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Abstract. Stickelberger proved that the discriminant of a number field is congruent to
0 or 1 modulo 4. We generalize this to an arbitrary (not necessarily commutative) ring
of finite rank over Z using techniques from linear algebra. Our proof relies on elementary
matrix identities.

1. Introduction

The discriminant arises naturally in many situations in mathematics, often as a measure
of size or arithmetic complexity. In perhaps its simplest form, we learn that a quadratic
equation ax2 + bx + c = 0 with a, b, c ∈ R has a real root if and only if its discriminant
d := b2 − 4ac is nonnegative. In algebraic number theory, the discriminant of a number
field measures ramification of primes [Mar18, Chapters 2–3]; in the theory of differential
equations, the discriminant measures the extent to which singular solutions exist.

In this note, we pursue discriminants in the context of rings and with a view toward
arithmetic.

Motivation. As motivation, we consider a very simple case: let d ∈ Z be a nonsquare and
consider the quadratic ring

(1.1) Z[
√
d] := {a+ b

√
d : a, b ∈ Z} ⊆ C.

This ring has a natural notion of trace given by

Tr(a+ b
√
d) = (a+ b

√
d) + (a− b

√
d) = 2a ∈ Z.

Of course Z[
√
d] = Z + Z

√
d ' Z2 as abelian groups, and multiplication in Z[

√
d] can be

written out as

(1.2) (a+ b
√
d)(a′ + b′

√
d) = (aa′ + bb′d) + (ab′ + a′b)

√
d

for a, b, a′, b′ ∈ Z. The multiplication law (1.2) in Z[
√
d] can be given without an embedding

into C: on the free abelian group Z2 with basis 1, e, there is a unique ring structure satisfying
e2 = d. Indeed, by the distributive law, it is enough to remember the products of basis
elements, with only the product e · e needing to be specified. Finally, we can recover the
discriminant from the traces of these products, taking the determinant:

(1.3) det

(
Tr(1 · 1) Tr(1 · e)
Tr(e · 1) Tr(e · e)

)
= det

(
2 0
0 2d

)
= 4d.

This calculation agrees with the more familiar notion, since
√
d is a root of the equation

x2 − d = 0 which has discriminant 4d. In a similar manner, we can define a ring structure
for e satisfying e2 + be+ c = 0, and we find the discriminant b2 − 4c.
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This approach works more generally. Let K be a number field (a finite extension of Q),
and let ZK be its ring of integers, the subset of K of elements that satisfy a monic polynomial
with integer coefficients [Mar18, Chapter 1]. For example, we might take K = Q(

√
−1), in

which case ZK = Z[i] = {a+ bi : a, b ∈ Z}. Then one can define the discriminant of ZK in a
similar manner: if α1, . . . , αn is an integral basis for ZK , and Tr: K → Q the trace, then we
form the n× n-matrix

(1.4) B := (Tr(αiαj))
n
i,j=1 ∈ Mn(Z)

and define the discriminant
discZK := detB.

(See Remark 4.4 for an equivalent definition in the context of Minkowski’s geometry of
numbers.) The matrix B can be interpreted in linear algebraic terms: the bilinear form

(1.5)
Tr : K ×K → Q

(α, β) 7→ Tr(αβ)

is symmetric (and nondegenerate), and the matrix B is the Gram matrix of this bilinear
form in the basis α1, . . . , αn.

Visibly, for quadratic rings we have b2 − 4c ≡ b2 ≡ 0, 1 (mod 4). In fact, this congruence
generalizes to all rings of integers, the starting point of our investigation.

Theorem 1.6 (Stickelberger). We have discZK ≡ 0, 1 (mod 4).

This theorem is called Stickelberger’s discriminant theorem, among other names. While
never stated explicitly in Stickelberger’s work [Sti98], this statement can be deduced from
the main results. The modern simple proof given by Schur [Sch29] is typically provided as
an exercise in an algebraic number theory class (see e.g. Marcus [Mar18, Chapter 2, Exercise
22] or Neukirch [Neu99, Section I.2, Exercise 7]). For further discussion, see Remark 4.4;
and for more on this history, see Cox [Cox]. (There is a different, much deeper, theorem of
Stickelberger in algebraic number theory that describes the Galois module structure of class
groups of cyclotomic fields. For more on this theorem, see Washington [Was82, Chapter
6].) Various generalizations of this congruence have also been made [Mar89, Ber76, Bae81,
Har12, BG16].

Generalization. With the motivation to study discriminants as measuring the bilinear
form coming from the trace of multiplication, we are now ready to generalize. A ring of rank
n ∈ Z≥1 is a ring (with 1), not necessarily commutative, whose underlying additive group is
isomorphic to Zn. Concretely, in a Z-basis e1, e2, . . . , en for A ' Zn, multiplication is defined
by

(1.7) eiek =
n∑
j=1

cijkej

for i, k = 1, . . . , n, with cijk ∈ Z (with multiplication extended to A using the distributive
law). The n3 coefficients (cijk)

n
i,j,k=1 form what is called a multiplication table for A.

Commutative rings of rank n, including rings of integers in number fields, are of consider-
able interest. For an overview, see Bhargava [Bha06]. However, we do not restrict our work
here to the commutative case. Already, the ring Mn(Z) of n× n-matrices with entries in Z
is a ring of rank n2, noncommutative for n ≥ 2.
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Other noncommutative examples of rings of rank n abound. Even before J.J. Sylvester
coined the term “matrix” in 1848, Sir William Rowan Hamilton had discovered in 1843 the
noncommutative algebra of quaternions

H := R + Ri+ Rj + Rk
famously inscribing the equations

i2 = j2 = k2 = ijk = −1

into the Broom Bridge in Dublin. Fifty years later, Hurwitz [Hur1896] considered the subring
of (integral) Hurwitz quaternions

(1.8) O :=

{
t+ xi+ yj + zk ∈ H :

t, x, y, z ∈ 1
2
Z and

2t, 2x, 2y, 2z ∈ Z of the same parity

}
.

A Z-basis for O is given by 1, i, j, ω where ω := (−1 + i + j + k)/2 satisfies the identity
ω2 + ω + 1 = 0. The ring O is a noncommutative ring of rank 4; it may be thought of as a
noncommutative analogue of the ring of integers of a quadratic field. (For further reading,
see Voight [Voi21].)

In fact, every ring A of rank n is a subring of Mn(Z). Explicitly, the coefficients of the
multiplication table (1.7) provide a map

(1.9)
λ : A→ Mn(Z)

ei 7→ (cijk)j,k=1,...,n

(extended Z-linearly) which defines an injective ring homomorphism. Analogously to the
above, we then define the discriminant of A by

(1.10) disc(A) := det(B)

where B = (bij)i,j ∈ Mn(Z) is the matrix obtained by taking the trace of pairwise products
of basis elements

(1.11) bij := Tr(λ(eiej)).

The discriminant disc(A) does not depend on the basis (see Lemma 2.8).

Example 1.12. Computed using the basis of matrix units, we have disc(Mn(Z)) = (−1)n(n−1)/2nn
2
.

Example 1.13. For the Hurwitz quaternions O in the basis 1, i, j, ω, we have for example

λ(i) =


0 −1 1 0
1 0 −1 −1
0 0 −1 −1
0 0 2 1


since ij = k = 1− i− j + 2ω and iω = −i− j + ω. Multiplying matrices and taking traces
yields

B =


4 0 0 −2
0 −4 0 −2
0 0 −4 −2
−2 −2 −2 −2


and we find that disc(A) = det(B) = −64.
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Main result. Our main result is a generalization of Stickelberger’s theorem to an arbitrary
rank n ring.

Theorem 1.14. If A is a ring of rank n, then disc(A) ≡ 0, 1 (mod 4).

We prove this theorem using purely linear algebra techniques (as Theorem 3.1), giving a
new proof of Stickelberger’s theorem even in the case of the ring of integers of a number field.
Moreover, our proof introduces a new invariant of a ring of rank n equipped with a basis β
containing 1. We call it the discriminant pfaffian discpf(A, β) ∈ Z (see §4), and it satisfies

disc(A) ≡ discpf(A, β)2 (mod 4).

For a quadratic ring A := Z[x]/(x2−bx+c) we have discpf(A, (1, e)) = b. And in general our
discriminant pfaffian extracts a square root of the “square part” of the discriminant modulo
4. The name is motivated by the analogy with the classical pfaffian, the square root of the
determinant of a skew-symmetric matrix.

Example 1.15. Let A be a ring of rank 3, with basis (1, e2, e3). Let B = (bij)i,j. Then
discpf(A, β) = b12b13 + b23 = Tr(λ(e2)) Tr(λ(e3)) + Tr(λ(e2e3)).

Organization. This paper is organized as follows. In Section 2 we set up background and
notation. In Section 3 we prove our main result, and then in Section 4 we describe the
discriminant pfaffian.

Acknowledgments. The authors would like to thank Darij Grinberg for posing the ques-
tion [Gri17], for helpful correspondence, and for feedback. The authors are also grateful to
the reviewers for their comments. Auel was supported by a Simons Foundation Collabo-
ration Grant (712097), a National Science Foundation Grant (2200845), and a Walter and
Constance Burke Research Award. Voight was supported by a Simons Collaboration Grant
(550029).

2. Notation

We begin by setting notation, building upon and detailing what was presented in the
introduction. Throughout this paper, by a ring we mean a (not necessarily commutative)
ring with multiplicative identity 1.

Definition 2.1. Let n ∈ Z≥1. A ring of rank n is a ring that is isomorphic to Zn as a
Z-module (equivalently, as an abelian group).

Definition 2.2. Let A be a ring of rank n. A basis for A is an ordered n-tuple β = (e1, . . . , en)
of elements of A that generate A as a Z-module. The multiplication table for A in a basis β
is the tuple (cijk)i,j,k of n3 coefficients cijk ∈ Z defined by

(2.3) eiek =
n∑
j=1

cijkej.

A framed ring (A, β) of rank n is a ring A of rank n equipped with a basis β.

Let (A, β) be a framed ring of rank n with β = (e1, . . . , en).
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Definition 2.4. The matrix of a ∈ A is λβ(a) = (aij)i,j ∈ Mn(Z) where

aej =
n∑
i=1

aijei.

The following lemma follows from a direct verification.

Lemma 2.5. The matrix map
λβ : A ↪→ Mn(Z)

defines an injective ring homomorphism, and the map

(2.6)
tβ : A× A→ Z

(a, b) 7→ Tr(λβ(ab))

defines a symmetric, bilinear pairing on A.

The matrix (or “left multiplication”) map λβ is called the left regular representation of A.
Indeed, on basis elements we have λβ(ei) defined by the entries of the multiplication table
as in (1.9). We call the map tβ the trace pairing on A.

Definition 2.7. The Gram matrix of (A, β) is the (symmetric) matrix B = B(A, β) defined
by

(tβ(ei, ej))i,j=1,...,n =


tβ(e1, e1) tβ(e1, e2) . . . tβ(e1, en)
tβ(e2, e1) tβ(e2, e2) . . . tβ(e2, en)

...
...

. . .
...

tβ(en, e1) tβ(en, e2) . . . tβ(en, en)

 .

Thus the Gram matrix of (A, β) is defined to be the classical Gram matrix of the trace form
tβ. The discriminant of A (with respect to β) is

disc(A, β) := det(B).

Lemma 2.8. The trace pairing t = tβ and the discriminant disc(A) = disc(A, β) are well-
defined, independent of the choice of basis β.

Proof. Let Q = [id]β
′

β ∈ GLn(Z) be a change of basis from β to β′. Then λβ′(a) = Qλβ(a)Q−1

so Tr(λβ′(a)) = Tr(λβ(a)) for all a ∈ A, hence t is independent of the choice of basis.
Correspondingly, we have B(A, β′) = QTB(A, β)Q, hence

(2.9) det(B(A, β′)) = det(Q)2 det(B(A, β)) = det(B(A, β))

since det(Q) ∈ {±1}. �

Remark 2.10. Strictly speaking, our definition of discriminant depends on the choice of
representation λ. One could also consider the right regular representation or indeed any
faithful matrix representation of A. Although these need not give the same answers, the
proof below shows that they all satisfy a discriminant congruence.

It will turn out to be crucial to our arguments in the next section to have 1 as the first
element of a basis.

Definition 2.11. A unital basis for A is a basis β = (e1, . . . , en) with e1 = 1, and a unitally
framed ring of rank n (A, β) is a ring A of rank n equipped with a unital basis β.
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Proposition 2.12. Every ring of rank n has a unital basis.

Proof. Let A be a ring of rank n and let β = (e1, . . . , en) be a (not necessarily unital) basis
for A. Then 1 = a1e1 + · · ·+ anen with a1, . . . , an ∈ Z.

We first claim that gcd(a1, . . . , an) = 1. Indeed, using the multiplication table, we have

(2.13) e1 = e1 · 1 =
n∑
k=1

ake1ek =
n∑
k=1

ak

(
n∑
j=1

c1jkej

)
=

n∑
j=1

(
n∑
k=1

akc1jk

)
ej.

Since β is a basis, by the coefficient of e1 we have 1 =
∑n

k=1 akc11k. We conclude that
gcd(a1, . . . , an) = 1.

Consider the row vector a := (a1, . . . , an). We claim that there exists (invertible) Q ∈
GLn(Z) such that aQ = (1, 0, . . . , 0). Although the proof of this claim can be found in many
places, we give an argument here in order to be self-contained. We proceed by induction.
The base case n = 1 is immediate. In general, by the extended Euclidean algorithm (Bézout
relation), there exist xn−1, xn ∈ Z such that an−1xn−1 + anxn = g := gcd(an−1, an). Let

P :=

(
xn−1 −an/g
xn an−1/g

)
;

then det(P ) = 1 so P ∈ SL2(Z), and the block matrix

(
I 0
0 P

)
∈ SLn(Z) has

(2.14) (a1, . . . , an−1, an)

(
I 0
0 P

)
= (a1, . . . , an−2, g, 0)

still with gcd(a1, . . . , g) = gcd(a1, . . . , an−1, an) = 1. Therefore by induction, there exists

Q ∈ GLn−1(Z) such that (a1, . . . , g)Q = (1, 0, . . . , 0), so multiplying (2.14) by

(
Q 0
0 1

)
gives

the result.
From the claim, we have aQ = (1, 0, . . . , 0) and so the first row of the inverse Q−1 ∈

GLn(Z) is indeed (a1, . . . , an). Now consider the change of basis of A provided by Q−1: write
Q−1 = (qij)

n
i,j=1 and let fi :=

∑n
j=1 qijej for i = 1, . . . , n. Then f1 = 1, and so the elements

fi form a unital basis for A, as desired. �

The next lemma, which follows an observation by Darij Grinberg, is proved by direct
computation.

Lemma 2.15. The product Z× A is a ring of rank n+ 1 with basis

β′ = ((1, e1), (0, e1), . . . , (0, en));

β′ is unital if β is unital; and disc(Z× A, β′) = disc(A, β).

3. Stickelberger’s discriminant theorem

In this section, we prove our main theorem, restated here for convenience.

Theorem 3.1. Let A be a ring of rank n. Then disc(A) ≡ 0, 1 (mod 4).

The outline of the proof is as follows. First, we study the properties of the Gram matrix
of A, noting it has a certain property relating the first row and column to the diagonal; we
call such Gram matrices tracelike, and we prove the congruence more generally for tracelike
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matrices. Second, we transform the symmetric matrix to one with even diagonal; from there,
we expand by the adjugate to establish the congruence.

Tracelike Gram matrices. As a first step, consider the following well-known lemma. We
give a quick proof, to provide motivation and for completeness.

Lemma 3.2. We have Tr(M2) ≡ Tr(M)2 (mod 2) for all M ∈ Mn(Z).

Proof. Let M = (mij)
n
i,j=1. Then

Tr(M)2 =

(
n∑
i=1

mii

)2

=
n∑
i=1

m2
ii + 2

∑
1≤i<j≤n

miimjj,

whereas

Tr(M2) = Tr

(
n∑
j=1

mijmjk

)n

i,k=1

=
n∑
i=1

n∑
j=1

mijmji

=
n∑
i=1

m2
ii + 2

∑
1≤i<j≤n

mijmji.

So modulo 2, both sums are congruent to
∑n

i=1m
2
ii. �

In particular, Lemma 3.2 applies to the entries of the Gram matrices considered in the
previous section (Definition 2.7).

Corollary 3.3. Let A be a ring of rank n, let β = (e1, . . . , en) be a unital basis for A, and
let B(A, β) = (bij)i,j be the Gram matrix of (A, β). Then b11 = n and bii ≡ b21i (mod 2) for
i = 2, . . . , n.

Proof. Since β is a unital basis we have e1 = 1 so for all i = 1, . . . , n we have

(3.4) b1i = t(e1, ei) = Tr(λβ(ei)).

Taking i = 1 in (3.4) we get b11 = Tr(I) = n, where I ∈ Mn(Z) is the identity matrix. For
i = 2, . . . , n, applying Lemma 3.2 and (3.4) gives

bii = Tr(λβ(ei)
2) ≡ Tr(λβ(ei))

2 = b21i (mod 2). �

Corollary 3.3 isolates the key property that implies our desired congruence. Accordingly,
we make the following definition.

Definition 3.5. A symmetric matrix B = (bij)i,j ∈ Mn(Z) is tracelike if b11 = n and bii ≡ b21i
(mod 2) for all i = 2, . . . , n.

The Gram matrix B(A, β) of any framed ring (A, β) of rank n is a tracelike matrix by
Corollary 3.3.

Question 3.6. Is every tracelike matrix the Gram matrix of an algebra in a unital basis?
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Symmetrizing. We now proceed to study determinants of tracelike matrices. Our proof
consists first of a row reduction step to obtain a symmetric matrix with even diagonal; then
we prove such matrices satisfy the desired congruence. From now on, let B = (bij)i,j ∈ Mn(Z)
be a tracelike matrix.

Lemma 3.7. Let B = (bij)i,j ∈ Mn(Z) be a tracelike matrix. Suppose that 4 | n, and for
i = 2, . . . , n let ci ∈ Z be such that bii = b21i + 2ci. Let

C :=


n b12 b13 . . . b1n
b12 2c2 b23 − b12b13 . . . b2n − b12b1n
b13 b23 − b12b13 2c3 . . . b3n − b13b1n
...

...
...

. . .
...

b1n b2n − b12b1n b3n − b13b1n . . . 2cn

 ∈ Mn(Z).

Then C is a symmetric matrix with diagonal entries in 2Z and det(B) ≡ det(C) (mod 4).

Proof. We begin with

B =


n b12 b13 . . . b1n
b12 b212 + 2c2 b23 . . . b2n
b13 b23 b213 + 2c3 . . . b3n
...

...
...

. . .
...

b1n b2n b3n . . . b21n + 2cn

 .

Subtracting b12 times the first row from the second, and b13 times the first row from the
third, and so on, we preserve the determinant:

det(B) = det


n b12 b13 . . . b1n

(1− n)b12 2c2 b23 − b12b13 . . . b2n − b12b1n
(1− n)b13 b23 − b12b13 2c3 . . . b3n − b13b1n

...
...

...
. . .

...
(1− n)b1n b2n − b12b1n b3n − b13b1n . . . 2cn

 .

The result now follows since 4 | n so 1− n ≡ 1 (mod 4). �

Expanding by adjugate. Recall that the adjugate of A ∈ Mn(Z) is the transpose of the
matrix of the cofactors of A, defined by

(3.8) adj(A) :=
(
(−1)i+j det(A′ji)

)n
i,j=1

,

where A′ij ∈ Mn−1(Z) is the submatrix of A obtained by removing the ith row and jth
column. We have

(3.9) A adj(A) = adj(A)A = det(A)I

as well as adj(AT) = adj(A)T and adj(cA) = cn−1 adj(A) for c ∈ Z.

Proposition 3.10. Let M,Q ∈ Mn(Z). Then

det(M + 2Q) ≡ det(M) + 2 Tr(adj(M)Q) (mod 4).
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Proof. Write M = (mij)
n
i,j=1 and Q = (qij)

n
i,j=1. We begin with the expansion

(3.11) det(M + 2Q) =
∑
σ∈Sn

(sgnσ)
n∏
i=1

(miσ(i) + 2qiσ(i))

where Sn is the symmetric group of degree n. Expanding out the right-hand side modulo 4,
for each σ ∈ Sn we have

(3.12)
n∏
i=1

(miσ(i) + 2qiσ(i)) ≡
n∏
i=1

miσ(i) + 2
n∑
j=1

qjσ(j)

n∏
i=1
i 6=j

miσ(i) (mod 4).

Combining (3.11)–(3.12) and interchanging summations gives

(3.13) det(M + 2Q) ≡
∑
σ∈Sn

(sgnσ)
n∏
i=1

miσ(i) + 2
n∑
j=1

∑
σ∈Sn

qjσ(j)

n∏
i=1
i 6=j

miσ(i) (mod 4),

ignoring signs as we work with an even integer modulo 4. The first term is of course det(M).
For the second sum, for all j, k we have

(3.14) det(M ′
jk) = ±

∑
σ∈Sn
σ(j)=k

(sgnσ)
n∏
i=1
i 6=j

miσ(i).

Reorganizing the sum, working modulo 2 so we may ignore signs, we obtain

(3.15)

n∑
j=1

∑
σ∈Sn

qjσ(j)

n∏
i=1
i 6=j

miσ(i) ≡
n∑
j=1

n∑
k=1

∑
σ∈Sn
σ(j)=k

qjk

n∏
i=1
i 6=j

miσ(i) ≡
n∑
j=1

n∑
k=1

qjk det(M ′
jk)

≡
n∑
j=1

n∑
k=1

qjk adj(M)kj ≡ Tr(Q adj(M)) (mod 2).

Plugging (3.15) into (3.13) then gives the result. �

Second proof of Proposition 3.10. We extend our scope to real matrices and show that the
identity holds when M is invertible, and then for all matrices. Let M,Q ∈ Mn(R).

First, using an indeterminate x we have

det(M + xQ) = c0(M,Q) + c1(M,Q)x+ · · ·+ cn(M,Q)xn ∈ R[x].

For example, plugging in x = 0 gives c0(M,Q) = det(M) for all M,Q. Moreover, det(I−xQ)
is the reverse characteristic polynomial of Q, so c1(I,Q) = −Tr(Q). We define the map

(3.16)
Mn(R)×Mn(R)→ R

(M,Q) 7→ c1(M,Q).

Next, if M ∈ GLn(R) is invertible, we have

(3.17)

det(M + xQ) = det(M) det(I + xM−1Q)

= det(M)(1− Tr(M−1Q)x+ hM,Q(x))

= det(M)− Tr(adj(M)Q)x+ det(M)x2hM,Q(x)
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for some hM,Q(x) ∈ R[x], using (3.9) which gives adj(M) = det(M)M−1. Thus c1(M,Q) =
−Tr(adj(M)Q) for the set of matrices M ∈ GLn(R) which are dense with respect to the

usual topology on Mn(R) ' Rn2
.

Finally, the function c1(M,Q) is a polynomial in the entries of M,Q (as M,Q range over
Mn(R)) so continuous in these entries; the same is true for −Tr(adj(M)Q). We just showed
these functions are equal whenever det(M) 6= 0, so in fact they must equal for all M,Q.
Restricting back to M,Q ∈ Mn(Z), we have

(3.18)
det(M + xQ) = det(M)− Tr(adj(M)Q)x

+ c2(M,Q)x2 + · · ·+ cn(M,Q)xn ∈ Z[x],

the resulting polynomial visibly having integer coefficients. Plugging in x = 2 into (3.18)
then gives the result. �

Remark 3.19. Many linear algebra statements can be proven in the same manner as the
second proof, using the method of universal polynomials, where the entries of the matrices
are left as indeterminates. If instead of a congruence, once wishes to prove an equality,
then it is enough to do so over the field Q(xij)i,j, where now the determinant is a nonzero
polynomial, so invertible. For example, the Cayley–Hamilton theorem may be proven this
way.

Determinants of even symmetric matrices. We are now ready for the second key step
in the proof. We will use the fact that the determinant of every skew-symmetric matrix A
has a canonical square root called its pfaffian pf(A); see, for example, Stembridge [Ste90,
Proposition 2.2].

Proposition 3.20. Let C ∈ Mn(Z) be a symmetric matrix with diagonal entries in 2Z.
Suppose 4 | n, and let U be the matrix obtained from the upper-triangular part of C and half
its diagonal. Then C = U + UT and

det(C) ≡ det(U − UT) = pf(U − UT)2 ≡ 0, 1 (mod 4).

For this proposition, we need a lemma.

Lemma 3.21. Let M ∈ Mn(Z) with 2 | n. Then

2 Tr(adj(M −MT)MT) = −n det(M −MT).

Proof. Let r := Tr(adj(M −MT)MT). Taking the transpose and recalling the properties of
the adjugate,

(3.22)
r = Tr(M(adj(M −MT))T) = Tr(M adj(MT −M))

= Tr(M(−1)n−1 adj(M −MT)) = −Tr(adj(M −MT)M).

Adding back r, by linearity of trace we have

2r = Tr(adj(M −MT)MT)− Tr(adj(M −MT)M)

= Tr(adj(M −MT)(MT −M)) = Tr(− det(M −MT)I)

= −n det(M −MT)

proving the claim. �
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Proof of Proposition 3.20. We have C = U + UT = (U − UT) + 2UT. By Proposition 3.10,
we have

(3.23) det(C) ≡ det(U − UT) + 2 Tr(adj(U − UT)UT) (mod 4).

Since U − UT is a skew-symmetric matrix, we have

det(U − UT) = pf(U − UT)2 ≡ 0, 1 (mod 4).

By Lemma 3.21 we have

(3.24) 2 Tr(adj(U − UT)UT) ≡ 0 (mod 4)

and the result follows. �

Remark 3.25. The hypothesis 4 | n in Proposition 3.20 is necessary. Indeed, for n = 1 we

could take det
(
2
)

= 2, for n = 2 we could take det

(
0 1
1 0

)
= −1, and for n = 3 we could

take the block matrix obtained from these two.

Proof conclusion. With these ingredients in hand, we now prove our main theorem.

Proof of Theorem 3.1. Let A be a ring of rank n. Replacing A by A × Zr if necessary, by
Lemma 2.15 we may suppose without loss of generality that 4 | n. By Proposition 2.12, A
has a unital basis β, so by Corollary 3.3, the Gram matrix B = B(A, β) is tracelike. Then by
Lemma 3.7, there exists a symmetric matrix C with even diagonal such that det(B) ≡ det(C)
(mod 4). Putting these together and applying Proposition 3.20:

disc(A) = det(B) ≡ det(C) ≡ 0, 1 (mod 4)

as desired. �

Generalizations. The proof of our main result used just techniques from linear algebra.
Accordingly, it immediately generalizes to a wider context, allowing an arbitrary commuta-
tive base ring.

Let R be a commutative ring (with 1). An R-algebra is a ring A (with 1), not necessarily
commutative, equipped with a ring homomorphism R → A whose image lies in the center
of A. For the R-algebras considered in this section, we will suppose that the map R ↪→ A is
injective, so that we may identify R with its image R1 ⊆ A. An R-algebra A is free of rank
n if A ' Rn as R-modules, i.e., A has an R-basis β = (e1, . . . , en).

The rest of the definitions and results in Section 2 generalize, with only two adjustments.
First, in contrast to Lemma 2.8, we only obtain a well-defined discriminant discA ∈ R/R×2,
the set of elements of R up to squares of units in R, as det(GLn(R)) = R×. Second, in
contrast to Proposition 2.12, we do not know whether unital bases exist for an arbitrary free
R-algebra. However, we may always reduce to working with a unitally framed algebra by
invoking the following, which is a direct generalization of Lemma 2.15.

Lemma 3.26. If (A, β) is a framed R-algebra of rank n with β = (e1, . . . , en), then A′ :=
R× A has a unital framing

(3.27) β′ = ((1, 1), (0, e1), . . . , (0, en)).

Furthermore, we have disc(R× A, β′) = disc(A, β) in R/R×2.

With these in mind, the same proof gives the following theorem.
11



Theorem 3.28. Let R be a commutative ring and let A be a free R-algebra of rank n. Then

disc(A, β) ≡ discpf(A′, β′)2 (mod 4)

where A′ = R× A and β′ is as in (3.27).

Remark 3.29. We can also go a bit farther, arguing locally. An R-module M is said to have
some property (Zariski-)locally if there exist r1, . . . , rm ∈ R generating the unit ideal R such
that the localization M [r−1i ] has that property as an R[r−1i ]-module for all i = 1, . . . ,m. In
particular, we can speak of an R-module M being locally free of rank n. The same arguments
then show that if R is a commutative ring and A is an R-algebra that is locally free of rank
n as an R-module, then disc(A) is locally a square modulo 4.

4. Discriminant pfaffian

In this section, we refine the result of the previous section by giving an explicit, combina-
torial expression for our “square root modulo 4” obtained from pfaffians.

To begin, recall that a perfect matching P on a set J is a partition of J into subsets of
cardinality 2.

Definition 4.1. Let B = (bij)i,j ∈ Mn(Z) be tracelike. Define the discriminant pfaffian of B
by

discpf(B) :=
∑

J⊆{2,...,n}
#J even

∑
perfect

matchings
P on J

( ∏
{i,j}∈P

bij

)( ∏
k∈{2,...,n}rJ

b1k

)
.

(If P = ∅, by convention the empty product is defined to be 1.)
If (A, β) is a unitally framed ring of rank n, define its discriminant pfaffian by

discpf(A, β) = discpf(B(A, β)).

The value of discpf(B) for the first few values of n are as follows:

n discpf(B)
1 1
2 b12
3 b12b13 + b23
4 b12b13b14 + b23b14 + b24b13 + b34b12

In general the number of terms in discpf(A, β) is given by the number of involutions on a
set of n− 1 letters [OEIS, Sequence A000085].

Theorem 4.2. Let B ∈ Mn(Z) be tracelike. Then det(B) ≡ discpf(B)2 (mod 4).

Example 4.3. For example, if n = 2 we have

B =

(
2 b12
b12 b212 + 2c2

)
for some c2 ∈ Z, so

detB = 2b212 + 4c2 − b212 ≡ b212 = discpf(B)2 (mod 4).

Before proceeding with the proof, we motivate the discriminant pfaffian using the modern
proof of Stickelberger’s theorem.

12



Remark 4.4. Let K be a number field with ring of integers ZK and integral basis α1, . . . , αn.
Letting σ1, . . . , σn : K ↪→ C be the distinct embeddings of K into C, we consider the n × n
matrix of complex numbers E := (σi(αj))i,j. Then B = ETE (see Marcus [Mar18, Theorem
6]) and so discZK = det(B) = det(E)2. (The definition in (1.4) has the virtue that it
expresses the discriminant as the determinant of a matrix of integers.)

Letting P and N be the sum of terms in the expansion of det(E) involving even and odd
permutations, respectively, the standard proof of Stickelberger’s discriminant theorem is to
write

(4.5) discZK = det(σi(αj))
2
i,j = (P −N)2 = (P +N)2 − 4PN ;

by construction, the elements P + N,PN are algebraic integers, and by Galois theory they
belong to Q, hence P + N,PN ∈ Z and the result follows. With this in mind, a natural
square root of the discriminant modulo 4 is P + N , which is equal to the permanent of the
matrix E. This permanent agrees with the discriminant pfaffian modulo 2 by Theorem 4.2.

Proof of Theorem 4.2. We first consider the case that 4 | n. Combining Lemma 3.7 and
Proposition 3.20, we have

(4.6) det(B) ≡ pf(U − UT)2 (mod 4)

where

(4.7) U − UT =


0 b12 b13 . . . b1n
−b12 0 b23 − b12b13 . . . b2n − b12b1n
−b13 −(b23 − b12b13) 0 . . . b3n − b13b1n

...
...

...
. . .

...
−b1n −(b2n − b12b2n) −(b3n − b13b1n) . . . 0

 .

Since x ≡ y (mod 2) implies x2 ≡ y2 (mod 4) for all x, y ∈ Z, it suffices to show that

(4.8) discpf(B) ≡ pf(U − UT) ≡ pf(U + UT) (mod 2).

In particular, we can ignore signs throughout.
To prove (4.8), we write U − UT ≡ B′ +B′′ (mod 2) where

B′ :=


0 0 0 . . . 0
0 0 b23 . . . b2n
0 b23 0 . . . b3n
...

...
...

. . .
...

0 b2n b3n . . . 0



B′′ :=


0 b12 b13 . . . b1n
b12 0 b12b13 . . . b12b1n
b13 b12b13 0 . . . b13b1n
...

...
...

. . .
...

b1n b12b2n b13b1n . . . 0

 .

By Stembridge [Ste90, Lemma 4.2(a)],

pf(B′ +B′′) ≡
∑

J⊆{1,...,n}
#J even

pf(B′J) pf(B′′Jc) (mod 2)

13



where B′J is the submatrix of B′ obtained by keeping only the entries in rows and columns
indexed by elements of J , and B′′Jc is similarly the matrix of entries in B′′ whose row and
column indices are not in J .

To evaluate pf(B′J) modulo 2, note first that if 1 ∈ J , then B′J contains a row of zeros,
so its determinant (and therefore its pfaffian) vanishes. Otherwise, the ijth entry of B′ is
just bij for i > j, so by the usual pfaffian formula in terms of perfect matchings (see the
definition in [Ste90, p. 102]), we have

(4.9) pf(B′J) ≡
∑
P on J

∏
{i,j}∈P

bij (mod 2),

the sum over perfect matchings P on J . Meanwhile, given a subset J ⊆ {2, . . . , n}, each
perfect matching on J c contributes the same product to pf(B′′Jc), namely

∏
k∈{2,...,n}\J b1k.

Since there is an odd number of perfect matchings on any even-cardinality set, modulo 2 we
have pf(B′Jc) ≡

∏
k∈{2,...,n}\J b1k (mod 2). Now we just put this altogether:

(4.10)

pf(U − UT) ≡ pf(B′ +B′′) ≡
∑

J⊆{1,...,n}
#J even

pf(B′J) pf(B′′Jc)

≡
∑

J⊆{2,...,n}
#J even

∑
P on J

( ∏
{i,j}∈P

bij

)( ∏
k∈{2,...,n}rJ

b1k

)

≡ discpf(A, β) (mod 2).

Having proven it for all n such that 4 | n, we finish by a reverse induction, showing that
if statement holds for n ∈ Z≥2 then it holds for n − 1. Since every positive integer n is
less than or equal to a multiple of 4, this will prove the theorem. Let Bn−1 ∈ Mn−1(Z) be

tracelike. Let Bn =

(
Bn−1 0

0 1

)
∈ Mn(Z) be the block matrix formed from Bn−1 and

(
1
)
.

Then det(Bn) = det(Bn−1). If we add the last row to the first row, then add the last column
to the first column, we obtain

(4.11) B′n :=

(
B′n−1 vT

v 1

)
where v = (1, 0, . . . , 0) and B′n−1 is the matrix obtained from Bn−1 by adding 1 to b11. Now
B′n is tracelike! By the inductive hypothesis, we have

(4.12) det(Bn−1) = det(B′n) ≡ discpf(B′n)2 (mod 4).

Now the discriminant pfaffian discpf(B′n) is obtained from substituting b1n = 1 and bin = 0
for i = 2, . . . , n− 1. To evaluate, we look at Definition 4.1. For every term with n ∈ J , any
perfect matching P on J has {i, n} in P with i ∈ {2, . . . , n − 1} and therefore such a term
vanishes. On the other hand, every term with n 6∈ J corresponds to J ⊆ {2, . . . , n− 1} with
final term

∏
k∈{2,...,n−1}rJ b1k since b1n = 1. �
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