In this lab, we determine all definite quaternion orders of class number 1 over \(\mathbb{Q} \).

1. First, let \(\mathcal{O} \) be a maximal order in a definite quaternion algebra \(B \) over \(\mathbb{Q} \). Use the Eichler mass formula to get a bound on the discriminant \(D \) of \(B \).

2. Use Magma to find all maximal orders of class number 1. For example:
   ```
   > B := QuaternionAlgebra(3*5*7);
   > Discriminant(B);
   > IsDefinite(B);
   > O := MaximalOrder(B);
   > Basis(O);
   > H := RightIdealClasses(O);
   > #H;
   > H;
   ```

3. Now let \(\Lambda \) be any order in a definite quaternion order and suppose \(\Lambda \subset \mathcal{O} \). Show that \(\# Cl \Lambda \geq \# Cl \mathcal{O} \). [Hint: If it helps, think adelically!]

4. Let \(\mathcal{O} \) be an Eichler order, an order such that \(\mathcal{O}_p \) is principal for all ramified primes \(p \) and such that

 \[
 \mathcal{O}_p \cong \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}_p) : p^f | c \right\} \subseteq M_2(\mathbb{Z}_p)
 \]

 (with \(f \in \mathbb{Z}_{\geq 0} \), equal to 0 for almost all \(p \)) if \(p \) is split. We let \(N = \prod_p p^f \) be the level of \(\mathcal{O} \).

 Making the obvious generalization to orders over a number field \(F \), a variant of the Eichler mass formula for definite Eichler orders \(\mathcal{O} \) of level \(\mathfrak{N} \) reads:

 \[
 \sum_{[J] \in \mathcal{O}} \frac{1}{w(J)} = 2^{1-n} |\zeta_F(-1)| h_F \Phi(\mathfrak{O}) \Psi(\mathfrak{N})
 \]

 where \(\Psi(\mathfrak{N}) = N(\mathfrak{N}) \prod_{p | \mathfrak{N}} (1 + 1/Np) \).

 Use this formula to find all definite Eichler orders with class number one. [Hint: The answer is 12. At least I wrote a paper saying so. Vignéras says 10, but I think she only computes squarefree level (p. 153). Brzezinski quotes Vignéras as saying 10, but then I think he writes down the other 2 orders and just does not recognize that they are Eichler...]

 For example:
   ```
   > // Eichler order of level 9 in algebra of discriminant 2
   > O := QuaternionOrder(2,9);
   > #RightIdealClasses(O);
   ```

Date: March 29, 2010.
(5) Now the hard final step: use the previous exercise to find all quaternion orders with class number one.

For example:

```maple
> B<i,j,k> := QuaternionAlgebra<Rationals() | -1, -1>;
> O := QuaternionOrder([1,i,j,i*j]); // Not Eichler
> #RightIdealClasses(O);
```

Recall this is the order with reduced norm given by the sum of four squares!

(6) Let \(\Lambda \) be an order and suppose \(\Lambda \subset O \) where \(O \) is maximal and \(h(O) = \# \text{Cl}(O) = 1 \). Then there exists \(e \in \mathbb{Z}_{>0} \) such that \(e\Lambda \subset O \). Show that each class in \(\text{Cl}\Lambda \) has a representative \(I \) such that \(eO \subset I \subset O \). [Hint: For any such \(I \), consider \(IO = xO; \) conclude that \(eO \subset x^{-1}I \subset O \).]

(7) What does the previous exercise tell you about the zeta function of a general order (over \(\mathbb{Q} \))? Do you conjecture a version of Eichler’s mass formula for them?