
Shimura curve computations

John Voight

Abstract. We introduce Shimura curves first as Riemann surfaces and then
as moduli spaces for certain abelian varieties. We give concrete examples of
these curves and do some explicit computations with them.

1. Introduction: modular curves

We motivate the introduction of Shimura curves by first recalling the definition
of modular curves.

For each N ∈ Z>0, we define the subgroup

Γ0(N) =

{(

a b
c d

)

∈ SL2(Z) : c ≡ 0 (mod N)

}

⊂ SL2(Z).

The group Γ0(N) acts on the completed upper half-plane H∗ = H∪P1(R) by linear
fractional transformations, and the quotient X0(N)C = Γ0(N)\H∗ can be given the
structure of a compact Riemann surface. The curve X0(N)C parametrizes cyclic
N -isogenies between (generalized) elliptic curves and therefore has a model X0(N)Q

defined over Q. On X0(N)Q, we also have CM points, which correspond to isogenies
between elliptic curves which have complex multiplication (CM) by an imaginary
quadratic field K.

Shimura curves arise in generalizing this construction from the matrix ring
M2(Q) to certain quaternion algebras over totally real fields F . A Shimura curve
is the quotient of the upper half-plane H by a discrete, “arithmetic” subgroup of
Aut(H) = PSL2(R). Such a curve also admits a description as a moduli space,
yielding a model defined over a number field, and similarly comes equipped with
CM points.

The study of the classical modular curves has long proved rewarding for math-
ematicians both theoretically and computationally, and an expanding list of con-
jectures have been naturally generalized to the setting of Shimura curves. These
curves, which although at first are only abstractly defined, can also be made very
concrete.

In §2, we briefly review the relevant theory of quaternion algebras and then
define Shimura curves as Riemann surfaces. In §3, we provide a detailed example
of a Shimura curve over Q. In §4, we discuss the arithmetic of Shimura curves:
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we explain their interpretation as moduli spaces, and define CM points, Atkin-
Lehner quotients, and level structure. Finally, in §5, we illustrate these concepts by
considering the case of Shimura curves arising from triangle groups, in some sense
the “simplest” class, and do some explicit computations with them.

2. Quaternion algebras and complex Shimura curves

2.1. Quaternion algebras. We refer to [Vi] as a reference for this section.
As in the introduction, we look again at SL2(Z) ⊂ M2(Q): we have taken the

group of elements of determinant 1 with integral entries in the Q-algebra M2(Q).
The algebras akin to M2(Q) are quaternion algebras.

Let F be a field with charF 6= 2. A quaternion algebra over F is a central
simple F -algebra of dimension 4. Equivalently, an F -algebra B is a quaternion
algebra if and only if there exist α, β ∈ B which generate B as an F -algebra such
that

α2 = a, β2 = b, βα = −αβ

for some a, b ∈ F ∗. We denote this algebra B =

(

a, b

F

)

.

Example. As examples of quaternion algebras, we have the ring of 2 × 2-

matrices over F , or M2(F ) ∼=
(

1, 1

F

)

, and the division ring H =

(−1,−1

R

)

of

Hamiltonians.

From now on, let B denote a quaternion algebra over F . There is a unique
anti-involution : B → B, called conjugation, with the property that αα ∈ F for
all α ∈ B. The map nrd(α) = αα is known as the reduced norm.

Example. If B =

(

a, b

F

)

, and θ = x + yα + zβ + wαβ, then

θ = x − yα − zβ − wαβ, and nrd(θ) = x2 − ay2 − bz2 + abw2.

From now on, let F be a number field. Let v be a noncomplex place of F , and
let Fv denote the completion of F at v. If Bv = B ⊗F Fv is a division ring, we
say that B is ramified at v; otherwise Bv

∼= M2(Fv) and we say B is split at v.
The number of places v where B is ramified is finite and of even cardinality; their
product is the discriminant disc(B) of B. Two quaternion algebras B, B′ over F
are isomorphic (as F -algebras) if and only if disc(B) = disc(B′).

Let ZF denote the ring of integers of F . An order of B is a subring O ⊂ B
(containing 1) which is a ZF -submodule satisfying FO = B. A maximal order is an
order which is maximal under inclusion. Maximal orders are not unique—but we
mention that in our situation (where B has at least one unramified infinite place,
see the next section), a maximal order in B is unique up to conjugation.

2.2. Shimura curves as Riemann surfaces. Let O ⊂ B be a maximal
order. We then define the group analogous to SL2(Z), namely the group of units
of O of norm 1:

O∗
1 = {γ ∈ O : nrd(γ) = 1}.

In order to obtain a discrete subgroup of PSL2(R) (see [Ka, Theorem 5.3.4]), we
insist that F is a totally real (number) field and that B is split at exactly one real
place, so that

B ↪→ B ⊗Q R ∼= M2(R) × H[F :Q]−1.
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We denote by ι∞ : B ↪→ M2(R) the projection onto the first factor.
We then define the group

ΓB(1) = ι∞(O∗
1/{±1}) ⊂ PSL2(R).

The quotient XB(1)C = ΓB(1)\H can be given the structure of a Riemann surface
[Ka, §5.2] and is known as a Shimura curve.

From now on, we assume that B 6∼= M2(Q), so that we avoid the (classical) case
of modular curves; it then follows that B is a division ring and, unlike the case for
modular curves, the Riemann surface XB(1)C is already compact [Ka, Theorem
5.4.1].

3. Example

We now make this theory concrete by considering an extended example.
We take F = Q and the quaternion algebra B over Q with disc(B) = 6, i.e. B

is ramified at the primes 2 and 3, and unramified at all other places, including ∞.

Explicitly, we may take B =

(−1, 3

Q

)

, so that α, β ∈ B satisfy

α2 = −1, β2 = 3, βα = −αβ.

We find the maximal order

O = Z ⊕ Zα ⊕ Zβ ⊕ Zδ where δ = (1 + α + β + αβ)/2,

and we have an embedding

ι∞ : B → M2(R)

α, β 7→
(

0 −1
1 0

)

,

(√
3 0

0 −
√

3

)

.

With respect to this embedding, we compute a fundamental domain D for the
action of ΓB(1) = ι∞(O∗

1/{±1}) as follows. (For an alternate presentation, see
[AB, §5.5.2] or [KV, §5.1].)

0 1

i

γ1

γ2

γ3

γ4

(2 −

√

3)i

The elements

γ1 = α, γ2 = α + δ, γ3 = 2α + αβ, γ4 = 1 + α − β + δ
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are known as side-pairing elements ; they yield the presentation

ΓB(1) ∼= 〈γ1, . . . γ4 | γ2
1 = γ3

2 = γ2
3 = γ3

4 = γ4γ3γ2γ1 = 1〉.
One can compute the area µ(D) of the above fundamental domain D by trian-

gulation, but we also have the formula (see [E, §2.2])

µ(D) = µ(XB(1)) =
π

3

∏

p|disc(B)

(p − 1) =
2π

3
.

The group ΓB(1) then tessellates H as follows.

0 1

(The algorithm for drawing hyperbolic polygons is due to Verrill [Ve].)
The genus g of X can be computed by the Riemann-Hurwitz formula as

2g − 2 =
µ(XB(1))

2π
−

∑

q

eq

(

1 − 1

q

)

,

where eq is the number of (conjugacy classes of) elliptic points of order q. From
the presentation for ΓB(1) above, we can see directly that e2 = e3 = 2 and hence

2g − 2 = 1/3 − 2(1 − 1/2)− 2(1 − 1/3) = −2

so g = 0. Alternatively, we can compute the number of these elements by the
formulas

e2 =
∏

p|disc(B)

(

1 −
(−4

p

))

= 2, e3 =
∏

p|disc(B)

(

1 −
(−3

p

))

= 2.

Since the genus of X is zero, we have a map XB(1)C → P1
C.

4. Arithmetic of Shimura curves

4.1. Shimura curves as moduli spaces. Just as with modular curves,
Shimura curves are in fact moduli spaces, and this moduli description yields a
model for XB(1)C which is defined over a number field.

In the case F = Q, the curve XB(1) is a coarse moduli space for pairs (A, ι),
where:
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• A is an abelian surface, and
• ι : O ↪→ End(A) is an embedding.

We say that such an A has quaternionic multiplication (QM) by O. The involution
on O induces via ι an involution on End(A), and there is a unique principal

polarization on A which is compatible with this involution, then identified with the
Rosati involution.

If F 6= Q, the moduli description is more complicated: since B is then neither
totally definite nor totally indefinite, it follows from the classification of endomor-
phism algebras of abelian varieties over C (see [M, Theorem 21.3]) that we cannot
have End(A)⊗ZQ ∼= B. Instead, one must choose an imaginary quadratic extension
K of F , as in [Z, §1.1.2], and consider a moduli problem over K. For simplicity, we
assume from now on that F has narrow class number 1: under this hypothesis, we
have a natural choice, namely K = F (

√
−d), where d is a totally positive generator

for the discriminant disc(B). One may then think of the objects parametrized by a
Shimura curve XB(1)F as “abelian varieties with QM by O”—the precise meaning
of this phrase will be neglected here.

It then follows from this moduli description that there exists a canonical model

XB(1)F for XB(1)C defined over F , a theorem due to Shimura [S] and Deligne [D].

4.2. Example: Models. The model XB(1)Q over Q for our Shimura curve
with disc(B) = 6 is given by the conic

XB(1)Q : x2 + y2 + 3z2 = 0,

a result attributed to Ihara [Ku, p. 279].
This identification can be made quite explicit, a computation due to Baba-

Granath [BG]. For k ∈ Z≥0, we denote by Mk(Γ) the space of holomorphic weight
k modular forms for the group Γ = ΓB(1), namely, the space of holomorphic maps
f : H → C such that

f

(

az + b

cz + d

)

= (cz + d)kf(z)

for all γ =

(

a b
c d

)

∈ Γ. Using an elementary formula due to Shimura, we compute

the dimension of Mk(Γ):

dimC M4(Γ) = dimC M6(Γ) = 1, dimC M12(Γ) = 3.

From this, one can show that there exist normalized hk ∈ Mk(Γ) for k = 4, 6, 12
such that

h2
12 + 3h4

6 + h6
4 = 0,

which realizes the map XB(1)C → XB(1)Q.

4.3. CM points. On the modular curves X0(N), we have CM points arising
from elliptic curves with extra endomorphisms. These points are defined over ring
class extensions H of an imaginary quadratic field K, and the Shimura reciprocity
law describes explicitly the action of Gal(H/K) on them. In a similar way, on the
Shimura curve XB(1) we have CM points which correspond to abelian varieties with
extra endomorphisms. Let K ⊃ F be a totally imaginary quadratic extension which
splits B, i.e. B ⊗F K ∼= M2(K); the field K splits B if and only if there exists an
embedding ιK : K ↪→ B, and the map ιK is concretely given by an element µ ∈ O
such that ZF [µ] = ZK . Let z = zD be the fixed point of ι∞(µ) in H; we then
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say z is a CM point on XB(1)C. When F = Q, CM points on XB(1) correspond
to abelian surfaces A with endomorphism algebra End(A) ⊗Z Q ∼= M2(K); the
interpretation is again more subtle when F 6= Q, but there one may think of these
points as similarly having “extra endomorphisms”.

On the model XB(1)F , these points are defined over the Hilbert class field H of
K (or more generally, ring class extensions), and one has also a Shimura reciprocity
law; see [S] for a discussion and proof.

4.4. Example: CM points. The following computation can be found in
Elkies [E, §3.4] and Baba-Granath [BG, §3.3].

We return to the example from §2, with F = Q. Let K = Q(
√
−19), and

ZK = Z[(1 +
√
−19)/2]. We have #Cl(ZK) = 1, and the elliptic curve E = C/ZK

with CM by ZK has j-invariant −963.
The genus 2 curve C defined by

C : y2 = 2t6 − 3(1 + 9
√
−19)t4 − 3(1 − 9

√
−19)t2 + 2

has Jacobian J(C) ∼= E × E, and End(J(C)) ∼= M2(ZK). This curve C “cor-
responds” to the moduli point [C] = (32 : 27 : 13

√
−19) on the Shimura curve

XB(1) : x2 +3y2 +z2 = 0. (The field of moduli of the point [C] is Q, but Q is not a
field of definition for C; the automorphism group of C is Aut(C) ∼= Z/2Z×Z/2Z.)

4.5. Atkin-Lehner involutions. Shimura curves also possess natural invo-
lutions, just like modular curves. The normalizer

N(O) = {α ∈ B∗/F ∗ : αO = Oα, nrd(α) is totally positive}
acts via ι∞ as automorphisms of XB(1)F , and generates a subgroup

W ∼=
∏

p|disc(B)

Z/2Z = (Z/2Z)e.

The elements of W are known as Atkin-Lehner involutions. Letting ΓB∗(1) =
ι∞(N(O)), we see that the curve XB∗(1) = ΓB∗(1)\H is the quotient of XB(1) by
W .

When F = Q, these involutions have a natural moduli interpretation. Recall
that the curve XB(1) parametrizes pairs (A, ι), where A is an abelian surface (over
C, say) with QM by O specified by an embedding ι : O ↪→ End(A). But there may
be more than one such embedding ι for a given A, even up to isomorphism: for
each divisor m | disc(B), we can “twist” ι by m to obtain a new pair (A, ιm). All
such twists arise in this way (see [R, §3]), and therefore the quotient XB∗(1) of
XB(1) by W parametrizes abelian surfaces A which can be given the structure ι of
QM by O, without a particular choice of ι.

4.6. Example: Atkin-Lehner quotient. The two Atkin-Lehner involutions
w2, w3 act on XB(1)Q : x2 + y2 + 3z2 = 0 by

w2(x : y : z) = (x : −y : z), w3(x : y : z) = (−x : y : z).

The quotients are therefore

X // X〈w2〉 = P1 X // X〈w3〉 = P1

(x : y : z) �

// (x : z) (x : y : z) �

// (y : z).



SHIMURA CURVE COMPUTATIONS 7

and the quotient by the full group W = 〈w2, w3〉 can be given by

j : X // XW = P1

(x : y : z) �

// (16y2 : 9x2),

under our normalization. Our moduli point [C] corresponding to K with discrimi-
nant −19 was [C] = (32 : 27 : 13

√
−19), and so we find j([C]) = 81/64 = 34/26.

4.7. Level structure: congruence subgroups. Having introduced the group
ΓB(1) which replaces PSL2(Z), we now introduce the curves analogous to the mod-
ular curves. Let N be an ideal of ZF that is coprime to the discriminant of B, and
let ZF,N be the completion of ZF at N; then there exists an embedding

ιN : O ↪→ O ⊗ZF
ZF,N

∼= M2(ZF,N).

We define

ΓB
0 (N) = {ι∞(γ) : γ ∈ O∗

1 , ιN(γ) is upper triangular modulo N}/{±1}
and we again obtain a Riemann surface XB

0 (N)C = ΓB
0 (N)\H.

In a similar way, for F = Q, the curves XB
0 (N)C parametrize cyclic N -isogenies

between abelian surfaces with QM by O. For any F , one can also show that the
curve XB

0 (N)C admits a model over a number field.

5. Triangle groups

5.1. The (2, 4, 6)-triangle group. Recall from §4.5 that the group

ΓB∗(1) = {ι∞(α) : α ∈ B∗/F ∗, αO = Oα, nrd(α) is totally positive}
realizes the space XB∗(1) = ΓB∗(1)\H. The quotient

ΓB∗(1)

ΓB(1)
∼=

∏

p|disc(B)

Z/2Z,

arises from elements whose reduced norm divides disc(B) = 6.
We can see the group ΓB∗(1) again explicitly: it has a presentation

ΓB∗(1) ∼= 〈s2, s4, s6 | s2
2 = s4

4 = s6
6 = s6s4s2 = 1〉

where
s2 = −1 + 2α − β + 2δ, s4 = −1 + α, s6 = −2 + α + δ

have nrd(s2) = 6, nrd(s4) = 2, nrd(s6) = 3, respectively. This group ΓB∗(1)
is known as a (2, 4, 6)-triangle group; a fundamental domain D for ΓB∗(1) is the
union of a fundamental triangle, a hyperbolic triangle with angles π/2, π/4, π/6
with vertices at the fixed points of s2, s4, s6, respectively, together with its image
in the reflection in the geodesic connecting any two of the vertices.

We can visualize the (2, 4, 6)-triangle group ΓB∗(1) inside ΓB(1) as follows.

0 1
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5.2. Cocompact arithmetic triangle groups. More generally, for p, q, r ∈
Z≥2 with 1/p + 1/q + 1/r < 1, we may define the (p, q, r)-triangle group similarly
as the group with presentation

〈sp, sq, sr | sp
p = sq

q = sr
r = srsqsp = 1〉.

By work of Takeuchi [T], there are exactly 18 quaternion algebras B (up to iso-
morphism), defined over one of 13 totally real fields F , that give rise to such a
cocompact arithmetic triangle group ΓB∗(1). Already these contain a number of
curves worthwhile of study. (In this light, we could consider the classical SL2(Z)
to be a (2, 3,∞)-triangle group, though we still exclude this case in our discussion.)

Each of these “simplest” Shimura curves has genus zero, so we have a map
j : XB∗(1) → P1

C. (In fact, one can show that the canonical model provided by
Shimura and Deligne for XB∗(1)C over F is already P1

F .) We normalize this map
by taking the images of the elliptic fixed points zp, zq, zr of sp, sq, sr, respectively,
to be 0, 1,∞.

5.3. Explicit computation of CM points. To summarize, from cocompact
arithmetic triangle groups associated with certain quaternion algebras B over to-
tally real fields F we obtain Riemann surfaces XB∗(1) of genus 0 together with a
map j : XB∗(1) → P1

C. There are CM points of arithmetic interest which we would
like to compute.

Theorem ([Vo]). There exists an algorithm that, given a totally imaginary

quadratic field K ⊃ F , computes the CM point j(z) ∈ P1(C) associated to K to

arbitrary precision, as well as all of its conjugates by the group Gal(H/K).

One can then recognize the value j as an algebraic number by considering the
polynomial defined by its conjugates.

5.4. Second example. We now give an example where F 6= Q. Let F be the
totally real subfield of Q(ζ9), where ζ9 is a primitive ninth root of unity. We have

ZF = Z[b], where b = −(ζ9 + 1/ζ9). We take B =

(−3, b

F

)

, i.e. B is generated by

α, β with

α2 = −3, β2 = b, βα = −αβ.

Here, we have disc(B) = ZF , i.e. B is ramified at no finite place and at exactly

two of the three real places. We fix the isomorphism ι∞ : B ⊗F R
∼−→ M2(R), given

explicitly as

α 7→
(

0 3
−1 0

)

, β 7→
(
√

b 0

0 −
√

b

)

.

We next compute a maximal order O = ZF ⊕ ZF ζ ⊕ ZF η ⊕ ZF ω, where

ζ = − 1
2b + 1

6 (2b2 − b − 4)α

η = − 1
2bβ + 1

6 (2b2 − b − 4)αβ

ω = −b + 1
3 (b2 − 1)α − bβ + 1

3 (b2 − 1)αβ.

By work of Takeuchi [T], we know that ΓB(1) = ΓB∗(1) is a triangle group
with signature (p, q, r) = (2, 3, 9). Explicitly, we find the generators

s2 = b + ω − 2η, s3 = −1 + (b2 − 3)ζ + (−2b2 + 6)ω + (b2 + b − 3)η, s9 = −ζ
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which satisfy the relations s2
2 = s3

3 = s9
9 = s2s3s9 = 1. The fixed points of these

elements are

z2 = 0.395526 . . . i, z3 = −0.153515 . . . + 0.364518 . . . i, z9 = i,

and they form the vertices of a fundamental triangle.

0 1

Each triangle in the above figure is a fundamental domain formed by the union
of two such fundamental triangles.

5.5. CM points. As an example, we first take K = F (
√
−2) with class num-

ber 3. We find µ ∈ O satisfying µ2 + 2 = 0, so ZF [µ] = ZK has discriminant −8;
explicitly,

µ = (−b2 − b + 1) + (−2b2 + 2)ζ + (2b2 − b − 5)ω + (−b2 + b + 1)η.

We obtain the CM point j(z) = 17137.9737 . . . as well as its Galois conjugates
0.5834 . . .± 0.4516 . . . i, which yields the minimal polynomial for j = j(z)

j3 − 1096905
64 j2 + 41938476081

2097152 j − 9781803409
1048576 = 0

to the precision computed (300 digits). Note that

9781803409
1048576 = 727121992

220 .

We verify that K(j) = H = K(c), where c3 − 3c + 10 = 0.
Larger examples can be computed, including over ring class extensions. Con-

sider the field K = F (
√
−5) with discriminant disc(K/F ) = −20. We consider the

order ZK,f ⊂ K of conductor f = b − 1; note that NF/Q(b − 1) = 3.
The CM point z has j = j(z) which satisfies a polynomial of degree 14 =

#Cl(ZK,f ), with N(j) equal to

−7181278163417924874971216192259122699274512100792138592170992

2845989926997199
.
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The extension K(j) = K(c) is generated by an element c which satisfies

c14 − c13 − 2c12 + 19c11 − 37c10 − 122c9 + 251c8 + 211c7

− 589c6 + 470c5 − 41c4 − 73c3 + 22c2 + 11c + 1 = 0.
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