ERRATA AND ADDENDA:
ALGEBRAIC CURVES UNIFORMIZED BY CONGRUENCE SUBGROUPS OF TRIANGLE GROUPS

PETE L. CLARK AND JOHN VOIGHT

This note gives some errata and addenda for the article Algebraic curves uniformized by congruence subgroups of triangle groups [1]. Thanks to Juanita Duque Rosero and Michael Schein.

(1) Before Theorem C: replace “n | 6abc” with “n coprime to 6abc”.
(2) Theorem C, Proposition 9.7: it need not follow that the projection onto many PGL$_2$ factors is surjective; rather, only that the image contains a dense subgroup of $\prod_{p \mid N} \text{PSL}_2(\mathbb{Z}_E, p)$.
(3) Lemma 5.5: should be “$(mz, m(z+1), mz(z+1))$” (replace k by z).
(4) (5.21): maps to $\text{SL}_2(\mathbb{Z}_F/\mathfrak{n})/\{\pm 1\}$.
(5) Below equation (5.21): replace “Let n be the prime of $E = F(a,b,c)$ below N” with “Let $n = \mathbb{Z}_E \cap \mathfrak{n}$ be the prime of E below \mathfrak{n}”.
(6) Remark 5.24: sign errors crept into the second generator. The correct orthogonal elements for B are
$$1, 2\delta_a - \lambda_{2a}, (\lambda_{2a}^2 - 4)\delta_b + (\lambda_{2a}\lambda_{2b} + 2\lambda_{2c})\delta_a - (\lambda_{2a}^2\lambda_{2b} + \lambda_{2a}\lambda_{2c} - 2\lambda_{2b}),$$
not
$$1, 2\delta_a - \lambda_{2a}, (\lambda_{2a}^2 - 4)\delta_b + (\lambda_{2a}\lambda_{2b} + 2\lambda_{2c})\delta_a - (\lambda_{2a}^2\lambda_{2b} - \lambda_{2a}\lambda_{2c} + 2\lambda_{2b}).$$

In the corrected basis, we obtain the presentation:
$$B \simeq \left(\frac{\lambda_{2a}^2 - 4, - (\lambda_{2a}^2 - 4)\beta}{F} \right) \simeq \left(\frac{\lambda_{2a}^2 - 4, \beta}{F} \right)$$
when $a \neq \infty$.
(7) Proof of Theorem 9.1: the unipotent case should be allowed in the proof, when $s = \infty$. Replace the start of the middle paragraph by:

Next, we show that orders of g_1, g_2, g_3 are a^3, b^7, c^3. Let $s = a, b, c$ and write g for the corresponding element. We have $\text{tr} \phi(\delta_s) \equiv \pm \lambda_{2s} (\text{mod } \mathfrak{p})$. If $g = 1$, then the image is commutative, and this possibility was just ruled out. If $s = \infty$, then since $g \neq 1$ and $\lambda_{\infty} = 2$ we must have g unipotent, so g has order $p = s^2$.
(8) Lemma 9.8: since $\text{PSL}_2(\mathbb{F}_4) \simeq \text{PSL}_2(\mathbb{F}_5)$, in fact this lemma holds whenever $\#(\mathbb{Z}_F/\mathfrak{p}) \geq 4$.

REFERENCES

Date: August 4, 2022.