow a proof given by Lenstra.

Let O = End E and B = O ⊗Z Q. Whenever n ∈ Z>0 is prime to p, there is an
isomorphism

E[n] = E[n](k) � Z/nZ⊕ Z/nZ

as abelian groups, so the endomorphism ring of this abelian group is End E[n] �
M2(Z/nZ). By the existence of the dual isogeny, E[n] is a faithful module over
O/nO, i.e. the mapO/nO → End E[n] is injective. Since #O/nO = # End E[n], this
map is an isomorphism.

It follows that for every prime ` , p, the map

O ↪→ O` = O ⊗Z Z`
∼−→ End E[`∞] = lim

n
E[`n](k) = T`E � M2(Z`)

is an isomorphism, and in particular O` is maximal and B is split at `.
Since B is a division ring, it follows that B is ramified at p at infinity.
For f ∈ O, let degi f be the inseparable degree of f , which is a power of p.

We put degi 0 = ∞. Then we have degi( fg) = degi( f ) degi(g) and degi( f + g) ≥
min{degi f , degi g}—this follows from the fact that degi f is divisible by a given
power q of p if and only if f factors via the qth power Frobenius morphism E → E(q).
It follows that degi : End(E)Q → Z ∪ {∞} is a valuation on End(E)Q. Extended to
End(E)Qp , this valuation “agrees” with the usual valuation on Qp, since degi p = p2;
factoring an isogeny into its separable and inseparable parts (the latter a power of
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Frobenius) shows that degi f = ordp( f∨ ◦ f ). Hence Op is the valuation ring of Bp

and hence maximal. This shows that O itself is maximal in B.
Consider the category SSEll of supersingular elliptic curves over k, an alge-

braically closed field of characteristic p. The objects of SSEll are supersingular ellip-
tic curves over k and the morphisms are isogenies. Choose a base object E ∈ SSEll,
and let O = End(E) and B = O ⊗Z Q as above. For any other E′ ∈ SSEll, the
Homk(E, E′) = Hom(E, E′) has the structure of a right O-module (precomposing)
and the structure of a left O′ = End(E′)-module (postcomposing).

Let J be a (nonzero) integral left O-ideal. Define

E[J] = E[J](k) = {P ∈ E(k) : f (P) = O for all f ∈ I}.

Then E[J] is a finite subgroup of E and every finite subgroup of E is of the form E[J]
for some left O-ideal J. (In fact, #E[J] = nrd(J).)

Let E′ = E/E[J] and consider the quotient map φ : E → E′ and its dual
φ∨ : E′ → E. Then post-composing with φ∨ gives an injective map Hom(E, E′) →
End(E) = O.

Let O′ = End(E′). Then we have an embedding O′ ↪→ O of Z-modules by
g 7→ φ

∨
gφ, and an element f ∈ O gives rise to such an endomorphism if and only if

f (E[J]) ⊂ E[J] if and only if (J f )(E[J]) = {O} if and only if J f ⊂ J if and only if
f ∈ OR(J). In this way, we identify End(E′) � OR(J).

If E′ ∈ SSEll then End(E′) is isomorphic to a maximal order in B so End(E′) �
OR(J) for some left O-ideal J; considering the dual isogeny, we see that End(E′) �
OL(I) for the right O-ideal I = J−1.

In this correspondence, we identify Hom(E′, E) = J since s ∈ O factors via E′

if and only if s ∈ J. Dualizing, we have Hom(E, E′) = I. In particular, this implies
that Hom(E1, E2) � I2I−1

1 � (I2 : I1)L and so

Hom(E1, E2)→ Hom(I1, I2)

f 7→ (φ 7→ f ◦ φ)

is bijective.
Let ModO be the category of rightO-modules with morphisms given by nonzero

(right O-module) homomorphisms. We have proven the following proposition.

Proposition 27.6.1 (Kohel [Koh96, Theorem 45]). The association

Hom(E,−) : SSEll→ ModO

is a functor and defines an equivalence of categories.

Proof. We have shown that Hom(E,−) is full, faithful, and essentially surjective.
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Remark 27.6.2. By using right O-modules, the functor Hom(E,−) is covariant.

Note in particular that the set of isomorphism classes of supersingular elliptic
curves corresponds the set of right O-ideal classes. From the Eichler mass formula,
we conclude that ∑

[E]

1
# Aut E

=
∑

[I]∈ClO

1
#OL(I)

=
p− 1

24
.

This is an equivalence between right ideal classes and not the left orders.

Lemma 27.6.3. Let O be a maximal order. Then there exist one or two supersingu-
lar elliptic curves E up to isomorphism over k (equivalently, j-invariants) such that
End(E) � O.

Moreover, there exist two such elliptic curves if and only if j(E) ∈ Fp2 \Fp if and
only if the unique two-sided ideal of O′ of reduced norm p is not principal.

Recall that two-sided ideals can be recovered locally and thus for maximal orders
generate a group isomorphic to Zd where d is the number of finite ramified primes in
B.

Proof. There exists at least one by the above. Without loss of generality, suppose that
End(E′) � O. Suppose that E′ corresponds to the right O-ideal I, namely End(E′) =

OL(I). Then there exists x ∈ B× such that End(E′) � OL(xI) = xOL(I)x−1 = O
by hypothesis of the above isomorphism. Thus xI is a two-sided (fractional) O-ideal
which is principal if and only if E � E′.

Therefore there is a bijection between isomorphism classes of supersingular el-
liptic curves with End(E) � O and two-sided ideal classes in O. This proves the
result.

We can generalize this setup slightly as follows. Let N ∈ Z>0 be coprime to
p, and let C ⊂ E(k) be a cyclic subgroup of order N. Then Endk(E,C) = O0(N)
is an Eichler order of level N in B. Then Hom((E,C),−) defines an equivalence
of categories between the category of supersingular elliptic curves equipped with
a cyclic N-isogeny (with morphisms given by isogenies which identify the cyclic
subgroups), to the category of right invertibleO0(N)-modules (with morphisms given
by homomorphisms). The mass formula now reads∑

[(E,C)]

1
# Aut(E,C)

=
∑

[I]∈ClO0(N)

1
#OL(I)

=
p− 1

24
ψ(N).

One can also consider instead the category of cyclic N-isogenies f : E → E′

and note that this is equivalent to the category of cyclic homomorphisms f : I → J
where J/φ(I) � (Z/NZ)2, so that J/φ(I) is a principal right O-module.
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Example 27.6.4. Consider p = 11. The algebra B =

(−1,−11
Q

)
has discriminant 11

and the maximal order O generated by i and (1 + j)/2. We have # ClO = 2, with the
nontrivial class represented by the ideal I generated by 2 and 1 + i(1 + j)/2.

We have O× = 〈i〉 of order 4 and OL(I) = 〈1/2 − i(1 + j)/4〉 of order 6, and
indeed 1/4 + 1/6 = 10/24 = 5/12. The two supersingular curves modulo 11 are the
ones with j-invariants 0 and 1728 ≡ 1 (mod 11), and End(E) � O if j(E) = 1728
whereas for End(E′) � O′ we have Hom(E, E′) � I, in other words, E′ � E/E[I].

Let I1, . . . , Ih be representatives for the set ClO. Let Oi = OL(Ii) and let wi =

#O×i . The products Mi j = I jI−1
i are fractionalOi,O j-ideals. If Ei is an elliptic curve

with End(Ei) = Oi, then we have Ii = Hom(E, Ei) hence Mi j = I jI−1
i = Hom(Ei, E j).

Define the theta series θi j(q) by

θi j(q) =
1
w j

∑
x∈Mi j

exp(2πi nrd(x)/ nrd(Mi j)τ) =
∑
m≥0

Bi j(m)qm

where q = exp(2πiτ).
The functions θi j as functions on the upper half-plane (for τ ∈ H) are modular

forms of weight 2 for the group Γ0(p). Their Fourier coefficients Bi j(m) give the
entries of the Brandt matrix B(m) = (Bi j(m))i, j=1,...,h. We have B(1) is the identity
matrix.

Example 27.6.5. We return to the example p = 11.
Let I1 = O and I2 = I. We have M11 = O, and in the basis 1, i, (1+ j)/2, i(1+ j)/2

we have nrd(x, y, z, w) = x2 + xz + y2 + yw + 3w2 + 3z2, so

θ11(q) =
1
4

(1 + 4q + 4q2 + 8q3 + 20q4 + 16q5 + 32q6 + . . . ).

In a similar way, we have the basis 2, 2i, 1− 3/2i− 1/2i j, 3/2− i− 1/2 j for I and

θ12(q) =
1
6

(1 + 12q2 + 12q3 + 12q4 + 12q5 + . . . )

and θ21(q) = 3
2θ12(q) and

θ22(q) =
1
6

(1 + 6q + 6q3 + 24q4 + 18q5 + 32q6 + . . . ).

Indeed, B(1) is the identity matrix.

Example 27.6.6. In the case p = 11, we have B(2) =

(
1 2
3 0

)
with characteristic

polynomial (T − 3)(T + 2). The eigenvalue 3 = 2 + 1 corresponds to an Eisenstein
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series, and the eigenvalue −2 corresponds to the (isogeny class of the) elliptic curve
X0(11) given by the equation y2 + y = x3 − x2 − 10x − 20: indeed, #X0(11)(F2) =

2 + 1− (−2) = 5.

Lemma 27.6.7. The entry Bi j(m) is equal to the number of subgroups C of order m
in Ei such that Ei/C = E j.

Return to example with maximal unit group (icosahedron group) and mass for-
mula.

27.7 Ramanujan graphs

Let G be a k-regular connected graph with n vertices and with adjacency matrix T
and combinatorial Laplacian k − T whose eigenvalues are 0 < µ− 1 ≤ µ2 ≤ · · · ≤
µn−1 ≤ 2k. (Adjusted average a function on the neigbors of v.) The expansion
coefficient of G is

h(G) = min
#S≤n/2

#∂S
#S

.

One is interested in getting a large coefficient.
Tanner, Alon-Milman:

2µ1

k + 2µ1
≤ h(G) ≤

√
2kµ1

Alon-Boppana:
lim inf λ2(G) ≥ 2

√
k − 1.

Define Ramanujan graph, random graph is Ramanujan.
A k-regular infinite tree is the ideal expander, with expansion coefficient k − 1.

Find subgroups of its automorphism group that does not identify vertices that are too
close to each other. Bruhat-Tits tree, identify units of norm 1.

Bound on the eigenvalues of the adjacency matrix is given by the Ramanujan-
Petersson bound on coefficients.

27.8 Extensions and further reading

Exercises

27.1. Consider the analogous isogeny tree of CM elliptic curves.



Chapter 28

Drinfeld modules and function
fields

In this chapter, we discuss the function field side of the global field picture.

28.1 Extensions and further reading

Exercises
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Part IV

Concluding material

287





Chapter 29

Other topics

29.1 Quaternionic polynomial rings

29.2 Matrix rings over quaternion rings

29.3 Unitary groups and Hermitian forms

29.4 Unit groups of integral group rings

In Z[G] for G a finite group, get interesting unit groups.

29.5 Representation theory of quaternion algebras

29.6 Quaternion rings and Azumaya algebras

Neukirch, get references from my paper, including GL and Lucianovic.

29.7 Octonions and composition algebras

29.8 Lie theory
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Appendix A

Hints and solutions to selected
exercises

1.1 If B contains C, then B is a C-vector space, so B has even dimension as an R-
vector space. Or see May [May66, p. 290]: if i j = a + bi + c j with a, b, c ∈ R,
multiply on the left by i, and derive a contradiction.

2.3 For such a map, we must have i j 7→
(

0 1
−1 0

)
. Check that the four matrices

are linearly independent, so the map is an F-linear isomorphism. Then, us-
ing the universal property of algebras given by generators and relations, show
that the given matrices satisfy the relations in B, so the map is an F-algebra
homomorphism.

2.7 Use Exercise 2.4(c) and show that the center over F has dimension 1 or com-
pute directly with xi− ix = x j− jx = 0 for x = u + vi + w j + zk ∈ B.

2.13 Use the left regular representation either to F or a subfield K, and use the block
matrix determinant. See also Aslaksen [Asl96].

3.3 It is (x, y) 7→ (y, x). Note that F embeds diagonally in F × F.

3.5 g 7→ g−1 is a standard involution if and only if G has exponent 2 and char F = 2
(so the standard involution is the identity and F[G] is commutative).

3.8 Let i, j ∈ K \ F. Then i + j satisfies a quadratic polynomial, but ji = i j, so we
have (i+ j)2 = i2 +2i j+ j2 ∈ F(i+ j)+ F hence 2i j = c(i+ j)+d with c, d ∈ F:
but then since 2 , 0, we have 2i , c ∈ F so j = (ci + d)/(2i− c) ∈ K.

291
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3.9 For part (a), Suppose B has degree 2. Choose a basis 1, x2, . . . , xm. For each
i, the quadratic F-algebras F[xi] have a standard involution, and so extending
by F-linearity we obtain a map : B → B. For x ∈ B, let t(x) = x + x and
n(x) = xx.

By induction and F-linearity, we may suppose 1, x, y are F-linearly indepen-
dent. Suppose (x + y)2 − s(x + y) + m = 0 with s,m ∈ F. We show that
s = t(x) + t(y). We have

(x− y)2 = x2 − (xy + yx) + y2 = 2(x2 + y2)− s(x + y) + m

= (2t(x)− s)x + (2t(y)− s)y + (m− 2n(x)− 2n(y))

But (x − y)2 ∈ F(x − y) + F so 2t(x) − s = s − 2t(y), i.e. 2s = 2t(x) + 2t(y).
Since char F , 2, we have s = t(x) + t(y) as desired.

To conclude, we show xy = y x. We may suppose xy < F. We verify that both
(xy)2 − (xy + y x)xy + (y x)(xy) = 0 and (xy)2 − (xy + xy)xy + xy(xy) = 0, so
the result follows by uniqueness of the minimal polynomial.

For part (b), by the uniqueness of the standard involution, we have x = x + 1
if x < F. But then if 1, x, y are F-linearly independent we have x + y + 1 =

x + y = x + y = (x + 1) + (y + 1) = x + y, a contradiction. So dimF2 B ≤ 2.
Since a Boolean ring consists of idempotents, we have B = F2 or B � F2

2.

3.10 Under right multiplication by B = Mn(F), a matrix is nothing other than the
direct sum of its rows, so in particular, the characteristic polynomial of right
multiplication by A ∈ Mn(F) acting on Mn(F) will be the nth power of the
usual characteristic polynomial of A acting on row vectors V � Fn. (In the
language of Chapter 6, B = Mn(F) as a right B-module is B � Vn where
V � Fn is the unique simple right B-module.)

3.11 By F-linearity, it suffices to verify these statements on a basis for B.

3.14 See van Praag [vPr68] (or its summary [vPr02, Remark 4]).

4.5 For part (a), to simplify the proof of the second statement, choose a normalized
basis for V .

4.7 For part (c), by the transitivity of trace, we may assume K/F is purely insepara-
ble and [K : F] is a multiple of p. But then all roots of the minimal polynomial
of x ∈ K over F are equal, so the characteristic polynomial of multiplication
by x ∈ K has all roots equal and there are a multiple of p of them and thus the
trace is zero.
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For part (d), Tr((a + b
√

5)2) = 2(a2 + 5b2) and

Tr((a + bα + cα2)2) = 2(a2 − 2ab + 10ac + 5b2 − 8bc + 13c2).

4.9 If B =

(a, b
Fq

)
then K = Fq(i) � Fq2 and N : Fq2 → Fq is surjective so

b ∈ NK/F(K×).

4.10 If i, j and i′, j′ are generators, respectively, then consider the subalgebras gen-
erated by i⊗ 1 and j⊗ j′, and i⊗ i′ and 1⊗ j′.

4.13 For the first, exhibit an explicit isometry 〈1, 1, 1〉 � 〈2, 3, 6〉. For the second,
note that 〈2, 5, 10〉 represents 7 but 〈1, 1, 1〉 does not (by showing x2 +y2 + z2 +

w2 . 0 (mod 8) for x, y, z, w ∈ Z with gcd(x, y, z, w) = 1); or note that 〈1, 1, 1〉
represents 1 but 〈2, 5, 10〉 (looking modulo 5, and arguing similarly).

5.2 Choose 0 , y ∈ K⊥.

14.10 See Shimura [Shi71, Proposition 4.11, (5.4.2)].

6.2 The map a ⊗ b 7→ (x 7→ axb) gives an F-algebra homomorphism B⊗F B →
EndF(B) � M4(F), which is injective since B⊗F B is simple and therefore an
isomorphism by a dimension count.

6.6 The augmentation ideal is the kernel of the surjective map
∑
g agg 7→

∑
g ag,

so is nontrivial.

6.12 This exercise was given in a course by Bjorn Poonen in Spring 2000 at the
University of California, Berkeley.

First, parts (a) and (b). Choose x ∈ D \ F. Then K = F(x) is a purely
inseparable extension of F so the minimal polynomial of x in D (or in F) is of
the form T pn − a. In particular, p | [K : F], but D is a left K-vector space and
[D : F] = [D : K][K : F] so p | [D : F].

For part (c), all roots of the minimal polynomial of x are equal, hence all
eigenvalues of x ⊗ 1 ∈ Mn(F) are equal, and the number of them is divisible
by p by (a), so the trace is zero. For part (d), by (c), all elements of Mn(F)
have trace zero, which is a contradiction.

6.13 Let j ∈ B× satisfy jx j−1 = x. Then B = K ⊕ K j, but j2x j−2 = x so j2 ∈ Z(B)
so j2 = b ∈ F×.
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6.16 By Corollary 6.6.8, every maximal subfield K of B has the same dimension, so
since F is a finite field they are isomorphic (as abstract fields). But then by the
Skolem–Noether theorem, since every element lies in a maximal subfield, we
have B× =

⋃
x∈B× x−1K×x, which is a contradiction.

One can also proceed without using the maximal subfield dimension theorem.
Suppose B is a minimal counterexample (by cardinality); then B is a division
ring, but every subalgebra of B is a field. Let F = Z(B). Let i ∈ B \ F; then
by minimality, the centralizer of i is a maximal subfield K. We may assume
K = F(i). If B = K, we are done. Otherwise, let i have multiplicative order m.
Consider L : B→ B by L(x) = ixi−1. Then L is a K-linear map with Lm equal
to the identity. We may therefore decompose B into eigenspaces for L. Arguing
as in the case of quaternion division rings, we show that each such nonzero
eigenspace has dimension 1 as K-vector space. Now consider the normalizer
N = NB(K). Then there is a bijection between the set of cosets of N/K× and
the eigenspaces of L. But N acts on K as F-linear automorphisms with kernel
K×, so N/K× is a subgroup of the Galois group Gal(K/F). It must be the
full Galois group, otherwise N/K× fixes some subfield and its centralizer is a
noncommutative F-subalgebra, contradicting minimality. Therefore dimK B =

dimF K. We now proceed as above.

8.6 Using the matrix units, show that if M = (mi j)i, j ∈ O then mi j · 1 ∈ O, but
then mi j is integral over R so in fact mi j ∈ R and hence M ∈ Mn(R).

8.8 The converse is true if char F , 2 and R is integrally closed. It is immediate
if 1/2 ∈ R since trd(x2) = trd(x)2 − 2 nrd(x), so 2 nrd(x) ∈ R. But for the
same reason more generally we have 2 nrd(xn) = 2 nrd(x)n ∈ R so R[nrd(x)] ⊆
(1/2)R; so if R is integrally closed we have in fact nrd(x) ∈ R.

The statement is false if char F = 2: take B = F × F (with char F = 2) and
x = (a, a) with a ∈ F not integral over R. Then trd(xn) = 2an = 0 for all n but
x is not integral.

10.2 The quadratic form 〈−1, e,−1〉 is isotropic by a previous exercise, so diag-
onalizing we have 〈−1, e〉 � 〈1, s〉 for some s ∈ k×. But disc(〈−1, e〉) =

−e = s = disc(〈1, s〉) ∈ k×/k×2, so 〈1, s〉 � 1,−e〉. More generally, this
argument shows that two nonsingular binary quadratic forms over a finite field
are isometric if and only if they have the same discriminant.

10.6 The proof that addition and multiplication are continuous with respect to the
absolute value | | induced by w is identical to the commutative case. We have
a filtration O ⊃ P ⊃ P2 ⊃ . . . where P is generated by j and thus to show
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that B is complete it suffices to note that the limit of the partial sums x0 + x1 j +

x2 j2 + · · · = (x0 + x2π + . . . ) + (x1 + x3π + . . . ) j ∈ K + K j exists since K
is complete. The set O is compact since it is complete and totally bounded.
By translating, since O is open we have that B is locally compact. Finally, if
x < O then w(x) < 0 so the ring generated by O and x is equal to B; but B is
not compact, since the open cover

⋃
i π
−iO has no subcover.

10.13 Write B in the form B =

(K, 2
Q2

)
with K/Q2 the unique unramified extension of

Q2.

12.2 The lattices are free, so by induction we reduce to the one-dimensional case,
which is simply the statement that R̂p ∩ F = Rp ⊆ F̂p and follows since
Rp = {x ∈ F : v(x) ≥ 0}.

11.5 Take t = ±q
∏

p∈Σ\{∞} pordp(tp). Select the prime q to satisfy congruences to
ensure that the conditions hold. See [[Cassels, Corollary to Theorem 6.5.1]]

14.2 There exists nonzero r ∈ I = Ox so 1 = (y/r)x for some y ∈ O and hence
x ∈ B×.

14.4 Reduce to the local case; the result follows from Paragraph 14.5.7. Consider
the connecting ideal I = OO′: clearly O ⊆ OL(I) so equality holds since O is
maximal. [[Or use hereditary?]]

14.12 This exercise is due to Kaplansky [Kap69]. We compute that

OL(I) =

 R R (a)
(a) R (a2)
R R R

 and OR(I) =

 R R R
R R R

(a2) (a2) R


and

I−1 =

 R R R
R R R

(a) R (a2)


has I−1I = OR(I) but

II−1 =

(a) R (a)
(a) R (a2)
R R R

 , OL(I).

21.1 First compute all elements in O of norm 2, then show the product of any two
of these elements belongs to 2O.
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