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The following are notes from a course taught by Robin Hartshorne intending to
cover the first two chapters of his text Algebraic Geometry. Only the supplementary
comments and examples are included.

§I.1: Affine Varieties

Example. If k = R, A = R[x, y], then the variety Z(y −mx − b) defines a variety,
a line.

Note that x2 + y2 = 1 gives a circle, but Z(x2 + y2 + 1) = ∅ and Z(x2 + y2)
consists of a single point—this is because R = C 6= R.

If k = Q, R, or Fp, think of the variety as contained in the algebraic closure k
and do algebraic geometry in this affine space, then look for points over k.
Example. R1 in its usual topology has dim R1 = 0 since the only irreducible subset
Y is a point: if a 6= b ∈ Y , choose a < c < b, so that R = (−∞, c] ∪ [c,∞), and one
can intersect this with Y to obtain a decomposition of Y . This works more generally
for any Hausdorff space: for any two points in a subset, find the corresponding open
sets U ∩ V = ∅ containing these points and take their complements.

For us, dimension is given by chains of distinct primes.
Definition. There are four equivalent ways to define the dimension of a ring:

Notes by John Voight, jvoight@math.berkeley.edu, taken from a course taught by Robin
Hartshorne, August 28–December 8, 2000.
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(1) For any ring R, we have the Krull dimension, which is

dimR = sup{r : p0 ( p1 ( · · · ( pr ⊂ R}
for distinct prime ideals of R.

(2) Let A be a local noetherian ring with maximal ideal m. Then we define

dimA = inf{n : x1, . . . , xn ∈ m, A/〈x1, . . . , xn〉 Artin};
recall that a ring is Artin if it is of finite length, i.e. there exists an upper
bound for the length of chains of ideals (e.g. k[x]/〈x2〉).

(3) For A local, we define

grmA =
∞⊕
i=0

mi/mi+1 = k ⊕m/m2 ⊕ . . .

where k = A/m is the residue field. We have dimk mν/mν−1 <∞, denoted
φA(ν). Then there exists a polynomial pA with rational coefficients such
that for all sufficiently large ν, φA(ν) = PA(ν). We set dimA = degPA+1.

(4) For R an integral domain containing a field k, we consider k ⊂ K(R) the
field of fractions of R. Then trdegkK(R) = dimR.

We have the following:
Theorem. If R is a finitely generated k-algebra, then trdegkK(R) is equal to the
Krull dimension. If R is any noetherian ring, dimR = supp⊂R dimRp. If A is a
local noetherian ring with maximal ideal m, then the definitions above agree with
the Krull dimension.

We can compute the dimension of An in many ways.
Example. We note that dim Ank = n for k = k. Let A = k[x1, . . . , xn] so by defi-
nition dim Ank = dimA. This follows now immediately since K(A) = k(x1, . . . , xn)
has transcendence degree n over k. Alternatively, we have 〈0〉 ⊂ 〈x1〉 ⊂ · · · ⊂
〈x1, . . . , xn〉 so dimA ≥ n. But the localization A〈x1,x2,...,xn〉 when divided by
〈x1, . . . , xn〉 gives k which is Artin, so dimA ≤ n. Finally, grmA = A, and φ(ν)
counts the number of monomials of degree ν in x1, . . . , xn, which totals

(
n+ν−1
n−1

)
,

which is a polynomial in ν of degree n− 1.

§I.2: Projective Varieties

Here is a concrete description of projective space:
Example. The projective line P1

k is the set of points (a0 : a1) modulo k×. If a0 6= 0,
we can take as a representative (a0 : a1) = (1 : a1/a0) = (1 : b) for b ∈ k; if a0 = 0,
a1 6= 0 by definition so (a0 : a1) = (0 : a1) = (0 : 1). Therefore as a set,

P1
k = {(1 : b) : b ∈ k} ∪ {(0 : 1)} = A1

k ∪ {∞}.
Similarly, the projective plane is P2

k = A2
k ∪ P1

k, including the line at infinity.
Looking at projective versions of affine varities can lead to some very important

(and surprising) information:
Example. We have A2

R ' U0 ⊂ P2
R where U0 = P2

R \ Z(x0). Therefore the conic
x2

1 + x2
2 = x2

0 is of the form x2 + y2 = 1 and does not intersect the line at infinity
(as is plain from the graph).

Alternatively, the curve C : y = x2 lifts to C : x0x2 = x2
1, so x0 = 0 implies

x2
1 = 0, and we have the single intersection point (0 : 0 : 1). Looking in U2, we see

that the parabola is tangent to the line at infinity.
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Finally, the seemingly honest curve y = x3 has the projective closure x2
0x2 = x3

3,
which looks on the set x2 6= 0 like u2 = v3, so the curve has a cusp at infinity!

Here is an extended description of the twisted cubic curve.
Example. The affine version of the twisted cubic curve C is the subset {(a, a2, a3) :
a ∈ k} ⊂ A3

k, i.e. the set of points parameterized by x = t, y = t2, z = t3.
Claim. C is a closed, irreducible subset of dim 1.

To see this, we find the prime ideal p ⊂ k[x, y, z] = A defining this ideal. We

map A
ψ−→ k[t] by x 7→ t, y 7→ t2, z 7→ t3; since the image is a domain, kerψ = p

is prime. We guess that p = I(C). If f = f(x, y, z) ∈ p, then f vanishes on C:
f(a, a2, a3) = ψ(f)(a) = 0, so C ⊂ Z(p). Conversely, if P = (a, b, c) ∈ Z(p),
then for all f ∈ p, f(a, b, c) = 0. Since y − x2, z − x3 ∈ p, b = a2, c = a3, so
P = (a, a2, a3). So C = Z(p), so C is certainly a closed and irreducible subset. In
particular, dimC = dimA/p = dim k[t] = 1, which proves the claim.

How many equations define C? Take f1 = y−x2, f2 = z−x3. Then Z(f1, f2) =
C, since 〈f1, f2〉 ⊂ p, so Z(f1, f2) ⊃ Z(p) = C, but we have actually shown by the
above equality just on these generators. How many equations define the prime p?
Simply, p = 〈f1, f2〉 since A/〈f1, f2〉 = k[x] already.

Now projectivize C: We have A3 ' U0 ⊂ P3, U0 = P3 \ Z(x0). Then C ⊂ An ⊂
Pn ⊃ C. For any set V , if V is irreducible, then V is irreducible. Therefore C is a
closed irreducible subset of Pn of dimension 1.

We homogenize p directly and have g1 = yw − x2, g2 = w2z − x3 ∈ p = I(C).
Do these equations define C? No, because if x = w = 0, L ⊂ Z(g1, g2), but C
is not a line and is irreducible. We also have y2 − xz = g3 ∈ p. We would like
C = Z(g1, g2, g3).

We know that C ⊂ Z(g1, g2, g3). Next, if P = (a : b : c : d) ∈ C, if P is an affine
point (d 6= 0), then P ∈ C by earlier work. Otherwise, d = 0, so a = 0 and then
b = 0, so P = (0 : 0 : 1 : 0) ∈ P3. For the moment, we will omit the reason why
P ∈ C.

Instead, we ask if g1, g2, g3 generate p. If g(x, y, z, w) ∈ p we can substitute for
the x2, x3, and y2 terms, so what is left is of the form

h1(z, w) + xh2(z, w) + yh3(z, w) + xyh4(z, w).

We now take k[x, y, z, w]
ψ−→ k[t, u] by x, y, z, w 7→ tu2, t2u, t3, u3. We find g4 =

xy − zw ∈ p which allows us to remove the h4 term, and under this substitution
the hi are cubes (in t and u), so it must be identically zero. Since xg1 −wg4 = g2,
we have p = 〈g1, g3, g4〉, so indeed P ∈ C.
Claim. p cannot be generated by < 3 elements.

p is a homogeneous ideal so S ⊃ p =
⊕∞

d=0 pd. We have p0 = 0 and p1 = 0.
p2 is the k-vector space generated by the qudratic polynomials g1, g2, g4 ⊂ S2 =
k{x2, xy, xz, xw, y2, yz, yw, z2, zw,w2}, a space of dimension 10. We must have the
gi linearly independent over k, because dividing out by z, w, we find x2, y2, xy are
linearly independent.

§I.3: Morphisms

Here are examples of regular functions:
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Example. If we take the affine line A1
k, an open set V 3 0, then f is regular if

f = g/h with h(0) 6= 0; h has finitely many zeros, so we can shrink the open set,
and we find f is regular at 0 iff f ∈ k[x]〈x〉.
Example. If we take the projective line P1, we find O(V ) = k. For U0 = P1\Z(x0) =
A1 with O(U0) = k[x]. But U1 ⊂ P1 \ Z(x1) = A1 with O(U1) = k[y], y = 1/x. A
function that is a polynomial in x and 1/x is constant.

Here is an alternative proof of:
Theorem (Theorem 3.2(a)). O(Y ) ' A(Y ) when Y is affine.

Proof. Let f = gi/hi on the open set Ui, on any open cover such that V =
⋃
i Ui.

hi 6= 0 on Ui and the Ui cover Y , so Z(h1, h2, . . . ) ∩ V = ∅, so
√
〈h1, h2 . . .〉 =

A(V ) so 1 =
∑r
i=1 aihi (the sum is finite) for certain ai ∈ A(V ), and thus f =∑r

i=1 aifhi =
∑r
i=1 aigi ∈ A(V ) since fhi = gi on Ui which is dense in V (f is

continuous). �

Let C be the category of varieties, with objects varieties and the arrows mor-
phisms.

Example. A1 φ−→ Y = Z(y) ⊂ A2 by x 7→ (x, 0) has f(x, y)/g(x, y) = f(x, 0)/g(x, 0)
regular on A1, therefore A1 ' Y since ψ : Y → A1 by (x, 0) 7→ x is an inverse.
Example. The variety Y = Z(y − x2) ⊂ A2 has Y ' A1 by (x, x2) 7→ x. To see
this, we prove:
Lemma. If V,W are affine varieties, and φ : V → W a morphism, we have φ∗ :
A(W ) = O(W )→ O(V ) = A(V ). φ is an isomorphism iff φ∗ is an isomorphism.

Proof. φ an isomorphism implies φ∗ an isomorphism is true for any (not necessarily
affine) V,W . Use correspondence: P ∈ V ↔ mP ⊂ A(V ). We define ψ : W → V
using the equivalence Q ∈W ↔ mQ ⊂ A(W ), since φ∗ is an isomorphism, and thus
ψ is bijective. The map is a homeomorphism because ψ∗ takes ideals to ideals—just
carry over quotients of functions. �

Returning to the example, we find φ∗ : k[x, y]/〈y−x2〉 → k[x] is an isomorphism,
so φ is an isomorphism.

Here is some more category language. If C is the category of varieties, O is a
contravariant functor from C to k-algebras (domains), since a map V →W induces
a map O(W ) → O(V ). We have in fact that the subcategory of affine varieties
mapping to the subcategory of finitely generated k-algebras is an equivalence of
categories. For if A is such an algebra, k[x1, . . . , xn]→ A by xi 7→ ai for generators
ai is surjective (if V is a variety defined by p in An, a different choice of ai gives an
isomorphic V ).

Now for something really wild: If we take the subcategory of C of those varieties
such that O(V ) is a finitely generated k-algebra, we can look at the adjoint functor
F . If V is a variety, WA = F (A) finitely generated with a map φ to O(V ), if
P ∈ V , we consider mP , which is not necessarily a one-to-one map, but we can
still have mQ ⊂ φ−1(mP ) ⊂ A maximal (look at the quotient fields), so we have
Q ∈ WA. In other words, HomC (V, F (A)) = Hom(A,O(V )), so the functors are
adjoint. (Indeed, one can define affine varieties in this way.)
Example. It is possible to have φ : V →W that is a bijective homeomorphism but
is not an isomorphism.
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The map φ : A1 → A2 by t 7→ (t2, t3) has φ∗ : k[x, y]/〈y2 − x3〉 → k[t] by
x, y 7→ t2, t3, so img φ = V (y2 − x3). This map is bijective because t = y/x is an
inverse (except at (0, 0) which we send to zero). It is a homeomorphism because

the Zariski topology is weak and all curves are homeomorphic. But t ∈ img(k[t]
φ←−

k[x, y]/〈y2 − x3〉) = k[t2, t3]; we pullback t to the function y/x which fails to be
defined at 0.
Example. If O ∈ Pn is a fixed point, we have the morphism projection from O as a
map Pn \ {O} → Pn−1 as follows: take O = (0 : · · · : 0 : 1) for simplicity, and let
P = (a0 : · · · : an), a0, . . . , an−1 not all zero. Then the line between O and P is
λO + µP = (µa0 : · · · : µan−1 : µan + λ), which when intersected with Pn ∩ Z(xn)
gives a point (a0 : · · · : an−1). For example, taking x, y, z, w = tu2, t2u, t3, u3, if one
projects from the point (0 : 0 : 1 : 0) one obtains the cuspidal cubic.

(The only morphism Pn → Pn−1 is constant, as we shall see later.)
Even when k = k, Pnk ⊃ V ⊃ U open, O(U) is not necessarily noetherian.
Here is a rather interesting consequence of the fact that there are no global

regular functions on a projective variety:
Example. Every two quadrics in P2 have a nontrivial intersection. Let U = P2 \C1.
If C1 ∩ C2 = ∅, C2 ⊂ U . By (3.4), O(C2) = k. Let C1 = Z(f) where f is of
degree d. Then the functions xd0/f, x

d
1/f, x

d
2/f are regular on C2. If P,Q ∈ U are

distinct points, then there exists a linear combination g/f (with g of degree d) of
these that satisfies (g/f)(P ) 6= (g/f)(Q), so g/f is a nonconstant regular function
on C2, which is a contradiction.

Here is another bit of category theory: For any category C , we can define the
product Z of X and Y to be an object equipped with morphisms p : Z → X and
q : Z → Y with the universal property that for all W with f : W → X and
g : W → Y , there exists a unique θ : W → Z such that f = p ◦ θ and g = q ◦ θ. If
this object exists, it is unique up to unique isomorphism.

In the category of affine varieties, products exist: One takes V ⊂ An and W ⊂
Am, and Z = {P : p(P ) ∈ V, q(P ) ∈ W} ⊂ An+m. If A = k[x1, . . . , xn] ⊃
I(V ) and B = k[y1, . . . , ym] ⊃ I(W ), then I(Z) = I(V )C + I(W )C where C =
k[x1, . . . , xn, y1, . . . , ym] is the compositum. (Or, we can just take A(V ) ⊗k A(W )
and verify that each satisfies the same universal property.) We write Z = V ×W ,
but the Zariski topology on Z is not the induced product topology.

§I.4: Rational Maps

The idea of birationality is to generalize the idea that the maps A1 f−→ P1 together
with the map U0

g−→ (U0 = P1 \Z(x0)) are “inverse” when restricted to these dense
open sets. We say that A1 is birationally equivalent to P1.
Remark. For curves, birational equivalence does not see singularities (because they
are of lower dimension, hence contained in a finite set), but does see the genus g of
the curve. For g = 0, we just have P1; for g = 1 (elliptic curves), the j-invariant
classifies curves (over k = k) up to birational equivalence.

Here is a concise proof of the affine cover proposition:

Proposition (Lemma 4.2 and Proposition 4.3). For all P ∈ X and all V 3 P open
in X, there exists an affine open U such that P ∈ U ⊂ V .
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Proof. If X is open in Pn, we have an affine cover U0, . . . , Un, so for P ∈ Ui
we consider Ui ∩ X, so it suffices to treat quasi-affine or affine varieties. Since
X ⊂ X ⊂ An, we can (again by intersecting) treat the affine case.

Consider Z = X \ V . Z is closed in X so is closed in An. P 6∈ Z, so there
exists f ∈ I(Z) such that f(P ) 6= 0, so Z ⊂ Z(f) 63 P . Let U = X \ Z(f) =
X ∩ (An \ Z(f)). Thus it is enough to show that An \ Z(f) is affine.

We look in An+1, and define g = 1 − f(x1, . . . , xn)xn+1. We have An \ Z(f) '
Z(g) ⊂ An+1: we map

(a1, . . . , an) 7→ (a1, . . . , an, 1/f(a1, . . . , an))

when f(a1, . . . , an) 6= 0, with the inverse map (b1, . . . , bn+1) 7→ (b1, . . . , bn) (which
is defined as 1− f(b1, . . . , bn)bn+1 = 0 so f(b1, . . . , bn) 6= 0). �

Here is another proof of:
Theorem (Corollary 4.5). For any two varieties X and Y , the following conditions
are equivalent:

(i) X and Y are birationally equivalent;
(ii) There exists open sets U ⊂ X and V ⊂ Y such that U ' V as varieties;
(iii) K(X) ' K(Y ) as k-algebras.

Proof. (ii) ⇒ (i): The isomorphism φ : U ' V gives a birational equivalence.
(i) ⇒ (iii): We have a contravariant functor from the category of varieties with

morphisms birational maps to the category of finitely generated fields over k. By the
properties of functors, an isomorphism in the first category becomes an isomorphism
in the second.

(iii) ⇒ (ii): Given X,Y with K(X) ' K(Y ), we may assume that X and Y
are affine—K(U) = K(X) for an open U , since if f, g : X → Y are morphisms
with f |U = g|U then f = g as U is dense in X. Let Y ⊂ An, y1, . . . , yn ∈ K(Y );
then xi = φ(yi) are rational on X, and thus there exists a U ⊂ X open such that
x1, . . . , xn are regular (take U =

⋂n
i=1 Ui where xi are defined on Ui by removing

the closed set of points where xi is not defined). We have a map ψ : U → Y by
P 7→ (x1(P ), . . . , xn(P )). By symmetry, we have a map φ : V → X where V ⊂ Y
is open. These map induce the isomorphism K(X) ' K(Y ) by construction, so
they are inverse where they are defined. If we consider φ−1(V ) ⊂ U , we have that
ψ◦φ : φ−1(V )→ X is the identity as a rational map, similarly φ◦ψ : ψ−1(U)→ Y .
But since φ and ψ are inverse, we actually have that φ : φ−1(V ) → ψ−1(U) gives
an isomorphism on these open sets. �

Here are examples of birational maps.
Example. We have An ∼ Pn (X ∼ Y is notation for X birational to Y ).

The map A1 → Y by t 7→ (t2, t3) is a birational map (where Y = Z(x3 − y2) is
the cuspidal cubic). This is because A1 \ {0} ' Y \ {(0, 0)}, the inverse map being
given by (x, y) 7→ y/x.
Definition. A variety X is rational if X ∼ Pn for some n.
Example. The nodal cubic curve Y : y2 = x2(x+ 1) ⊂ A2 is rational. We consider
Y in P2 with coordinates x0, x1, x2 with x = x1/x0, y = x2/x0. The projection map
π : P2 \ {(0 : 0 : 1)} → L∞ ' P1 gives a map π : Y \ {(0 : 0 : 1)} → img π ⊂ L∞,
which we claim is in fact an isomorphism.

Take the line y = mx and a point P ∈ Y \ {(0 : 0 : 1)}. The intersection of
the line and Y has y2 = x2(x + 1) = m2x2 so 0 = x2(x − (m2 − 1)). So since
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x 6= 0, we have x(P ) = m2 − 1, and thus P = (m2 − 1 : m(m2 − 1) : 1). We have
L∞ = Z(x0), so P 7→ m gives a morphism A1 \ {(0 : 0 : 1)} ' A1 \ {±1} with
inverse m 7→ (m2−1 : m(m2−1) : 1). (The absence of ±1 correspond to the slopes
of the tangent lines of the curve at the origin.)

In fact, any irreducible cubic curve in P2 is either cuspidal or nodal (hence
rational) or elliptic (which we will see later is not rational).
Example. Take the (nonsingular) quadric surface Q ⊂ P3 given by the equation
xy = zw. We will show that Q ∼ P2.

Let O = (0 : 0 : 0 : 1), H = Z(w). Our projection map π takes (a : b : c : d) 7→
(a : b : c) ∈ P2. The map θ by (a : b : c) 7→ (a : b : c : ab/c) is an inverse if we restrict
to the open set U where c 6= 0. In other words, we have π : Q \ {O} ' P2 \ Z(z)
with inverse θ.

We can understand this map better. Inside Q we have the line L : Z(x, z) ⊂ Q.
If P ∈ L, then P = (0 : b : 0 : d) 7→ (0 : b : 0) = (0 : 1 : 0), so the line L \ {O} is
squashed by π to the point {(0 : 1 : 0)}; the line M : Z(y, z) ⊂ Q is also collapsed.
So the variety Z(z) has a whole line collapsed down into it, but the points (a : b : 0),
ab 6= 0 are not in the image, i.e. Z(z) \ {(0 : 1 : 0), (1 : 0 : 0)} has no preimage; this
is the “tangent line” as P  O.

The process of “blowing up” is also referred to as monodial transformation, σ-
process, dilitation, locally quadratic transformation, and éclatement or aufblasen.

Here is a concrete illustration of blowing up: the plane A2 at the origin P = (0, 0).
We take the space A2×P1 with coordinates (x, y; t : u). The blowup is the subvariety
Y defined by xu − yt, which is homogeneous in t, u, and we have the projection
map π : Y → A2.

Inside Y we have the line x = y = 0; this is E ' P1 with π−1(P ) = E. If Q ∈ A2

with Q 6= P , then Q = (a, b) with a, b not both zero. Then

π−1(Q) = {(a, b; t : u) : au = bt} ⊂ A2 × P1;

if b 6= 0 then t = au/b so π−1(Q) = {(a, b : au/b : u)}; since u = 0 implies t = 0,
which is not a point of the projective line, we have the point π−1(Q) = {(a, b : a/b :
1)} = {(a, b : a : b)}. A similar argument shows the same if a 6= 0. Therefore we
have that

Y \ E → A2 \ {P}
(a, b; a : b) 7→ (a, b)

is an isomorphism.
Y is irreducible: One could either develop a theory of varieties in An × Pr

with appropriate homogeneity conditions, but it also suffices to argue: since Y =
(Y \ E) ∪ E, and Y \ E is irreducible, we need only check that every point of E
is in the closure of Y \ E. Let L : y = mx be a line in A2: π−1(L) is the set of
simultaneous solutions to y = mx and xu = yt, so xu−mxt = 0 = x(u−mt), thus
π−1(L) = E ∪ L̃, with L̃ ∩ E = {Q} = {(0, 0 : 1 : m)}. Together with the vertical
line, this shows that the closure of Y contains L and its closure, which contains all
of E.

We can generalize the blowup as follows:
Definition. If V ⊂ An is any variety, we define the blowup of V at P , also called
the proper transform of V to be π−1(V \ P ).
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At first glance it seems as though this depends on the embedding, but we will
see later that it is in fact independent.

§I.5: Nonsingular Varieties

As a motivation for the definition of nonsingularity, we consider affine plane
curves C defined by f(x, y) = 0. Write f = f0+f1+f2+· · ·+fd in its homogeneous
parts. Assume that P = (0, 0) is on the curve, so that f0 = 0. Then very near to
P , any higher degree term is negligible in comparison to a lower term, therefore a
curve which is smooth near P must have only a single tangent direction, hence C is
nonsingular at P iff f1 6= 0. Since f1 = fx(0, 0)x+ fy(0, 0)y, as one can calculate,
this is to say that C is smooth at P iff fx(P ), fy(P ) are not both zero.

As an example of regular local rings, we have:
Example. The rings A = k[x1, . . . , xn]〈x1,...,xn〉 and A = k[[x1, . . . , xn]] each with
maximal ideal m = 〈x1, . . . , xn〉 are regular, since m/m2 = kx1 ⊕ · · · ⊕ kxn, which
has dimension n = dimA, that is because x1, . . . , xn ∈ m is a regular sequence.

In the proof of Theorem 5.1, it is cleaner if one assumes after a change of variables
that the point is P = (0, . . . , 0) and hence mP = 〈x1, . . . , xn〉.

Here are three more calculations of the singular locus:
Example. Consider the Fermat curve f = x3 + y3 + z3 = 0 in P2. By symmetry,
it suffices to consider the points where z = 1, and we have the affine model f =
x3 +y3 +1. Hence fx = 3x2, fy = 3y2, so there are no singular points if char k 6= 3.
In the case that the characteristic is 3, then x3 + y3 + z3 = (x + y + z)3, so
Z(f) = Z(x+ y + z), and this is also nonsingular.
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Figure 1. x3 + y3 + 1 = 0

Example. Consider the surface f = x2 − yz in A3. We have fx = 2x, fy = −z and
fz = −y. Hence y = z = 0, and thus x = 0, and the only singular point is (0, 0, 0).
This surface is normal, so is an example that normal does not imply nonsingular
(though nonsingular implies normal).
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2
x

–2
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0
1y
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0

1

2

z

Figure 2. x2 − yz = 0
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Example. Consider V : x2z − y2w in P3. When w = 1, x2z − y2 = f , fx = 2xz,
fy = −2y, fz = x2, so we conclude that there is a line of singular points L : x =
y = 0. If we let z = a2, then y = ±ax, and the surface “passes through itself”.

–4–2024

x

–2

–1

0

1

2

y–3
–2
–1
0
1
2
3

z

Figure 3. x2z − y2 = 0

We can also compute the singular locus of the Legendre family of elliptic curves:
Example. We compute for λ ∈ k the singular locus of the family of elliptic curves

C : y2 = x(x− 1)(x− λ) = x3 − (λ+ 1)x2 + λx.

We have fy = 2y = 0 implies y = 0 whenever char k 6= 2, and this implies that
x = 0, 1, λ but f ′(x) 6= 0 at these points unless λ = 0, 1. Therefore we have three
cases: either C is nonsingular, it has a node (when λ = 1) or it has a double point
at the origin (when λ = 0).
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Figure 4. Nonsingular elliptic curve (λ 6= 0, 1)
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Figure 5. Nodal cubic (λ = 1)

One would also like to know what happens at infinity. We can projectivize to
obtain y2z = x(x − z)(x − λz), so z = 0 implies x3 = 0, so y = 1, and in this
neighborhood the equation takes the form z = x(x − z)(x − λz) which is linear in
z, so this point is nonsingular.

Here is another example of an elliptic curve which shows that one really must
attend to characteristic:
Example. Consider y2 + y = x3 − x in A2. We have fy = 2y + 1, fx = 3x2 − 1,
so if char k 6= 2, 3 (in these cases the curve is nonsingular because fy = 1 6= 0,
fx = −1 6= 0, respectively), we have y = −1/2 and x2 = 1/3. Substituting we
have 1/4 − 1/2 = x(x2) − x = 1/3x − x = −2/3x = −1/4, so x = 3/8, and thus
(3/8)2 = 9/64 = 1/3 iff 27 = 64, i.e. char k = 37. In this case, we have 3(52) ≡ 1
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–2
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Figure 6. Cubic with a double point (λ = 0)

(mod 37) and −2(18) ≡ 1 (mod 37), and the point (−5, 18) is not on the curve, so
we can bring the singularity (5, 18) to the origin by

(y′ + 18)2 + (y′ + 18) = (x′ + 5)3 − (x′ + 5), y′2 = x′3 + 15x′2

which is a node.
Remark. In the course of proving Theorem 5.3, one also has proven: If k = k and A
is a finitely generated domain over k, and X = SpecmA (the set of maximal ideals
of A) with the Zariski topology (Z ⊂ X is closed if there exists an ideal I ⊂ A such
that Z = {m ∈ SpecmA : m ⊃ I}), then

Xsing = {m ∈ SpecmA : Am is not regular}
is closed, and Xreg = X \Xsing is a nonempty, open set.

This problem is called the problem of the closedness of the singular set, and it is
not true for a general noetherian ring. (There is a counterexample due to Nagata.)

Here is an important counterexample:
Example. For part (5.4A(b)), it is important thatM be finitely generated. Consider
A = k[x]〈x〉 with maximal ideal m = 〈x〉 and quotient field K = k(x). Then
Â = k[[x]], but

K ⊗A Â = k[[x]][1/x] = k((x)),

whereas K̂ = lim−→K/mnK = 0.
Here is a more detailed exposition of:

Claim. If A = k[[x, y]], φ : A→ A by φ(x) = g = x+ . . . , φ(y) = h = y + . . . , then
φ is an isomorphism.

Proof. If 0 6= f ∈ kerφ, then f = fd + . . . with fd 6= 0, so by looking at degrees,
φ(f) = fd + · · · = 0, so fd = 0, a contradiction. Thus φ is injective.

To show φ is surjective, we note that if f ∈ A, with f = fd+ . . . , then φ(fd)−fd
begins f ′d′+. . . with d′ ≥ d, so we may proceed inductively to define a preimage. �

Remark. Here are some facts about analytic isomorphisms (ÔP,V ' ÔQ,W ):
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(i) Any two nodes on curves are analytically isomorphic. The proof of Example
5.6.3 essentially shows this.

(ii) If P ∈ V , Q ∈ W are analytically isomorphic, then dimV = dimW . This
follows from the Hilbert-Samuel polynomial and the fact that dim OP,V =
dimV and grmA ' grm̂ Â.

(iii) Any two points of a nonsingular variety are analytically isomorphic. By the
Cohen structure theorem, if P ∈ V is nonsingular, k ⊂ OP,V is a regular
local ring, so ÔP,V ' k[[x1, . . . , xn]] where n = dimV .

Here is an alternative definition of multiplicity (compare (Ex. 5.3)) which is
more general:
Definition. Let P ∈ V of dimension n, look at OP,V . The function φ(ν) =
dimk mν/mν+1 has the property that there exists a polynomial P (z) ∈ Q[z] such
that p(ν) = φ(ν) for sufficiently large ν (the Hilbert-Samuel polynomial). We have
deg p = dim OP−1, and if we write p(z) = a0z

n−1+· · ·+an−1, then the multiplicity
of P on V is (n− 1)!a0.

In the case of plane curves, the Hilbert polynomial is equal to d for sufficiently
large d where f(x, y) = fd + . . . , so this definition agrees with the one given in the
exercises.

§I.6: Nonsingular Curves

The problem of classification of varieties up to isomorphism, even if we restrict
to nonsingular varieties, is already very complication. Take the example of rational
curves, which includes A1, P1, a conic in A2, A1 \ {P} (all of which are isomorphic
by a translation) A1 \ {P,Q} (isomorphic by a dilation and translation), A1 minus
three points (for which there is a one-parameter family; if we view this as P1 minus
four points, then the four points have a cross-ratio which is invariant under linear
fractional transformation). This is why we look first at varieties up to birational
equivalence.

We would like to show that any curve C is birational to a nonsingular projec-
tive curve, but it is hard to obtain each of these simultaneously. Here are three
approaches:

(1) One can blow up a projective embedding of C. Using plane Cremona
transformations, one can obtain ordinary singular points, but this cannot
be discussed here.

(2) If C ⊂ An is singular, A(C) = A/I(C) the corresponding one-dimensional
integral domain, we consider its normalization Ã(C) = B ⊂ K. B is again
a finitely generated integral domain over K and thus corresponds to a curve
C, which is then nonsingular (if A is a local noetherian ring of dimension
1, then A is normal iff it is regular). So given a singular projective curve
we can take a finite open cover, normalize on each open piece, and glue
(thanks to the universal property of the blowup). But this is already very
tricky.

(3) We look at abstract nonsingular curves; this is the approach taken in the
text.

In comparison to the situation of curves, we have the following fact:
Fact. Any abstract curve is quasi-projective. Any abstract nonsingular surface
is quasi-projective. But there exists an abstract nonsingular variety of dimension
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three which is not quasi-projective (due to Hironaka)—one blows up two curves in
different orders on a surface.

The important statement to take away from the equivalence of categories (6.12)
is that any two projective nonsingular curves are birationally equivalent if and only
if they are already isomorphic.

Here is an extended discussion of one of the homework problems (Ex. 6.2).
Example. We will show that C : y2 = x3 − x is not rational. This is equivalent to
showing that the quotient field L of k[x, y]/〈y2−x3+x〉 is not a pure transcendental
extension of k, though this seems to be an intractable algebra problem. Instead, we
look at the following invariant: for P1, if U is any open affine subset corresponding
to A over k, then U is a UFD. For the curve C, there exists an open affine A which
is not a UFD; therefore if they were birational, they would have isomorphic open
subsets, which is a contradiction.

The quotient field L = k(x)[y]/〈y2 − x3 + x〉 is an extension of K = k(x) of
degree 2. The Galois action of L/K is σ : y 7→ −y, cyclic of order 2. Every element
of L can be written α = a(x) + b(x)y, hence σ(α) = a(x)− b(x)y, and we have the
norm

N(α) = ασ(α) = a(x)2 − (x3 − x)b(x)2.
The norm is multiplicative, as N(αβ) = (αβ)σ(αβ) = N(α)N(β). We note that
B = k[x, y]/〈y2−x3+x〉 is an integral extension of A = k[x]. We want to show that
B is integrally closed; for P ∈ C, this is equivalent to showing that P is nonsingular.
We find ∂f/∂y = 2y = 0 so y = 0 (assume char k 6= 2), hence x = 0,−1, 1 and
∂f/∂x = −3x2 + 1 6= 0 at these points.

The next claim is that α ∈ B is a unit iff N(α) is a unit in A; this is because if
αβ = 1 then N(α)N(β) = N(1) = 1, and if N(α) = αασ | 1 then α | 1.

The equation y2 = x(x− 1)(x+ 1) looks like an equation of non-unique factor-
ization. Indeed, k[x]× = k, and a(x)2 − (x3 − x)b(x)2 ∈ k happens only if b(x) = 0
(since the latter has odd degree), hence B× = k as well. We know that y is irre-
ducible because if y can be written as the product of two factors then so can its
norm, −x(x− 1)(x+1), so there exists a norm from B which is of degree 1—which
we see from the equation is impossible.

§I.7: Intersections in Projective Space

We will give an alternative proof of:
Theorem. For V ⊂ Pn, there exists a (unique) polynomial PV (z) ∈ Q[z] such that
PV (l) = φV (l) for all l� 0.

Recall that the Hilbert function is φV (l) = dimk S(V ) ∈ Z≥0. The reason that
we only have l� 0 is because a polynomial cannot vanish identically for l < 0 and
in general there is small range where Pv(l) 6= φ(l) due to subtleties.

We generalize this with φM (l) = dimkMl ∈ Z≥0 as follows:
Proposition (Theorem 7.5). For any finitely generated graded S-module M , there
exists a polynomial PM ∈ Q[z] such that PM (l) = φM (l) for l� 0.

Proof. If n = 0, S = k[x0] so if M is a finitely-generated graded k[x0]-module,
then by the structure theorem for modules over a PID, M is a finite direct sum
M =

⊕
iMi where each Mi is equal to S or S/〈x0−a〉r. But due to the grading, the

latter cannot occur unless a = 0, so φM =
∑
i φMi

with M = S or M = S/〈xr0〉, and
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φMi
(l) = 1 and φMi

(l) = 0, respectively, which matches, so the Hilbert polynomial
is constant.

In general, S = k[x0, . . . , xn], M a finitely-generated graded S-mdoule. We have
the exact sequence

0→ Q→M
xn−−→→M → N → 0

for modules Q and N which are both annihilated by xn and hence are graded
k[x0, . . . , xn−1]-modules, so by induction φQ and φN are represented by polynomials
PQ and PN for l� 0.

Looking at degrees, we have

0→ Ql−1 →Ml−1
xn−−→Ml → Nl → 0

so as finite dimensional vector spaces, φM (l) − φM (l − 1) = φN (l) − φQ(l − 1) =
PM (l)−PQ(l− 1) for l� 0. Therefore by the difference lemma (7.3), φM is also a
polynomial, and we are done. �

The disadvantage of doing it this way is that we do not get any information
about the dimension of the variety.
Example (Ex. 7.2(b)). If C ⊂ P2 is a curve with C = Z(f), deg f = d, then
PC(z) = dz + (1− g) for an integer g ∈ Z.

0→ Sl−d
f−→ Sl → S/〈f〉l → 0

so from dimk Sl =
(
l+2
2

)
we have

φC(l) =
(
l + 2

2

)
−

(
l + 2− d

2

)
=

1
2
(l + 2)(l + 1)− 1

2
(l − d+ 2)(l − d+ 1)

=
1
2
(l2 + 3l + 2− l2 + 2ld− d2 − 3l + 3d− 2) = dz − 1

2
(d2 − 3d)

so in fact g = (d− 1)(d− 2)/2.
For intersection multiplicities, for curves C,D that intersect transversally at P

(i.e. they have distinct tangent lines at the point of intersection, where the tangent
line is the linear part of the curve), then S/(I(C) + I(D)) = S/〈f, g〉 = k[x0] = 1,
so the intersection multiplicity is 1 as one would expect. This also holds in higher
dimension for smooth varieties.

We conclude with:
Example (Classification problem). We would like to classify all subvarieties of Pn
by dimension, degree, and by other numerical invariants. We start with degree
d = 1.
Claim (Ex. 7.6). If d = 1, then Y r is a linear variety, i.e. I(Y ) = 〈`1, . . . , `n−r
where the `i are linear forms.

Proof. If I(Y ) is linear, then S/I(Y ) = k[x0, . . . , xr] which has Hilbert polynomial(
z
r

)
which starts zr/r! + . . . , hence the degree is 1. For the contrary, we argue

by induction on the dimension. If the dimension is 0, then we have a single point
and hence the degree is 1. In general, let H ⊂ Pn be a hyperplane such that
H 6⊂ Y . Suppose H = Z(xi); Then H ∩ Y has degree 1 by (7.7) and induction, so
if I(Y ) = 〈f1, . . . , ft〉 then I(Y ∩H) = 〈f1, . . . , ft, xi〉 is generated by linear forms.
If we repeat with each xi then we see that the fi themselves are linear, so Y is
linear. �
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Claim (Ex. 7.8). If d = 2, then Y r is a quadric hypersurface in Pr+1.

Proof. Let P ∈ Y r be a fixed point and Q 6= P ∈ Y a variable point. Consider
W , the union of the lines through P and Q contained in Pn. This is a variety
of dimension r + 1. Hence degW ≤ deg Y − 1 = 1 (counting points of a generic
intersection), so degW = 1 and W is a linear space by the preceding argument.
Therefore Y r ⊂ Pr+1 ⊂ Pn, and so by the Hauptidealsatz, Y must be generated by
a single irreducible polynomial f as claimed. �

§I (Supplement): Representing families (Lines in P3)

There are many examples of how one can represent families of objects by one
algebraic variety:

(1) Conics in P2 are given by a0x
2
0+a1x0x1+· · ·+a5x

2
2 = 0, so this corresponds

to an open set U ⊂ P5 since we require that the conic be irreducible.
(2) Linear spaces of dimension r in Pn are parameterized by the Grassman

variety G(r, n).
(3) Curves of a fixed genus g are given by a variety of moduli M .
(4) For a fixed curve, the set of divisors classes modulo linear equivalence is

the Jacobian variety.
(5) For any variety X, we can look at 0-cycles on X modulo equivalence, the

Albanese variety.
(6) For V r ⊂ Pn, the varieties V with a fixed Hilbert polynomial give the

Hilbert scheme.
(7) Hyperplanes of degree d in Pn are parameterized by P(n+d

n )−1.
A line L ⊂ P3 is given by two linear equations:

a0x0 + a1x1 + a2x2 + a3x3 = 0
b0x0 + b1x1 + b2x2 + b3x3 = 0

This is equivalent to the two-dimensional subspaces of k4 if we represent these as
vectors. Therefore we introduce Plücker coordinates:

p01 =
∣∣∣∣a0 a1

b0 b1

∣∣∣∣ , p02 =
∣∣∣∣a0 a2

b0 b2

∣∣∣∣ , . . . , p23 =
∣∣∣∣a2 a3

b2 b3

∣∣∣∣ .
At least one of these is nonzero (so that the rank of the matrix is 2). Therefore we
have points (p01 : p02 : p03 : p12 : p13 : p23) ∈ P5 which depend exactly on the line
L.

If we count parameters of the number of lines in P3, for any point P we have
3 degrees of freedom for lines and the same for a point Q, but along the line L
between them the determinants are the same, so there are 3 − 1 degrees for P
(resp. 3− 1 for Q), totalling 4, so this only a subset of P5.

Observe that p01p23 − p02p13 + p03p12 = 0. This quadric Q is a hypersurfaces in
P5, and is nonsingular.
Claim. The set of lines L in P3 is in bijection with the set of points of Q by the
above map ψ.

Proof. Consider an open affine p01 6= 0 in Q. By changing coordinates we can
assume the matrix with rows ai and bj is just(

1 0 a2 a3

0 1 b2 b3

)
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and hence p02 = b2, p03 = b3, p12 = −a2, p13 = −a3, p23 = a2b3 − b2a3. Therefore
ψ is injective because b2, b3, a2, a3 are determined uniquely by p02, p03, p12, p13. To
see that ψ is surjective, we define the a2, a3, b2, b3 from the above equations. �

There are also natural subvarieties of Q. For a hyperplane H ⊂ P3, the union
of lines L ⊂ H is isomorphic to P2 and corresponds to a line σH ⊂ Q. Any two
hyperplanes H 6= H ′ intersect in exactly one line, corresponding to a single point
on Q, σH ∩ σH′ .

If we fix a point P ∈ P3, the union of lines L 3 P is again isomorphic to P2 and
corresponds to a line σP ⊂ Q. If P ′ 6= P , then σP ∩ σP ′ consists of a single point,
the unique line that goes through each of these points.

If we have a hyperplane H and a point P , if P 6∈ H, then σP ∩ σH = ∅, whereas
if P ∈ H, σP ∩ σH = σP,H ' P1 (P ∈ L ⊂ H). (This situation is similar to a
quadric surface in P3, which is ruled by lines.)

We have:
Q

σ3
L0

σ2
H

{{{{{{{{
σ2
P

CCCCCCCC

σ1
P,H

CCCCCCCC

{{{{{{{{

{L0}
where σL0 = {L : L ∩ L0 6= ∅}. For if we suppose that L0 : x0 = x1 = 0, then the
line L : a0x0 + · · · = b0x0 + · · · = 0 becomes a2x2 +a3x3 = b2x2 +b3x3 = 0, so there
should be a solution (i.e. a linear dependence), which gives p23 = a2b3 − a3b2 = 0.
Therefore σL0 = Q ∩ Hp23 , the hyperplane in P5 defined by p23 = 0. This is the
subvariety p02p13 − p03p12 = 0 ⊂ P4, and σL0 is the cone over this surface, with
singularity at exactly {L0}.

The natural generalization of this is to linear varieties Lr ⊂ Pn. This corresponds
to a nonsingular projective variety G(r, n) of dimension (r + 1)(n − r), and the
Schubert cycles σ as discussed above live in these varieties. We have flags, which
are P0 ∈ L0 ⊂ H0 ⊂ . . . . There are lots of these Schubert cycles and all intersections
and so forth are calculable.

§II.1: Sheaves

We have now studied varieties V which are topological spaces defined over an
algebraically closed field k with regular functions O(U) defined on open sets U .
Now we forget the ground field k and that the elements of O(U) are functions; we
are left with just a topological space V and on open subsets U an abelian group
O(U), with a “restriction homomorphism” O(U)→ O(W ) whenever W ⊂ U . This
is the motivation for studying sheaves.
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Example. Sheaves are in some sense given by “local data.” In particular, the
presheaf F given by F (X) = Z and F (U) = 0 for all U ( X is not a sheaf.

This shows that (II.1.1) is false for presheaves, since the map from F to the zero
sheaf is an isomorphism on stalks (we ignore F (X) when computing the direct
limit).

The associated sheaf F+ is in fact the zero sheaf.
Example. If F and G are sheaves, and if for all P ∈ X, there exists an isomorphism
FP ' GP , this does not imply that F ' G as sheaves. One must have compatibility
of the maps themselves.

As an example, we consider the circle S1, and the constant sheaf (1.0.3) Z which
has Z (U) = Z for all connected open sets U . In particular, the sheaf Z has global
sections Z (S1) = Z. However, if we consider the twisted circle M , obtained by
gluing together two open semicircles U, V ⊂ S1 with a twist on one side (think of
an infinitessimal Möbius strip), and define the constant sheaf on M , then Z has no
global sections (essentially but not rigorously, it is because if one follows a section
around the circle on open sets, one will eventually return to the negative of the
section at the original point).
Claim. A morphism of presheaves f : F → G is monic if for all U , fU : F (U) →
G (U) is injective.

Proof. In categorical language, f is monic if for all diagrams

X
u //
v

// F
f // G

with f ◦ u = f ◦ v one has u = v. If f is injective, then this holds; conversely, if
fU : F (U)→ G (U) is not injective for some U , define a presheaf ZU by the data:
if V 6⊂ U then ZU (V ) = 0, and if V ⊂ U , ZU (V ) = Z with the obvious restriction
maps. This is a constant presheaf ZU . We have a map ZU → F from Z to any
abelian group A by 1 7→ a for a ∈ A such that f(a) = 0; but we can also take
1 7→ 0, so f is not a monomorphism (in the category of presheaves).

For sheaves, we have a map ZU → Z +
U to the associated sheaf, i.e.

Z +
U

// // F
f // G

ZU

OO >>||||||||

so by the above, f is not a monomorphism. �

If F and G are sheaves, then fU : F (U) → G (U) is injective for all open U
iff fP : FP → GP is injective by the first part of (1.1); this is resonant with the
idea that sheaves are defined by local data). For the same reason, a morphism of
sheaves is an epimorphism iff it is surjective on stalks.

We also have a notion of a kernel of the map F
f−→ G . In general, we may look at

an additive category C, i.e. a category with the property that for all objects X,Y ∈
C, Mor(X,Y ) is an abelian group such that Mor(X,Y )×Mor(Y,Z) ◦−→ Mor(X,Z)
is a bilinear map. For such a category, a subobject of an object X is an equivalence
class (Y, i) with Y i−→ X with i a monomorphism such that (Y, i) ≡ (Y ′, i′) if there



256A: ALGEBRAIC GEOMETRY 19

exists an isomorphism

Y
i // X

Y ′

OO
i′

>>}}}}}}}}

such that the diagram commutes.
If C is an additive category, then we have a notion of kernel of X

f−→ Y : the
kernel ker f is a subobject (K, i) of X such that fi = 0 and for all Z u−→ X such
that fu = 0, the map factors through K:

K
i // X

f // Y

Z

OO
u

>>}}}}}}}}

To apply this to sheaves, let f : F → G be a morphism of presheaves. Let
K (U) = ker fU . We have the commutative diagram

K (U) //

��

F (U)

��
K (V ) // F (V )

whenever V ⊂ U . From this it is already clear that K is a kernel in the category
of presheaves.
Claim. If F and G are sheaves, then K is a sheaf.

Proof. If U =
⋃
i Ui, then

0

��

0

��

0

��
K (U) //

��

K (U) //

��

K (U)

��
F (U) //

��

∏
i F (Ui) //

��

∏
i,j F (Ui ∩ Uj)

��
G (U) // ∏

i G (Ui) //
∏
i,j G (Ui ∩ Uj)

Now apply the snake lemma. �

We also have cokernels (if we reverse arrows), for which we will need a notion of
epimorphism. We would like to say that f is epic iff it is surjective on open sets.
After all, if F (U) → G (U) → C → 0 is not surjective for some U , we define the
constant presheaf Z as before which gives proves that f is not epic. However, for
the associated sheaf Z + there may not be a map G → Z +.

In particular: for sheaves, f : F → G an epimorphism 6⇔ F (U) → G (U) is
surjective. However, as it was remarked above, we do have that F → G is an
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epimorphism iff for all P ∈ X, FP → GP is surjective. (For the converse, we need
that H (U) = G (U)/ img F (U) has

F → G →H + → 0.

Example. Here is an example of this phenomenon. Let X = A1, and take two points
P 6= Q ∈ A1. Let F = Z be the constant sheaf on Z, and let G = ZP ⊕ZQ where
ZP (U) = Z if P ∈ U and ZP (U) = 0 otherwise. Then F → G is an epimorphism
of sheaves which is not surjective on open sets.

§II.2: Schemes

To define the structure sheaf of rings O = OX on an affine scheme X = SpecA,
one can also use the following construction: for each open U ⊂ X, define a presheaf
on the base {D(f)} where D(f) = X \ V (f) by OX(D(f)) = Af = A[1/f ] (note
this localization is the collection of elements a/fr where a1/f

r1 = a2/f
r2 if there

exists s such that fs(fr2a1 − fr1a2) = 0; the kernel of the localization consists of
those elements annihilated by f). Note that if D(g) ⊂ D(f), then V (g) ⊃ V (f),
and hence g ∈

√
〈f〉, so g = frh, and 1/g = 1/frh and thus we get a well-defined

restriction map Af → Ag. Now take the associated sheaf; it will have the same
stalks OP as the presheaf. Although the sections could in theory now be anything,
we find:

Proposition (Proposition 2.2). If A is a ring, X = SpecA, OX the structure
sheaf, then OP = Ap, OX(D(f)) = Af , and OX(X) = A.

Ideas of proof. We know that OP = lim−→D(f)3P Af is the stalk of the presheaf. Now
D(f) 3 P = p iff f 6 inp, so this is just Ap = {a/s : s 6∈ p}.

To see the second statement, we note that if f ∈ A, then D(f) = SpecAf ⊂
X = SpecA has the induced topology, so we can replace A by Af and prove the

latter. If we have OX(X)
φ←− A, we will show φ is injective. If a ∈ A, φ(a) = 0 in

the sheaf, the there exist f1, . . . , fn such that the D(fi) cover X and a|D(fi) = 0.
The D(fi) cover X iff 〈fi〉i = 〈1〉, iff 1 =

∑n
i=1 aifi (which shows that SpecA is

quasi-compact—every open cover has a finite subcover). If a = 0 ∈ Af then there
exists ni such that fni

i a = 0, so let N = nmaxi ni + 1. Then 1 = 〈fi〉i = 〈fi〉Ni , so
1 =

∑
I bIf

rI

I with
∑
i ri = N , and thus a =

∑
I bIf

Ia = 0. Thus φ is injective.
To show φ is surjective is harder: to show that α ∈ OX(X) came from ai ∈ Afi

with the D(fi) covering X one must show ai|D(fifj) = aj |D(fifj). �

Example. The scheme Spec Z consists of a line of primes 〈2〉, 〈3〉, . . . as well as a
generic “fuzzy” point 〈0〉 = ζ whose closure is the entire space. An open set U
leaves out a finite set of finite primes pi, and then O(U) = Z[1/pi]i.
Example. If k = F2 is a finite field, Spec k[x] = Spec F2[x] is still dimension 1 (we
retain the topological definition of dimension, and in the new topology dim Ank = n
for all fields k). The space consists of points 〈f(x)〉 for polynomials f(x) ∈ F2[x]
irreducible over F2, as well as a generic point 〈0〉 whose closure again is the entire
space.
Example. If we let A = k[ε]/〈ε2〉 (called the ring of dual numbers), then SpecA
consists of a single point (the only prime ideal is 〈ε〉), but it has an “infinitesimal
arrow sticking out of the point” which represents the nilpotent.
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Example. The scheme Spec Z[x] is two-dimensional, with 〈p, f(x)〉 closed points for
polynomials f(x) ∈ Z[x] which are irreducible modulo p. There are non-closed
points 〈p〉 for p prime and 〈f(x)〉 for f(x) irreducible, whose closure is the union of
all closed points above which contain it. There is also the generic point 〈0〉.

One should compare the definition of an affine scheme with the definition of a
complex manifold M where each open set Ui ⊂ M is isomorphic to a ∆i ⊂ Cn
with agreement on Ui ∩Uj . For the scheme, the sheaf “contains” the compatibility
information.
Example. Here is an extended example of gluing: if X = Y = A1, U = X \ {0},
V = Y \ {0}, then gluing using the identity morphism gives the “affine line with a
doubled origin”.

If we now glue using the map x 7→ 1/x, we obtain an origin and a point at ∞;
they glue to give the projective line P1 = Proj k[x, y].

In order to explain (2.6), we note that to any variety V over an algebraically
closed field k, which for simplicity we assume has V ⊂ Ank given by an ideal I ⊂ A,
we have an associated scheme V sch, which as a set consists of the closed irreducible
subsets of V (containing all of the points of V which are just the closed points of
V sch; note that this space has the same open sets, and is just the scheme Spec(A/I).

For the converse, in order to associate a variety to a given scheme we need the
following: first, it must be defined over an algebraically closed field, which is to say
we have a map X → Spec k; second, we need it to be quasiprojective, which is to
say we need an injective map X ↪→ Pnk ; finally, we need X to be integral, which is
to say we need the rings O(U) to be domains for all U (in order that the scheme
be irreducible). Note (for the experts) that the quasiprojective condition contains
within it that the scheme is separated and of finite type over k.

§II.3: First Properties of Schemes

There are certain properties of a scheme X which only depend on the topology
of the underlying space, which we denote sp(X), for example connected, irreducible
(X 6= Y ∪Z if Y and Z are proper closed subsets), quasi-compact (every open cover
has a finite subcover), noetherian (as a topological space, this is the descending
chain for closed subsets). Note that noetherian is equivalent to every open subset
is quasi-compact, and noetherian implies quasicompact. We also have the notion of
dimension, which is supn{n : Z0 ( · · · ( Zn ⊂ Y } for Zi closed irreducible subsets.

There are also properties that depend on the scheme structure itself. We have
notions of reduced (OX(U) has no nilpotents for all open U), integral (OX(U) is a
domain for all U). Being reduced is a local condition (it is equivalent to demand
for all P ∈ X, OP,X has no nilpotents) but being integral is not: OP,X integral
for all P does not imply that OX(U) is a domain, take for example k a field,
X = A1

k ∪ A1
k, we have OX(X) = k[x] × k[x] not a domain even though around

every point OP,X = k[x]mP
.

Here is another proof of (3.1) that integral is equivalent to reduced and irre-
ducible:

Proof. Integral implies reduced and ifX = Y ∪Z, then Y ∩Z is closed, X\(Y ∩Z) =
U t V for (disjoint) open sets U and V , and so on this open set the corresponding
ring cannot be integral.
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If X is reduced and irreducible, cover X with open affines U ; OX(U) has no
nilpotent elements, so if ab = 0, then 〈0〉 = 〈ab〉 ⊂ 〈a〉 ∩ 〈b〉, and we have equality
because if x = ay = bz, then x2 = abyz = 0 so x = 0, so U = V (a) ∪ V (b) and this
will lift to a decomposition of X, a contradiction. �

Example. Here is an example for (3.1.1): The fact that spX is a noetherian topo-
logical space does not imply that (X,OX) a noetherian scheme. Take X = SpecA
for A = k[x1, x2, . . . ]/〈x2

1, x
2
2, . . .〉. A is clearly not noetherian, but SpecA consists

of the sole prime ideal 〈x1, x2, . . .〉 (since any prime must contain 0 = x2
i and hence

each xi and no other translate). This is a point with “infinitely many infinitesimal
arrows”, but a point itself is certainly noetherian.
Example. The scheme which is an infinite union of affine lines over a single affine
line is locally of finite type but itself is not of finite type.
Example. If B is any ring, AnB = SpecB[x1, . . . , xn] has a map AnB → SpecB
induced by B ↪→ B[x1, . . . , xn] which is of finite type by definition (even if B is a
very nasty ring).
Example. If X → Y = Spec k is a finite map, then by definition X = X1 t · · · tXr

where Xi = Spec ki and [ki : k] <∞.
Example. The map Spec k[x, y]/〈x−y2〉 → Spec k[x] = A1

k is finite because the ring
k[x, y]/〈x− y2〉 is a finite module over k[x] (it is generated as a module by 1, y).

The definition of an open subscheme should be refined as follows:
Definition. A morphism f : X → Y is an open immersion if f(X) = V ⊂ Y is an
open subset and f : X → V induces an isomorphism of the image with the induced
scheme structure.

An open subscheme is an equivalence class (X, f) with equivalence if there exists
a commutative diagram

X
f //

i

���
�
� Y

X ′

f ′
>>}}}}}}}}

where i is an isomorphism.
The reason we insist on the surjectivity of OX → f∗OY is because if k1 ⊂ k2 is

any field extension, we would have a morphism Spec k2 → Spec k1, but we would
not want to think of Spec k2 as a closed subscheme. Note that it is equivalent to
require that the map Of(P ),Y → OP,X is surjective for all points P ∈ X.
Example. If k = k, X = A1

k = Spec k[x], we wish to look for all possible closed
subschemes. Topologically, Y must either be X or a finite set of points. Suppose
we have a map Y

f−→ X which makes Y into a nonproper closed subscheme, i.e.

f(Y ) = X and OX
f]

−→ f∗OY surjective. The claim is that f ] is also injective, for
if U ⊂ X is an open set, and s ∈ OX(U) such that f ]Us = 0 in Y , if s 6= 0 then we
can define Z(S) = {P ∈ X : s(P ) ∈ mP ⊂ OP }. This subset is proper and closed,
and f−1(Z(s)) = Z(f ]s), so Y ⊂ Z(s), a contradiction.

Therefore the closed subschemes are exactly finite unions of points. If we take
just the origin, then we have the prime 〈0〉, corresponding to the ideal I = 〈x〉 ⊂
k[x], and we have the closed subscheme Y = Spec k[x]/〈x〉 = k, which is what one
would expect, a simple point. But we can take any ideal I with Z(I) = {0}, namely
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I ⊂ 〈x〉, so 〈x〉 =
√
I, and thus xn ∈ I and so I = 〈xn〉 (since k[x] is a PID). The

subscheme Y = Spec k[x]/〈xn〉 is a point with an “infinitesimal tangent direction”.
(The corresponding ring is an Artin ring; it has finite length which as a vector space
over k has a basis 1, x, . . . , xn−1.)

In general, if X is affine, X = SpecA, and Y
f−→ X is a closed immersion, then

Y is affine and Y = SpecA/I for some ideal I ⊂ A. We will see this later.

Example. If we take A2
k and the closed subscheme I = 〈x, y〉 ∩ 〈y − x2〉 = 〈xy −

x3, y2 − x2y〉, then this is a parabola with an embedded point at the origin. It has
the nilpotent f2 = (y − x2) = yf − x2f = 0. The prime 〈f〉 is a minimal prime,
and the prime 〈x, y〉 is an embedded prime.

It is useful now to extend the definition of the Hilbert polynomial to any closed
subscheme of projective space:

Definition. If Pnk = Proj k[x0, . . . , xn] = ProjS and I ⊂ S is homogeneous, then
Y = ProjS/I → ProjS = X is a closed immersion. We define the Hilbert poly-
nomial of Y PY (z) as the polynomial which agrees with φY (z) = len(S/I)z for z
sufficiently large. We have as before that the degree Y is the leading coefficient
times the factorial of the dimension of Y .

Using this, we can investigate:

Example. The curves (dimension 1) subschemes of degree 2 contained in P2
k, e.g.

yz − x2 = 0 can be categorized first if they have no embedded component (i.e. if
in each open affine U = SpecA, I the ideal defining Y , I has no embedded primes,
which since I ⊂ k[x, y] is height 1 and k[x, y] is a UFD, implies that I is principal
by the Hauptidealsatz). In this case, f is a degree 2 form, and is either irreducible
(defining a conic), breaks up as the product of two distinct linear forms (and is the
union of two lines) or is the square of a linear factor (and is an infinitesimal double
line, with nilpotents at every point of the line).

Remark. In the proof of (3.3), it is important to distinguish the cases when the
intersection of two affines is affine. This is not true in general: we can take the
affine plane with a doubled origin, for example. If Y is affine, then the intersection
of two open affines is also affine (look at the diagonal Y ∆−→ Y ×Y—the subscheme
∆(Y )∩ (Y1×Y2) is affine and is isomorphic to Y1 ∩Y2), and we will see is also true
in general for separated schemes.

Here is a proof that if we have the fibre product Xs = X ×S Spec k, where
k = k(s) = Os,S/ms for some s ∈ S, i.e.

Xs
//

��

X

f

��
Spec k // S

then X
s is homeomorphic to f−1(s) ⊂ X. We may assume S is affine (since re-

stricting to an affine in which s sits will preserve the fibre product by its universal
property), and then assume that X is affine (since we may look at the union of
affine opens, as verifying a map is a homeomorphism is local on the image). We
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then have the dual diagram:

A⊗R k(p) = A/p Aoo

k(p)

OO

Roo

OO

where S = SpecS and X = SpecA, s corresponds to the prime ideal p. Then the
map R → A is induced by the map which takes p to the set of ideals q ∈ A such
that q∩R = p. But this is exactly the map on the left, since k(p) = Ap/pAp ' A/p.
(Localize for more precise information.)

Here is a final example of a family of schemes:
Example. Take the map X = A2 → S = A1 where S = Spec k[t] and X =
SpecS[x] = Spec k[t][x], where char k 6= 2. Restrict it to a map Y = Spec k[t][x]/〈t−
x2〉 to S induced again by the inclusion k[t] ↪→ k[t][x]/〈t − x2〉. Then if t = 1, Y1

consists of two distinct points; if t = 0, we have Y0 = Spec k[x]/〈x2〉, a double
point; and for the generic point t = ζ, Yζ = Spec k(t)[x]/〈t−x2〉 which comes from
a degree two extension k(y)→ k(x) of the residue field. Note that in each case, the
fiber is length 2 over its base.

§II.4: Separated and Proper Morphisms

Here are some examples of separated schemes.
Example. If k = k, then Pnk is separated. We have

Pnk
∆ //

��

Pnk ×k Pnk

yyssssssssss
// PNk

Spec k

by the Segre embedding. But if we instead view the product as given by bihomo-
geneous polynomials in k[x0, . . . , xn; y0, . . . , yn], then the image of the diagonal is
given by the ideal xiyj − xjyi for i, j (these equations say xi/xj = yi/yj wherever
these are defined).
Example. If f : X → S is separated, and U ⊂ X, then the map f |U : U → S
is separated, as ∆(U) ∩ U ×S U is closed in U ×S U , an open subset of X ×S X.
Similarly, if Y ⊂ X is closed, then Y ×S Y ↪→ X ×S X is closed so Y → S is
separated.
Example. It is a general fact that if Y ⊂ X = SpecA is a closed subscheme of an
affine scheme, then Y ' SpecA/I for some ideal I. In this case ∆(X) ∩ Y ×S Y =
∆(Y ).

Therefore if k = k, and V/k is a variety, then the associated scheme V sch over
Spec k is separated, because it is either (quasi-)affine or (quasi-)projective.

Topologically, a space X is Hausdorff iff ∆(X) ⊂ X × X is closed: Take any
two points P and Q, and take a neighborhood around (P,Q) which does not meet
∆ (since ∆(X) is closed); this gives neighborhoods U 3 P and V 3 Q such that
U ∩V = ∅. This is not the same thing in algebraic geometry, because (X×SX) 6=(

X)×( X). For example, A1 ×k A1 = A2 6= A1 ×A1, where on the right we take the
topological product (for example, A2 contains curves). So in algebraic geometry
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the space is not the product of the spaces, and the topology is not the product of
the topologies!

Here is the motivation for the valuative criterion of separatedness. Let X be a
curve over k and consider the function field K = K(X). We have seen that there
is a unique nonsingular projective curve X̃ birational to X ⊃ Xreg ↪→ X̃, and X

is isomorphic to an open set U of X̃. If we embed X ⊂ X ↪→ Pn, then we get a
map U → X, and by the pasting points lemma we obtain a map X̃ → X. What
we have shown is that for each valuation ring R of K over k, there exists a unique
point P ∈ X such that OP,X ⊂ R is dominated by R. The point is that if X is
separated, then each R dominates at most one point of X.

Now in terms of proper morphisms, we have X̃ and X over k, where each local
ring is dominated by at most one point, but by properness each R dominates at least
one point, which is how uniqueness is obtained. As a general statement, “giving a
valuation ring is like giving a sequence, and giving a point is like giving a limit.”

The valuative criterion of properness is the statement that “every valuation has
a center”, which means the following: If X is a variety over Spec k with function
field K containing a valuation ring R, then X is proper over k iff for all R, R has
a center in X, which is a a point x ∈ X such that we have a map SpecR→ X, i.e.
Ox,X → R has mx = mR ∩ Ox,X .

Here is an overview sketch of (4.9):

Theorem. Every projective morphism X → Y is proper.

Sketch of proof. Such a map is separated because PnY → Y is separated and X ↪→
PnY is a closed immersion which is separated. Such a map is of finite type for the
same two reasons.

Therefore it is enough to show that X → Y is universally closed. We have:

PmY ′

��

X ′ //

==||||||||

��

X //

��

PnY

}}{{
{{

{{
{{

Y ′ // Y

This shows that the base change of a projective morphism is projective, so it suffices
to show that any projective morphism is closed, for which it is enough to show that
PnY → Y is closed for any scheme Y . It is enough to show this for PnUi

→ Ui for
Ui affine, since f(Z) is closed in Y iff f(Z) ∩ U is closed in U for all U . So let
U = SpecA, and then we have PnA = ProjA[x0, . . . , xn] → SpecA. Let Z ⊂ PnA
be a closed subset. Z is a finite union of closed irreducibles (by the noetherian
hypothesis), so we may assume f(Z) ⊂ Y = f(Z) ⊂ SpecA is irreducible, so it
corresponds to a prime ideal p ⊂ A. If we base extend Y to SpecA/p, we obtain

PnY //

��

Y = SpecA/p

Z

f
88qqqqqqqqqqq
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where SpecA/p is integral and f : Z → Y is dominant, so it is enough to show that
f : Z → Y is surjective.

Let K be the function field of Y , and let Z have the reduced induced structure so
that its function field L is an extension of K. Let y ∈ Y so that Oy,Y ⊂ K. There
exists a valuation ring R of L dominating Oy,Y . We want to show that R has a
center on Z. We may assume Z is not contained in any hyperplane xi = 0 of PnY (else
we could construct a map to a smaller projective space). Thus xi/xj |Z = fij ∈ L.
Let v be the valuation on R, and let v(fi0) = gi ∈ G, the value group. Choose r
such that gr is minimal over gi. Then v(fir) = gi − gr ≥ 0, so fir ∈ R for given r
and all R. Thus A[x0/xr, . . . , xn/xr] → R gives a map on Ur = D+(xr) which is
SpecR→ Z ⊂ Pn. �

And now a vista on schemes over C to motivate the theory of properness. Fix
k = C, and X a scheme of finite type over C; then we have open sets U =
Ui = Spec C[x1, . . . , xn]/I ⊂ X, with I = 〈f1, . . . , fq〉. Let Cn have the usual
(Archimedean) topology. Then the elements f1, . . . , fq are holomorphic functions
(being polynomials), and Z ⊂ Cn by Z = {z ∈ Cn : f1(z) = · · · = fq(z) = 0}
is closed in the usual topology. Define the sheaf OCn as the sheaf of germs of
holomorphic functions, thus OZ = OCn/〈f1, . . . , fq〉, and (Z,OZ) becomes a locally
ringed space. If we now set Z to be the set of closed points of U = Ui, the map
Z → U is a continuous map, bijective on the set of closed points. By gluing, we ob-
tain (Xan,OXan), the associated analytic space to X. An analytic space is a locally
ringed space (Y,OY ) covered by open sets Ui such that (Ui,OX |Ui) ' Zi ⊂ D ⊂ Cn,
where the Zi are zero sets of functions fi and OZ = OD/〈fi〉.

In sum, given a scheme X of finite type over C, we obtain Xan over C, an analytic
space, with a continuous map Xan → X.

Here are facts about this construction:
• X is separated iff Xan is Hausdorff.
• X is reduced iff Xan is reduced.
• X is connected iff Xan is connected.
• X is nonsingular (X is integral and for all x ∈ X, Ox,X is regular) iff Xan

is a C-manifold.
• And most relevant, X is proper over C iff Xan is compact.

Therefore to X a nonsingular proper algebraic variety over C, we obtain Xan a
compact C-manifold. Is there a converse? Well, if X is a compact Riemann surface
of dimension 1, then it is a fact that it is given in this way by a nonsingular algebraic
curve X so that Xan = X . In dimension ≥ 2, the field of global meromorphic
functions on X has transcendence degree equal to the dimension of X, but there
exist complex compact manifolds with this transcendence degree not equal to its
dimension. But we may consider Moishezon manifolds, which are compact C-
manifolds with equality. In dimension ≥ 3, there exist Moishezon manifolds that
are not algebraic, so we have the set of nonsingular projective varieties properly
contained in the set of nonsingular proper varieties properly contained in Moishezon
manifolds properly contained in the set of compact C-manifolds.

§II.5: Sheaves of Modules

Here is an example to illustrate that the tensor product of two sheaves is not
always a sheaf:
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Example. Let X = P1
k, F = OX(1), G = OX(−1). Then F (X) ⊗OX(X) G (X) =

k2 ⊗k 0 = 0, but F ⊗ G = OX so that (F ⊗OX
G )(X) = k.

A word about invertible sheaves: given a sheaf L which is locally free of rank
1, we have L ∨ = H omOX

(L ,OX) which is another invertible sheaf, and L ⊗OX

L ∨ ' OX , by the map s⊗ f 7→ f(s) on an open set. PicX is the set of invertible
sheaves onX up to isomorphism, and is an abelian group under ⊗ with identity OX .
In fact, the category of OX -modules has also the operation ⊕ and so is almost a
ring (but there are no additive inverses). Instead, one may define the Grothendieck
group of the category by taking the free abelian group on the objects which are
OX -modules and identify F −F ′ −F ′′ = 0 whenever 0 → F ′ → F → F ′′ → 0
is an exact sequence. This has a ring structure, where again multiplication is given
by ⊗.

Here are the details of the definition of φ∗: If φ : (X,OX) → (Y,OY ) is a
morphism of ringed spaces, G a sheaf of OY -modules, we have φ−1G a sheaf of
abelian groups on X by (φ−1G )(U) = lim−→V⊃φ(U)

G (V ). φ−1G is a sheaf of φ−1OY -

modules on Y : but we also have a map φ] : OY → φ∗OX , and therefore we have a
map

φ−1OY → φ−1φ∗OX
θ−→ OX

by

(φ−1φ∗OX)(U) = lim−→
V⊃φ(U)

(φ∗OX)(U) = lim−→
φ−1(V )⊃U

OX(φ−1(V ))
ρ−→ OX(U).

Hence we define φ∗G = φ−1G ⊗φ−1OY
OX .

For inclusions, we have a very different story if U ⊂ X is open and if Y ⊂ X
is closed. In the first case, OU = OX |U makes (U,OU ) into a ringed space, and if
F is a sheaf of OX -modules, F |U is a sheaf of OU -modules; if i : U → X is the
inclusion, then F |U = i∗F = i−1F (since i(V ) is open and the tensor product has
no effect). Conversely, if F is a sheaf of OU -modules, i∗F is a sheaf of OX -modules
by (i∗F )(V ) = F (V ∩U). Another method is “extending by zero,” obtained from

V 7→

{
F (V ), V ⊂ U ;
0, else.

The associated sheaf of this presheaf, denoted i!F , has if P ∈ U that (i!F )P = FP

and if P 6∈ U , then (i!F )P = 0. Compare this with (i∗F )P = FP but (i∗F )P is
something interesting.
Example. Take X = A1

k, U = X \ {P}, and F = OU . i!F is a sheaf on X which
looks like OU except at P , where i∗(F )P = lim−→V 3P F (V ) which are functions with
a (finite) pole at 0, so this is actually k(x) by restriction any germ to an open set
where its only pole is at zero. Elsewhere, OQ = k[x]Q.

Now we look at affine schemes, X = SpecA. If F is any sheaf, one obtains
an OX(X) = A-module by Γ(X,F ) = F (X). This is a functor, because a map
F → G gives Γ(X,F )→ Γ(X,G ), and in fact an exact sequence

0→ F → G →H

gives an exact sequence of modules

0→ Γ(X,F )→ Γ(X,G )→ Γ(X,H ).
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This functor is not necessarily right exact, however; we have

0→ I{P,Q} → OX → k(P )⊕ k(Q)→ 0

which gives

0→ Γ(X,I ) = 0→ Γ(X,OX) = k → Γ(X, k(P )⊕ k(Q)) = k ⊕ k 6→ 0.

Given A, and M an A-module, we construct M̃ , a sheaf of OX -modules on
X = SpecA. If f ∈ A, D(f) = SpecAf ⊂ X is open and subsets of this form give
a base for the topology. We define a presheaf on the base by D(f) 7→ Mf , since if
D(g) ⊂ D(f), we have a map Mf →Mg. We let M̃ be the associated sheaf.

Proposition (Proposition 5.1). Let X = SpecA, M , M̃ be as above.

(a) (M̃)P = Mp;
(b) Γ(D(f), M̃) = Mf ;
(c) Γ(X, M̃) = M .

Proof. We have the presheaf stalk

(M̃)P = lim−→
U3P

M̃(U) = lim−→
D(f)3P

Mf = lim−→
f 6∈p

Mf = Mp.

This proves (a).
For (b), we note that if we have D(f) ⊂ X, and an A-module M , then we obtain

a natural Af -module Mf and M̃f = M̃ |D(f). Since the ˜ functor can be restricted
to open sets contained in D(f), we can prove (c) applied to Af and Mf .

To prove (c), we have a map α : Γ(X, M̃pre) → Γ(X, M̃). We check that α is
injective: suppose α(m) = 0 ∈ Γ(X, M̃), so α(m) = 0 ∈ Mp for all p so m is in
the kernel fo the map M → Mp, so there exists an s 6∈ p such that sm = 0. The
annihilator Ann(m) = {a ∈ A : am = 0} is an ideal I of A: but for every p, there
exists an s 6∈ p such that s ∈ Ann(m), so I 6⊂ p, hence I = A, and 1 ∈ I, so
1m = m = 0.

Finally, we check that α is surjective: given a global section of M̃ , there exists
a cover of X of the form {D(fi)} (finite because X is quasicompact) and on each
D(fi), mi/f

ni
i ∈ M̃

pre
fi

= Mfi
such that on D(fi) ∩ D(fj) = D(fifj) they agree,

which means there exists Nij such that (fifj)Nij (fnj

j mi − fni
i mj) = 0 ∈ M . But

since
mi

fni
=
fn−ni
i mi

fni
=
m′
i

fni
we may make n = ni for all i, and we can replace N with the maximum of the Nij .
From (fifj)N (fni mi − fni mj) = 0 we obtain fN+n

j (fNi mi) − fN+n
i (fNj mj) = 0, so

we can write fNj mi − fNi mj = 0; we replace fi by the powers, so we have simply
fjmi − fimj = 0.

Now use the fact that
⋃
iD(fi) = X so Z(f1, . . . , fr) = ∅ and 〈f1, . . . , fr〉 = 〈1〉,

so 1 =
∑
i aifi, ai ∈ A. Let m =

∑
i aimi. Then

fjm =
∑
i

aifjmi =
∑
i

aifimj = mj .

so m = mj/fj ∈Mfj
, and α is surjective. �
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We have that ˜ is an exact functor (because localization is exact), and the asso-
ciation M 7→ M̃ and contrarily F 7→ Γ(X,F ) when composed are the identity on
A-modules, but when composed in the other order on sheaves is not, hence we do
not quite have an equivalence of categories.
Example. If A is a ring, X = SpecA, U ( X any open subset. We take F =
i!(OX |U ) = i!(OU ), so Γ(X, i!OU ) = 0, but 0̃ 6= F .

We know (5.5), that every quasi-coherent F over X affine is obtained as F = M̃
for some A-module M . For example:
Example. Let X = A1

k = SpecA, A = k[x]. If M is a finitely-generated A-module,

M ' Ar ⊕ (
⊕

iA/(x − ai)ni) for ai ∈ k. The sheaf Ã/xn is the skyscraper sheaf
at zero. If K = K(X), K̃ is a sheaf of OX -modules, where on U = D(f) we have
Kf = K so K̃ = K is the constant sheaf. From

0→ A→ K → K/A→ 0

we obtain
0→ OX → K → K̃/A→ 0.

Claim. K̃/A =
⊕

P∈X(iP )∗(K/Ap), the direct sum of skyscraper sheaves.
Note that Ap is a DVR, consisting of {f ∈ K : v(f) ≥ 0}; hence K/Ap = {f :

v(f) < 0}.
We have seen that F is quasicoherent iff for all open affine sets U , F |U ' M̃

for some M .
If f : X → Y , and F is quasicoherent on Y , then f∗F is quasicoherent on X.

If f : X → Y , and either X is noetherian or f is separated or quasicompact, then
f∗ is quasicoherent. These hypotheses are necessary:
Example. Let X =

⊔∞
i=1 A1

k be an infinite union of affine lines, Y = A1
k. We

have Γ(Y, f∗OX) =
∏∞
i=1A =

∏∞
i=1 k[x], and thus if we take U = SpecAf ,

Γ(Uf , f∗OX) =
∏∞
i=1Af . If f∗OX were quasicoherent, we would have to have∏∞

i=1A = M , but Mf = (
∏∞
i=1A)f 6=

∏∞
i=1Af , since a sequence (a1/f1, a2/f2, . . . )

cannot necessarily be written in the form 1/f(a1, a2, . . . ).
As concerns OX -modules over a projective scheme, one can equivalently define

M̃ either by M̃(U) the set of sections to
⊔

p∈U (Mp)0 that are locally fractions
as is done in the book, or equivalently cover X by open affines D+(f), f ∈ S
homogeneous and D+(f) = {p 63 f} ' Spec(Sf )0, and put on D+(f) the sheaf

(̃Mf )0. The sheaves glue together as they must.

§II.6: Divisors and §II.7: Projective Morphisms

The theory of divisors is simplest when considered for curves. For example, here
is a proof of (6.1) for curves:
Proposition (Lemma 6.1). vP (f) = 0 for almost all P ∈ X.

Proof. A rational function is defined as a regular function f : U → k = A1
k which

if we consider A1
k ⊂ P1

k can be extended (I, 6.8) to a map f : X → P1
k. Now

vP (f) > 0 iff f ∈ mP ⊂ OP iff P ∈ f−1(0), and vP (f) < 0 iff P ∈ f−1(∞). We
need to show there are only finitely many in a preimage, which is a result of the
following proposition. �
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Proposition (Proposition 6.9). If f : X → Y is a dominant morphism of non-
singular curves, and n = [K(X) : K(Y )], then for all Q ∈ Y , the divisor f∗Q =∑
P∈f−1(Q) vP (tQ)P has degree n.

Remark. This is the same theorem as in algebraic number theory, where if A ⊂ K
and L/K is a finite extension, B the integral closure of A in L, then

∑
i eifi = n =

[L : K].

Proof. Let V = SpecB ⊂ Y , and let A be the integral closure of B in K(X).
Localizing we have OQ ⊂ K(Y ) and its integral closure OQ ⊂ K(X), the latter
of which is a torsion-free module over a PID and thus a free OQ-module of rank
[K(X) : K(Y )]. Hence deg f∗Q = dimk A/pA (an Artin ring) where B/p = k for
some prime p ⊂ B. �

Example. If X = P1
k, DivX is a big group. If we identify K(X) = k(x), f = x− a

for any a ∈ k has a zero at a, and if x = 1/y, then f = 1/y − a has a pole at ∞.
Thus ÷f = (a)− (∞), so (a) ∼ (∞) for all a ∈ k. Thus PicX ⊂ Z(∞). To see that
(∞) 6∼ 0, we note that deg(∞) 6= 0.

We define invertible sheaves on curves: if D =
∑
P nPP is effective (nP ≥ 0 for

all P ), we associate the closed subscheme ZD =
⋃
P OP,X/t

nP

P of dimension zero. In
this way, there is a one-to-one correspondence between effective divisors and closed
subschemes ZD ⊂ X of dimension 0, since if we have the stalk IP ⊂ OP of the
given quasicoherent sheaf of ideals, then since OP is a DVR, IP = mn

P , and thus we
can associate the integer n to the divisor.

In fact, the associated quasicoherent sheaf to this closed subscheme is an invert-
ible sheaf of OX -modules, since all stalks are contained in local rings which are
PIDs, hence locally generated by tnP

P at each P . So we define L (D) = I −1
D ⊂ K ,

locally generated by t−nP

P . A sheaf of fractional ideals is a locally finitely generated
subsheaf of OX -modules of K , and in this way we obtain a one-to-one correspon-
dence between divisors D and fractional ideals L (D) ⊂ K (given L , for all P
with local generator sP ∈ LP , we associate

∑
P vP (sP )P , which is a finite sum

because L is locally free and thus free on U = SpecA, generated by s ∈ K with
only finitely many zeros and poles and there are only finitely many points missed).
In this correspondence, two linearly equivalent divisors D1 ∼ D2 correspond to
isomorphic sheaves L1 ' L2, since if D1 − D2 = ÷f , then K

f−→ K gives an
isomorphism L2 → L1 and conversely. So PicX in the case of curves is also the
group of invertible OX -modules modulo isomorphism.

Now we preview linear systems as an application of divisors on curves. Let X
be a nonsingular projective plane curve, V = S1 the k-vector space generated by
x0, x1, x2. For an element l ∈ V we have a line Ll ⊂ P2 and vice versa. We can take
Dl = X ∩ Ll as a divisor, with degDl = degX. For any two such lines l1, l2, we
can take the quotient of the f = l1/l2, so that ÷f = D1 −D2, and thus D1 ∼ D2.

We let d be the family of linearly equivalent divisors Dl on X, indexed by the
vector space V = S1. d is in one-to-one correspondence with (V \ {0})/k×, and
thus is a “projective space”. This is an example of a linear system as we will see.

From (X, d), we can recover the embedding X ↪→ P2. As a set, map X → P2 on
a point P ∈ X by considering the subvector space of lines such that P ∈ Dl; this is
dimension 2 (it imposes one condition on a vector space of dimension 3), generated
say by yP,1, yP,2, thus I = 〈yP,1, yP,2〉 ⊂ S is an ideal of the point P ∈ P2. This in
fact a morphism: take x0, x1, x2, and Ui = {xi 6= 0} ⊂ P2, and Wi = Ui ∩X. We



256A: ALGEBRAIC GEOMETRY 31

need to show that we have a morphism W0 → U0 = Spec k[x1/x0, x2/x0], which
will arise from a morphism k[x1/x0, x2/x0]→ Γ(W0,OW0) as follows.

If X is a curve, and D a divisor, then we have an invertible sheaf L = L (D).
If s ∈ Γ(X,L ), we get sp ∈ LP , generated say by fP ∈ LP , and if sP = gP fP ,
for gp ∈ OP , then (÷s)0 =

∑
P vP (gP )P and (÷s)0 ∼ D because s ∈ K has

(÷s)0 − ÷s = D (the difference at each point P is measured by gP ). In sum,
to each global section s ∈ Γ(X,L ) we get an effective divisor (÷s)0 ∼ D, and
conversely, if D′ is an effective divisor D′ ∼ D, then D′ arises in this way, since D′

is effective iff OX ⊂ L (D′) ' L (D) ⊂ K is defined by the map 1 7→ s′. Therefore
the set |D| of effective divisors D′ ∼ D is in one-to-one correspondence with the
set (Γ(X,L (D)) \ {0})/k×.
Definition. We call |D|, the set of effective divisors D′ ∼ D a complete linear
system.

Therefore to OP2(1) on P2, L = OX(1) on X, so V ⊂ Γ(X,OP2(1)). So the mor-
phism k[x1/x0, x2/x0]→ Γ(W0,OW0) on W0, x0 6= 0, arises from the isomorphism
OX ' L which globally is a map 1 7→ x0.
Definition. A linear system is a subset d ⊂ |D| corresponding to a linear subspace
of (Γ(X,L ) \ {0})/k× (iff a subvector space of Γ(X,L )). We let dim d be its
dimension as a projective space, dimV − 1.

We would like to know, givenX and d, can we find an embedding into a projective
space Pn?
Definition. A base point of the linear system d is a point P ∈ X such that P ∈
SuppD for all D ∈ d.

Base points do exist: we can for example take the linear system of lines through
a point in P2.

It is a fact that (X, d) determine an embedding into Pn implies that d has no
base points. We can always just consider the open set U obtained by removing the
set of base points of d from X. We define a morphism φ : U → P(V ) = ProjS(V )
where S(V ) is the symmetric algebra S(V ) = k⊕V ⊕S2(V )⊕ . . . , where S2(V ) =
V ⊗ V/〈x ⊗ y − y ⊗ x〉x,y∈V . Warning: a point P ∈ P(V ) corresponds to an ideal
V ′ which is a codimension 1 subspace of the dual vector space.

Now it is worth surveying how to extend the theory of divisors to varieties other
than nonsingular projective curves. For curves, we have equivalently:

(1) Divisors D =
∑
P nPP , P closed points, modulo principal divisors ÷f =∑

P vP (f)P .
(2) ZD ⊂ C closed subschemes associated to effective divisors (locally principal

divisors, iff the associated quasicoherent sheaf I is locally generated by one
element).

(3) Sheaves of fractional ideals L ⊂ K .
(4) Invertible sheaves L .

As a comment for (Ex. 6.5.2), we can also note that the prime ideal 〈x, z〉 cannot
be principal because k[x, y, z]/〈xy−z2〉 is not a UFD (xy = zz, all of degree 1 hence
irreducible).

For more general varieties, there are several different generalizations of divisors
and linear equivalence. For (1), we may generalize to Weil divisors if X is normal
(integral) variety over a field k = k (iff OP is normal for all P iff X is regular
in codimension 1). In this generality, Weil divisors will not always correspond to
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invertible sheaves. For (2), we have the notion of Cartier divisors. The notions in
(4) generalize in an obvious way.

For (3), we also have generalized divisors. If X is a scheme which is G1 (Goren-
stein in codimension 1), and S2 (Serre’s condition). (For example, for curves,
normal is equivalent to nonsingular, but any plane curve is G1. For surfaces, non-
singular implies normal implies isolated singularities, but any surface in P3 is G1.)
We consider OX ⊂ KX and L ⊂ KX a fractional ideal. We require L to be
reflexive, i.e. L ' (L ∨)∨, where L ∨ = H om(L ,OX), plus some other technical
conditions. Here we have CaClX ' PicX under a weak hypothesis, and

CaClX ⊂ APicX ⊂ GPicX

where APicX is the group of almost Cartier divisors (Cartier except on subsets of
codimension ≥ 2) since GPicX, the set of reflexive fractional ideals is not quite a
group. For more information on this, see Robin Hartshorne, Generalized divisors
on Gorenstein schemes, K-Theory 8 (1994), no. 3, 287–339.

As an example, we have the following:
Proposition. If X is G1 and S2, then APicX = GPicX if and only if X is
normal.
Example. Let X = H1 ∪H2. We have

0→ APicX → PicH1 ⊕ PicH2 ⊕DivL→ PicL→ 0.

The first arrow sendsD 7→ (C1, C2, C1∩L−C2∩L) where C1 = D∩H1, C2 = D∩H2,
and L is a linear section. We have PicH1 = PicH2 = Z and PicL = Z. The second
arrow sends the triple (C1, C2, D) 7→ C1 ∩L−C2 ∩L−D. GPicX is a set together
with the action of the group APicX. The orbits are D, L, so it is a disjoint union.


