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The following are notes taken from a seminar taught by René Schoof at the
University of California, Berkeley, in the Fall semester, 2000.

1. TATE’S THEOREM

We begin with a motivating theorem for the course:

Theorem (Tate). There is no elliptic curve over Q with good reduction modulo
every prime p.

We will see later the generalization by Fontaine: there are no abelian varieties
over Q with good reduction modulo every prime p. The problem is reduced to
certain properties of the torsion points of abelian varieties, i.e. points of finite flat
group schemes over Z.

The proof is as follows (see [Tat2]):

Proof. An elliptic curve E defined over Q has a Weierstrass equation [Sil, Proposi-
tion I11.3.1]

E:Y?+ a1 XY +a3Y = X2+ a2 X? + as X + ag,
and after clearing denominators, we may assume a; € Z. Compute the discriminant

Ag = A # 0 (because F is nonsingular). To say that E has good reduction modulo
p is to say there exists a change of coordinates [Sil, Proposition VII.1.3]

X' =p’X+r, Y =pY+sX+t

for r,s,t € Z so that the resulting curve when reduced modulo p remains nonsin-
gular. We find A’ = A/p'2. Repeat this process for all primes dividing A until we
are left with a unit (£ will have bad reduction at any prime dividing the minimal
discriminant, cf. [Sil, Proposition VIL5.1]) and A = £1. The fact that Z is a PID
is important here, since it allows us to find a minimal global Weierstrass equation
[Sil, Proposition VIIIL.8.2].

Let [Sil, §IIL.1]J:

b2 = a? + 4&2
by = a1a3 + 2a4

bG = a% + 4(16

Cq4 — b% — 24b4

ce = —b3 + 36baby — 216bg
_ci—c
1728

These come about as follows: we complete the square by letting X’ = 4X and
Y’ = 8Y + 4a1 X + 4as, we obtain

Y2 = X 4 (a? + 4as) X"? + (8ayaz + 16a4) X’ + (16a3 + 64ag)
= X" £ by X% + 80y X' + 1605 = f(X').
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If we eliminate by by X" = 9X’ 4 3by, Y = 27Y”, we obtain
Y = X" —27(b3 — 24bs) X" + 54(b3 — 36boby + 216bg)
= X" —27c, X" — bdc.
We will write
Y? = f(X') = X"+ ay X" + a} X' + ag.

The roots of f give the 2-torsion points (as [2](z,y) = O iff y = 0), and A’ =
212A = +2'2; the discriminant of f is 26 A = £26 (each root is quartered).

Claim. E has a rational point of order 2.

Proof of claim. Adjoin all of the 2-torsion points E[2] to Q. The field L thus
obtained is Galois (since 0P is also a 2-torsion point for any o € Gal(Q/Q), or
because it is the splitting field of f), and

Gal(L/Q) — GLo(Fy) ~ Ss,

and

K =Q(VA)

|
|
Q
(L contains v/A because the discriminant is the square of a matrix with elements
of L), hence K = Q(i) or K = Q.

In order to show that at least one 2-torsion point is defined over Q, we need
to show that f is not irreducible, that is, that 3 does not divide the degree of the
extension [L : QJ, so that the image of the Galois group Gal(L/Q) is contained in
a (cyclic) subgroup of order two.

Case 1 (K = Q, or A = 1). The extension L is now Galois over @Q and hence
cyclic of degree dividing 3. By class field theory (which over Q is just the Kronecker-
Weber Theorem), any abelian extension of Q ramified outside m is contained Q(¢,,)
[L, §X.3, Corollary 3]. L is only ramified only at 2 (the discriminant of the defining
cubic is a power of 2, and Ay | A), 50 Q C L C Q(¢zn); but [L: Q] | [Q(¢en) : Q]
has 2-power order, a contradiction.

Alternatively, one can compute the discriminant of L: at unramified primes, the
local discriminant of L is £1; at 2, we have Qo C L. The minimal polynomial
g(m) = 0 is Eisenstein (a prime degree Galois extension of local fields is either
unramified or totally ramified, since n = 3 = ef). Therefore Ay, is equal to the
local discriminant [Ser, §I11.4, Proposition 9], which we can take to be N(g'(m))
for a uniformizer 7 [Ser, §II1.6, Proposition 12]. Since g(7) = T2 (mod 2), we
have ¢/(7) = 372 (mod 2), hence v,(¢'(7)) = vr(7?) = 2, and v2(N(g'(7))) =
vo(N(m)?) = 2 again because g is Eisenstein. This implies that |Az| < 22.

We now use discriminant bounds: by the Minkowski bound [L, §V.4, Theorem
4], if a C 9, is nonzero, then there is an « € a such that

(2) viEiN@

n:
N(a)| < —
Na) < 2 (2
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where n = [L : Q] = 3, o the number of complex places of L, which in our case
is 0 (if there were two complex roots, we would have the automorphism complex
conjugation of order 2). Thus

2 2
n" 27
s (5 = (Z) s
a contradiction.

Case 2 (K = Q(i), A = —1). In this case, we have K = Q(¢) C L, with L/Q(¢)
cyclic of degree dividing 3, only ramified at 1+ ¢, the (ramified) prime over 2. One
can now use class field theory to show that any ray class field of conductor a power
of 2 has 2-power order, taking the cycle ¢ = (1 4 4)¢ (since K is already totally
imaginary) for e sufficiently large, we have by [L, §VI.1, Theorem 1] that the order
of the ray class field modulo c¢ is

o h‘L¢(c) __9e—3
=y T

Or we can compute the discriminant of L using a relative discriminant formula:
we have

Arjgey | (1+14)°
as before by the Eisenstein condition, so [Ser, §IIL.4, Proposition 8]
Arsg = N(ALjgu) A = 2°4° = 2° = 256.
Now the Minkowski bound gives with n = 6, e; = 3,

Ag] > (gj (Z)R’)2 > 985,

a contradiction. This concludes the proof of the claim. O

Now from the equation
Y/2:Xl3+a/2X/2+a2X/+a%,
since the cubic is monic, the 2-torsion point will necessarily have integral coordi-
nates, so after translating we may assume that ag = 0. This implies by our equations
that by = 4ab, b)) = 2a/j, and b = 0, and hence ¢ = b — 24V} = 16(a? — 3a)}) and
¢k = 32(9abal, — 2a). Since 1728A" = ¢ — ¢, we have
1728(42'%) = 2'2(a? — 3a}))® — 2'°(9abal, — 2a5)?
and simplifying this gives
+28 = a2 (a? — 4d})).
This implies @/ | 24, and the only values of a) = 2% for which £2872% 4 2k+2 ig a
square are (ah,a}) = (0,44), (£6,8). These correspond to the curves
Y/2 — X/3 :l: 4X/
Y?=X"+6X"7+8X".
A direct calculation shows that each of these curves has j-invariant equal to 1728.
We will show that the second curve cannot occur; the proof of the first is the

similar. If this curve had good reduction, we could use a transformations of the
form Y’ =8Y +sX +¢, X' =4X +r, and we find

(8Y +sX +1)? = (4X +7)° +6(4X +7)? +8(4X + 1)
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which is
64Y 2 4+ 165 XY + 16tY = 64X> 4 (487 + 96 — s2) X2 + (121 + 487 — 2st) X
+ (r® 4+ 6r% —t2 +8).

Since this new equation is to have good reduction at 2 while keeping integral co-
ordinates, we must be able to make the coefficient on Y2 and X? a unit, so every
coefficient must be divisible by 64. In particular, this implies that 4 | s (say s = 4s')
and 4 | t by the XY and Y coefficients, and 4 | (3r 4+ 6 — s’?) by the X? coefficient.
Modulo 16 we obtain 0 = 12r? = 0 (mod 16) in the X coordinate, so that r = 21,
and 4 | (6r' + 6 — s'?), so s’ is even and 7’ is odd. Now, modulo 64, we obtain by
the X coordinate that

0=48+96+0=48 (mod 64),
and this is false. O

There is another proof of this theorem:

Second proof [O]. For a curve
E:Y?+u XY +a3Y = X3+ aX? + as X + ag

in the most general form to have good reduction everywhere, we must have that
the discriminant

A = +1 = —b3bg — 8b3 — 27b3 + Ibobsbs

is a unit, where bg = a%ag + 4asag — ajaszaq + agag — ai and the other coefficients
as above (see e.g. [Sil, §I1L1.1]). If a; were even, we would have by = a? + 4ay = 0
(mod 4) and that by = ajaz + 2a4 =0 (mod 2). This implies that

+1=A=-27b} =5b3 =0,4,5 (mod 8),

a contradiction. Therefore a7 is odd, which implies that by = 1 (mod 4) and
cy = b3 —24by =1 (mod 8).
We have that ¢§ — c2 = 1728A = £1728, which implies that

(ca F12)(ch £ 12¢4 + 144) = 2.

Since ¢4 is odd, ged(cq F 12,¢2 + 12¢4 + 144) is a power of 3. Since in addition
cZ + 12¢4 + 144 > 0, we have that ¢4 = 12 > 0 and hence ¢4 F 12 = 3°m? for some
e > 0 and odd m € Z. This implies that

3¥=3m?=¢, F12=1F12=5 (mod 8),
a contradiction. O
Exercises. The following are exercises for §1.
Problem 1.1. Show that there are no elliptic curves over Q(¢) with good reduction
everywhere.
2. INTRODUCTION TO GROUP SCHEMES

For more background information about group schemes, consult [Wat] for an
introduction to affine group schemes, [Tat] for an emphasis on finite flat group
schemes, and [Sha] and [TO] for other results of group schemes.
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Definition (as a functor). Let R be a Noetherian base ring (we will usually take
either the ring of integers of a number field, a p-adic ring i.e. a complete local
Noetherian ring, or a perfect field). Let € be the category of R-algebras, and €V
the category of affine R-schemes, the dual category.

Let F be a covariant functor € — Grps (the category of groups) and FY : ¢V —
Grps the corresponding contravariant functor.

Ezample. If S is an R-algebra, we can let F(S) = S*, for if we have a map
f:8 — T, then we have an induced map F(S) =S5 —T* = F(T) by f.
FEzample. We can also associate to every S a fixed finite group I', with the maps
I' = T just the identity.

Suppose that F is representable [Mac, §I11.2], i.e. we have G € €Y so that
G = Spec(A) with the property that F'(Spec.S) = Morg(Spec S, G). Dualizing, this
is equivalent to Morg(Spec S, G) ~ Hompg(A,S). We let G(S) = Morgr(Spec S, G)
be the set of S-valued points of G, and in this case, G is what is called a group
scheme. (See [Tat, (1.6)].)

Definition. G = Spec A is a group scheme if there is a contravariant functor F :
¢ — Grps such that the underlying functor F : € — Sets is representable, i.e.
G(S) = F(Spec S) = Morg(Spec S, G) ~ Homg(A4, S).

For a concrete explication of the functoriality of group schemes, see [Wat, §1.2].

Ezample. Let G = Spec A, A = R[T,1/T]. Then
F(S) = Homg(R[T,1/T],S) = S*
(since such a map is determined by image of 7', which must also be an invertible

element of S).

Example. If S is an R-algebra, then if G = Spec A were to represent the constant
functor to a group I' in the second example above, then we would have

I' ~ Hompg(A, S x S) = Hompg(A4,S) x Homg(A4,S) =T x T,
so we must have #I' = 1. Therefore only a trivial group can be represented in this
way.
Definition (as a group object). There is an alternative definition of group
schemes using the Yoneda lemma [Mac, §IIL.2]:
Lemma (Yoneda lemma). If € is a category, then the functor
F : € — Func(¢, Sets)
A = FA
where Fo(S) = More (A, S) is fully faithful, so that
Mor¢ (A, B) < Morgunc(Fi, Fa).

This map is indeed a functor because if we have a map ¢ : A — B then have induced
map More (B, S) — More(A,S) by f— fod.

The inverse of the functor is given on fg : Morg (B, S) — Morg(4, S) by (fs)s —
fB (ldB) .

In other words, if you “know the functor”, then you “know the original object”,
and vice versa. (See [Sha, §2] for an explication of this concept of a group scheme

as a family.) Hence the set of maps F4(S) g Fp(S) corresponds to a map A — B
(see the discussion in [Wat, §1.3]). In particular, if F' is a group functor, then
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F(S) is a group, hence we have a group operation F(S) x F(S) — F(S). If F is
representable, G(S) x G(S) — G(S), i.e.

Morg(Spec S, G) x Morg(Spec S, G) — Morg(Spec S, G),
which is to say we have a group operation
Hompg (A, S) x Hompg(A,S) — Hompg(A4, S).
Therefore
Homg(A® A, S) = (G x G)(S) — Hompg(A4, S) = G(S5),

and all of these compatible group laws F4(S) « Faga(S) must come from a single
morphism A — A® A, i.e. one from G +— G x G.

Therefore we can also define a group scheme by the following ([Tat, (1.5)] or

[Sha, §2]):
Definition. An R-group scheme G is a group object in the category € of R-schemes,
which is to say that G is an (affine) R-scheme together with a morphism ¢: GxG —
G, called the composition law, a morphism e : Spec R — G called the unit or neutral
element, and an inverse map i : G — G, which satisfy the group axioms.

This definition is a statement in the category €V. Therefore if we have G =
Spec A, then for the R-algebra A with everything dualized, we have a maps ¢ :
A— A®r A, e: A— R,and i : A — A so that the dual diagrams commute.
In this case, the group operations (maps) are called comultiplication, counit, and
cotnverse.

Ezample. In the case of G,, = Spec R[T,1/T] = Spec A, then G,,(S) = S* =
Homp(R[T,1/T],S) by the association of ¢ with ¢(T).
On the level of algebras, comultiplication is

R[T,1/T] — R[U,1/U] ® R[V,1/V] = R[U,1/U,V,1/V]
T—UV

under usual multiplication. The neutral element R[T,1/T] — R is T + 1, and the
inverse map is R[T,1/T] — R[T,1/T] by T — 1/T.

The group axioms can be phrased in terms of the commutativity of certain
diagrams (see [Wat, §1.4]). For example, associativity corresponds to the diagram

CXidG

GxGxG———GxG

J{idc Xc ic

GxG G

with the corresponding dual diagram:

idA®CT

AR A A

c
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The neutral element satisfies

G — G xgSpecR

\LidA Xe

G Gx@G

(&
where G — G X Spec R is the natural injection, and the inverse map has

idg %1

G—5oxa X axa

lc

Spec R —= G

where A is the diagonal map, dual to:

AﬁA@AmA@A
R A

A is a finitely generated R-algebra, and any such A equipped with morphisms
¢, i,e (called comultiplication, counit, and coinverse) making the above diagrams
commute is called a commutative Hopf algebra [Tat, (2.2)]. Therefore by definition
the category of Hopf algebras is equivalent to the category of affine group schemes
with arrows reversed.

We have A = R[Xy,...,X,]/(fi): where f; are a (finite, since R is assumed
Noetherian) set of relations. The maps have a very simple description: the multi-
plication map is represented as

X1 X{ Cl(Xl,...,Xn,X{,...,Xr/L)

x,) \x/ en(Xtse e X, X0 X1
and hence the comultiplication map has
c:A— A A=R[X1,..., Xpn, X1,..., X0/ {fi, )i
Xivci( Xy, .., X, X1, .., X))
for 1 < i < n. Similarly, e(X;) gives the coordinates of the neutral element in A.

Examples of group schemes. Here are some examples of group schemes:

Ezample. The multiplicative group G, is the affine scheme over R defined by the
equation XY = 1 with group operation (X,Y)(X’,Y’) = (XX',YY’) [Tat, (2.4)].
The associated Hopf algebra

A=R[X,)Y]/(XY - 1)~ R[X,1/X],
has comultiplication A — A ® A by
R[X,Y]|/(XY — 1) — R[U,V,U",V'|J(UV —1,U'V' - 1)
X, Y —Uu,vv’

The identity map A — R is X,Y — 1 and the inverse map A — A is XY —
1/X,1/Y.
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Indeed, the association G, (S) = S* is a functorial one. Since
Morg(Spec S, G,) = Homg(R[T,1/T),S) ~ S*,

(any map is determined by the image of T, which must be invertible), we need only
verify that the maps giving the group operations are correctly induced. We have
comultiplication S* x S* — S§* which is dual to

Hompg(R[U,1/U],S) x Homg(R[U',1/U'], S) « Hompg(R[T,1/T],S).
We need to verify that ¢ — ¢ o ¢ arises from the group maps; this follows from

(¢oo)(T) = p(UU') = ¢(U)s(U") = (¢(U), p(U")).

Ezample. The additive group G, = Spec A where A = R[X] under the group law
of addition, neutral element 0 and inverse X — —X is an affine group scheme [Tat,
(2.4)]. Themapc: A=R[X] - RUV]=A®Ais X —-U+V,e: RX|— R
is X ~— 0, and inverse ¢ : R[X] — R[z] by X — —X. The functor it represents on
R-algebras is the one that maps S — S, S treated as an additive group. One can
verify functoriality as above.

Ezample. For roots of unity [Tat, (2.7)], we will represent the functor S +— p,(S),
the nth roots of unity in S under multiplication, by i, = Spec(A), A = R[T|/{T" —
1), so that Hompg (A, S) ~ p,(5).

The group law is multiplication, so the Hopf algebra has composition ¢ : A —
A® A taking T — UV, e : A — R taking T — 1, and i : A — A taking
T—Tr 1 =7"1
Ezample. If char R = p, then «,(S) = {a € S : o? =0} is a group under addition,
with o, = Spec A, A = R[T]/(T?) with the addition formulas as above.

FEzample. (See [Sha, §3, p.45].) The group of matrices (é 3p>7 i.e. matrices of the
P

Lxy P _ p_
{(0 y).x,yeR,x =0,y —1}

is a group scheme when char R = p > 0. We have

1\ (12 (1 a2+uzy
0y/\0y) \0 w )’

Since (yy')P = yPy’? = 1 and (z/ + xy')P = 2P + aPy’? = 0, this is a well-defined
group operation. The corresponding algebra is A = R[X,Y]/(XP,YP? — 1), and the
composition law is

A— A® A= R[U,V,U",V'|(UP, U, VP -1,V — 1)
XY — U +UV,VV'

form

This is an example of a noncommutative group ring (the formulas are not sym-
metric in U and V). The neutral map is X, Y +— 0,1 and the inverse map is
X,Y—-—XYy- Ly

Rank and the augmentation ideal. We will be primarily interested with finite
group schemes, for which we need the following definition.
Definition. G is called finite of rank n (or order n) if G = Spec A and A is a locally
free R-algebra of rank n.

The ideal I = kere is called the augmentation ideal.



10 GROUP SCHEMES

(See [Tat, (2.3)] and [Wat, §2.1].)

Since we are assuming that R is locally noetherian, GG is of finite order over
Spec R iff it is finite and flat over Spec R [TO, §1].
Ezample. For example, u, has rank n, o, has rank p, and the previous matrix
algebra example has rank p2.

Ezample. A finite (affine) group scheme of rank 1 has G = Spec A, R — A < R so
A~ R, and Homp(A,S) = Hompg(R, S) = {e} so G is the trivial group scheme.

We will now determine finite group schemes of rank 2 (see [TO, p.1] and [Tat,
(3.2)]). Let G = Spec A, and suppose for simplicity that A is actually free of rank
2 over R. The splitting

R—ASR
gives A ~ I X R as an R-module.
Exercise. From the exact sequence
0—-I—-RxR=A5R—0,

show that the ideal I is generated by e((1,0))(0,1) —e((0,1))(1,0) and that I is free

of rank 1 over R.

Hence A must be R[X] modulo a quadratic relation. Substituting X —e(X) in for
X, we may assume the quadratic polynomial vanishes at zero, and that e(X) = 0.
We are left with

A~ R[X]/(X?+aX)
for some a € R. The group law is a morphism
R[T|/(T? + aT) — RIX, X']/(X? + aX, X" + aX')
defined by T — a + X +~vX’' + § X X', say. The identity map e : X, X' — 0 tells

us that « =0, 8 =1 on X’ = 0 and similarly v = 1 for X = 0. Replace b = §, so
that composition is T — X + X’ + bX X’. But we must also have that

(X +X +bXX')V+a(X+ X' +bXX')=0€ A A.

Computing we find
—aX +2XX' —aX' —2abX X' —2abX X'+ a’b* X X' +aX +aX' +abXX =0
so that the coefficient of X X’ must vanish:

2 — 3ab + a*b? = (2 — ab)(1 — ab) = 0.

Associativity is always satisfied, so it gives no new information. However, if the

inverse map X — 7+ sX for some r, s € R, then

X+ (r+sX)+0X(r+sX)=0¢€ A4

thus the constant term r = 0 and thus the coefficient of X, 1 + s — abs = 0, which
implies (1 — ab)s = —1, a unit, so from the above we conclude ab = 2. Since
1—ab=—-1,s0s=1,s0iX)=X. (Without the inverse map, we do not have a
R-group scheme, but instead a monoid [Tat, (3.2)].)

Finally, one checks that these conditions are also sufficient.

Proposition. The scheme G, = Spec R[X]/(X? + aX) with group law
X—X+X+bXX'

and ab = 2 is a group scheme.

One can show:
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Exercise. Gop ~ Go 1y as group schemes iff a = ua’, b = (1/u)b’ for somew € R*.
Returning to the augmentation ideal, we prove [Tat, (2.3)]:

Lemma. Let G = Spec A be a group scheme over R and I = kere so that
0—-I—-ASR—0

is exact. If f € I then we have

c(f)=1f+f®1l (modI®I).
Proof. By the commutative diagram for e, (e ® id4) o ¢ = 1 ® id4. Therefore if

c(f)=a+p+7+0€cA®A
witha e ROR, e RRI,veI®R,and § € I ® I, then
((e®ida)oc) (f)=a+=(01®id)(f) (modI®I)

so that « =0, 8 =1® f. Similarly, applying id4 ®e we find v = f ® 1. O

This lemma says that if A = R[X7,...,X,]/(f;): with the generators chosen so
that the neutral element is at the origin (and thus X; € I), then

X @) x1 + 2

: : (mod I ® I).
T, x Ty + 2,

Corollary. ¢(I) CI® A+ AR 1.

Subgroup schemes, morphisms and kernels. We define the following:
Definition. A closed subgroup scheme H is H = Spec(A/J) — G = Spec A, where

H is a group scheme with the multiplication and identity morphisms induced from
that of G.

This definition implies that ¢ : A — A® A induces a well-defined comultiplication

map

c: AT —AJJRA/T=(ARA)/(A®J+J®A),
ie. eJ)Cc J® A+ A® J. We insist that J C I (to exclude for example the unit
ideal), and we say J is a Hopf ideal. It follows that this holds for the inverse map
as well.

Note I itself is a Hopf ideal corresponding to the trivial subgroup of G.
Ezample. u, is a closed subgroup scheme of G,,. Since G,, = Spec R[T,1/T],
pn = Spec R[T]/{T™ — 1), we have for J = (T™ — 1) that
(ThM—1)=O0V)"—1=U0"-1)(V"-1)+U"-1)+(V"-1) CJRA+ AR J.

Ezample. « is a closed subgroup scheme of G,.
Definition. A map f : G — H is a (homo)morphism of group schemes if it is a
morphism of schemes such that

GxG2>@q
ifo lf
HxH2spH

comimutes.
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By functoriality, we have if G = Spec A and H = Spec B that
A X Jf
R

and therefore we find (f® f)ocg =caof,eaof=ep,andigo f = foip on the
level of Hopf algebras. (See also [Wat, §2.1].)

Definition. The kernel ker(G ER H) = N (as a functor) is
N(S) = ker G(S) L5 H(S).

This functor is representable [Tat, (1.7)], and it has the universal property de-
scribed by the following diagram:

which by algebras shows us that if N = Spec(C') then we have the universal diagram:
A<—RB

L

This is the universal property of the tensor product, so
C=AR=A®p (B/IB) = A/f(IB)A,

and we conclude that N = Spec A/ f(Ip)A.
We now should verify that f(Ip)A is a Hopf ideal, so that N is a closed sub-
scheme: we have
c(f(Ip)A) = (f& )(cIp)A) C (f® f)((Ip© B+ B®Ip)A)
CfUp)A®A+A® f(Ip)A.

Ezample. The map G,, — G,, by & — z" is a homomorphism. At the level of
Hopf algebras, we have

R[X,1/X] <——— R[X,1/X]

| |

RIX]/(X™ —1) R
since R[X]/(X™ — 1) ~ R[X,1/X] ®gr R[X]/(X™ —1).
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The definition of the cokernel is much harder, and we will take it up at another
time.

Diagonalizable group schemes. (See also [Wat, §2.2].) If T is a finitely gener-
ated abelian group, we have a group ring

Rl ={> a7,y € R}.

This is a Hopf algebra in a natural way [Tat, (2.6)], which is to say Hompg(R[I], S)
for G = Spec(R]T']), obtained from Morg(Spec S, G), is a group in a natural way:
since

Hompg(R[T],S) ~ Hom(T", S™),

the group operation is (fg)(v) = f(v)9(7)-
One can check that the group morphisms are given by

¢: Rl — R[I'l ® R[I']
TR,

e: R[] - Rby v+ 1, and i : R[I'] — R[[] by v — 1. This verification is
exactly as above for the functoriality of the multiplicative group scheme: to check
that ¢ induces the natural group law on Hom(T", S*), we write

Homp(T', S™) x Hompg(T', S*) — Hompg(T", S™)
is
Hompg(R[I,S) x Hompg(R[I'],S) ~ Homg (R[] ® R[I'],S) — Hompg(R[I],S)
so for a chosen v, we compute that ¢(y) = (¢ oc)(y @) = d(7).
Ezxample. If T = Z, R[I'] ~ R[Z] = R[T,1/T] and we recover G,,; if I' = Z/nZ,

R[T] = R[T)/{T™ — 1), and we recover .
Since I' ~ Z" x []_, Z/m;Z, we have
R[F] z]%[)(la'''7)(7“3}/1;'''aYvﬁ?]—/AXrla"'31/)(7‘]/<le7”1 717"'7Ym5 71))

S

and the coordinatized multiplication is just

X, X] XXy
X, X | | XX,
Y; Y/ | | WY/
v, \vt) \nw
with neutral element
1
e =
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Constant group schemes. (See also [Wat, §2.3].) Let I be a finite group, and
denote [Tat, (2.10)]
R™ =R x -+ x R= Rle,] er-
#T

The e, = (0,...,1,...,0) (in the 7 slot) form an orthogonal system of idempotents
of RT) | since e% =ey and eje =0 if v # 9/, and ZA/ ey =1.

We have for a decomposition of S = [[.S; into connected components (i.e.
Spec S; is connected, which is to say the only idempotents in S; are 0 and 1),

Homp(R™, S) = Homp(R", I, S;) = [, Homg(R"D), S;);
since e, must map to an idempotent element of S; (hence 0 or 1) and must also
satisfy the mutual orthogonality relation, we find that the position where e, — 1
uniquely determines the map, and thus
Homp(RM),8) ~ T[,T.
We define the map
¢: RM — RM @ RM
€y — Z s D er
oT="
and e : RT) — R by e; — l,ey—=0fory#1,and7: RM — RM by €y > eyt
One can verify that these maps are compatible (functorial) as follows. If Spec S
is connected, then HomR(R(F),S) ~ T, so the law I x I' — T' is supposed to be
induced by
Homp (R @ R, $) — Homg(RT), S)
¢—goc
We must match idempotents, hence any such morphism is of the form f, : e, — 1,
ey — 0 for o' # . If we let (f,, fy/) = (¢,¢’) on coordinates, then

0, else

Goal = 3 f7<ea>f¢<eT>{1’ v =

oT="'
by mutual orthogonality, and hence ¢ o c = f,» = f, as needed.
In terms of coordinates,
R™) = R[X'y}’y;ﬁl/o(i — Xy, Xy Xy hyyrer,
with e = (1,0,...,0).
Exercises. The following are exercises for §2.

Problem 2.1. The group functor R +— SLy(R) on the category of commutative
rings (Z-algebras) is representable by a group scheme G = Spec A. Describe the
Hopf algebra A: give the ring structure and the comultiplication, coinverse, and
counit morphisms.

Problem 2.2. Let G = Spec A be an R-group scheme with comultiplication mor-
phism c: A — A® A, counit e : A — R and coinverse i : A — A.

(a) Show that the diagonal morphism G — G x G corresponds to the algebra
multiplication map m: A® A — A.
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(b) Show that mo (i ®ida) @ c=e.
(¢) Show that if moc = e, then G is commutative.

Problem 2.3. Let R be a ring.

(a) Show that there are no nontrivial homomorphisms from G, to G,.

(b) If R is reduced, show that there are no nontrivial homomorphisms from G,
to G,,.

(c) For each € € R with €2 = 0, construct a nontrivial homomorphism from G,
to Gy,

Problem 2.4. Let A = Z[X]/(X? — X).

(a) Show that G = Spec A, with multiplication law X + X’ — 2X X’  neutral
element given by X = 0, and inverse of X given by X, is a group scheme.

(b) Show that G is isomorphic to the constant group scheme Z/27Z.

(¢) Show that the morphism G — s given by X — 1—2X is a homomorphism
of group schemes.

(d) Determine the kernel of the homomorphism of part (c).

Problem 2.5. Let k be a field of characteristic p > 0.

(a) Show that for every k-algebra S the map given by z — 1+ x induces a
bijection ay,(S) — pp(S).
(b) Show that the group schemes p, and «, are not isomorphic over k.

Problem 2.6.

(a) Let k be a field of characteristic p > 0. Show that the k-algebra homomor-
phism k[T] — k[T] given by T — T? — T induces a morphism ¢ : G, — G,.
(b) Show that the kernel of g is isomorphic to the constant group scheme Z/pZ.

Problem 2.7. Let R be a ring whose only idempotents are 0 and 1. Let I be a finite
commutative group and let A = R denote the Hopf algebra of the corresponding
constant group scheme. Determine the elements a € A* for which ¢(a) = a ® a.
Here ¢: A — A ® A denotes the comultiplication map of A.

Problem 2.8. Let R be aring and let F' be the functor for which F(S) = {(x,y) €
S x S :x?+y% =1} for an R-algebra S.
(a) Show that the functor F' is represented by the R-algebra R[X,Y]/(X? +
Y2 —1).
(b) Show that the composition rules F'(S) x F(S) — F(S) given by

(z,y) + (2" y) = (v’ — yy', 2y’ + ya')
induce natural group structures on the sets F(.5).
(c) Determine the group scheme structure of G = Spec(R[X,Y]/(X?+Y2-1))
that induces the group laws of part (b).
(d) If there exists an element i € R for which i?> = —1, then the maps G(S) —
S* given by (x,y) — z + iy are induced by a homomorphism of group

schemes j : G — G,,. Prove this. Show that j is an isomorphism iff
2 € R*.

Problem 2.9. Let R be a ring and let F' be the functor that associates to each
R-algebra S the set of its idempotent elements.
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(a) Show that the functor F is represented by the R-algebra R[X]/(X? — X).

(b) Show that the maps F(S) x F(S) — F(S) given by (e,e') — e+ ¢ — 2ee’
induce natural group structures on the sets F(S).

(c) Show that G = Spec R[X]/(X? — X) has a group scheme structure that
induces the group laws of part (b).

(d) Prove that G is isomorphic to the constant group scheme Z/2Zp.

3. DUALITY AND DELIGNE’S THEOREM

Cartier duality. Let G = Spec A be commutative (the formula for composition
is symmetric). Assume that A is a finite flat algebra over R (e.g. R and R[T|
when T is finite and commutative). Let AY = Hompg(A, R). This is an R-module
by
(Af)(a) = Af(a) = f(Aa)
for A€ R, a € A.
If A is free,
Homp(A ® A, R) ~ Hompg(A, R) x Hompg (A, R)

since A is flat and R is noetherian, so A is projective. Therefore (A®A)Y ~ AV®AY.
If A is a Hopf algebra, we have the following R-algebra homomorphisms:
m:AQA— A
c:A—- AR A
R— A
e:A— R
i:A— A
where m is the algebra multiplication map, and R — A is the structure map. Notice
the nice symmetry in this situation. Dualizing, we obtain maps
mY: AV — AV @AY
¢V AV @AY — AY

AV - R
eV R— AY
iV A o AY

Theorem (Cartier). With these homomorphisms, AV becomes an R-Hopf algebra
with AV finite and flat over R. GV = Spec AV is called the dual group scheme.
Moreover, for any R-algebra S,

GY(S) = Hom$™M(G/S, G, /S) = Hom TP (ST, 1/T], A® S),

an equality of morphisms of group schemes and Hopf algebra homomorphisms.

Proof. (See also [Tat, (3.8)], [Wat, §2.4], [Sha, §4].) We need to reverse arrows in
diagrams and check for compatibility. Almost all of these follow immediately; but
to check that iV is an algebra homomorphism, we need the commutativity of the
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diagram

A\/®A\/L>AV

lz‘v(gnv liv
\2

AV @AY ———— AV
so we dualize and obtain

"

and invoke the antiequivalence of categories

GxG—=-—=@a

GxG——=@G

which is commutative iff (gh)~! = g~'h~!, i.e. we need that the group scheme is
commutative.

We also, for example, need to check that ¢¥ makes AY into a (commutative)
R-algebra, which also needs underlying commutativity:

AV ®A\/ L>A\/
‘
0
v v
AV @AY AV
gives rise to

A
?
and finally
GxG—=0
‘
0
v C
GxG——=G
where the map {j interchanges the two coordinates. This last diagram commutes iff
gh = hg.
Now we must check the final statement regarding functoriality of the S-valued
points, that GV(S) = Homg(AY,S). We need to check that
Hom '8 (Hom¥°4(4, R), S) ~ Hom§ P (S[T,1/T), A® S)

where this is interpreted as R-algebra homomorphisms of R-module homomor-
phisms isomorphic to Hopf algebra homomorphisms. By the universal property
of the tensor product,

Homg(Homgs(A® S, S),S) ~ Homg(Hompg(A4, R), S),
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we may assume R = S.
We want to show that

Homg(Hompg(A4, R), R) ~ Homg(R|T,1/T),A) ={a € A" : c(a) =a®a} C A,

where the equality on the left gives compatibility with the composition law. The
left-hand side can be viewed as the set of elements a € A such that ¢ — ¢(a) is an
R-algebra homomorphism (for a finite module, the dual of the dual is canonically
isomorphic with the module itself). We want therefore that (¢¢)(a) = ¢(a)y(a)
for all ¢,7) € AV; but

(@¥)(a) = (¢ @ ¢) o c)(a) = p(a)¥(a) = (¢ @) (a®a)
iff ¢(a) =a®a.

The unit element of the R-algebra Hom(A, R) e (arising from the structure mor-
phism) must map to the unit element of R, so e — 1, so e(a) — 1. The inverse
axiom gives m o (id4 ®i) o ¢ = e so we have m(a ®i(a)) = ai(a) = 1, so a is a unit,
so actually GV (R) C A%, which completes the proof. a

Here are some examples of duality:

Ezxample. The dual of u,, if we write R for S, is given by

Hompg(tn, Gn) ~ Homp(R[T,1/T], R[X]/{X"™ — 1))
by T +— p(X) with p(U)p(V) = p(UV). If we let p(X) = Z?:_ol a;X* for a; € R,

this says that
_ n—1
Sy - (Lor) (v
i=0 i=0

in R[U,V]/{U™ —1,V™ —1). So looking at the coefficients of crossterms we find
a;aj = 0 when i # j, and on diagonal terms we have a; = a7, and since ¢(1) =
¢(1)p(1), we have ¢(1) = 1, and therefore ). a; = 1. Therefore the a; are orthog-
onal idempotents.

Hence the a; are a point in the constant scheme (Z/nZ)r = Spec R%/"%) and
therefore this scheme is dual to p,.

If R =S is connected, then

Hompg(R[T, 1/T], RIX]/{(X" = 1)) = {$(X) : (UV) o(U)o(V)}
and indeed ¢;(X)¢;(X) = X" = ¢;;;(X) matches the group law.
Ezample. We have (G1 x G2)¥ ~ GY x Gy. So the diagonalizable group scheme
Spec(R[I']) for I' finite and commutative is dual to the constant scheme I' =
Spec(RM).
Ezample. For ay,, char R = p, where ,(S) = {s € § : s = 0} under addition, the
dual is

Homp(ap, Gy,) = Hompg(R[T,1/T], R X]/(X7))
= {6(X) € RIX]/(X?) : (U +V) = ¢(U)o(V)}.
This implies that if ¢(X) = 327" a; X" then

,,z_: a;(U+V) = (i aiUi) (i aiVi>
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so ag = 1, a; is a free parameter, and if the the characteristic p is sufficiently large,
we have by the UV term that 2as = a?, so ap = a3/2!, and by the U2V term that
3a3 = ajay 50 az = a}/3!, and continuing in this way ay = a¥/k! for k < p — 1.
By the coefficient UP~1V we find a} = 0, so ¢(U) = exp(alU) with a? = 0, which
corresponds to a point in «,(R). Hence

exp(al) exp(a'U) = exp((a + a')U)

and oy, is self-dual.
Ezample. For the (free) group schemes of order 2, namely

Gap = Spec RIX]/(X? + aX)

under X — X + X' +bX X', ab = 2, the dual is

Hompg (R[T,1/T), R[X]/(X? + aX))

= {¢(X) € RIX]/(X? +aX) : o(X + X'+ bXX') = ¢(X)p(X")}.
since ¢(0) =1, $ =1 — eX for some € € R, and
1—e(X+ X' +0XX')=(1-eX)(1 —eX')

hence —eb = €2, and €2 + eb = 0. In other words, € € R[X]/(X? + bX), and then

1-eX)1-€X)=1—€eX —€X +e(—aX)=1—(e+€ +aee)X,
so that G(\l/yb ~ Gpq-

Deligne’s theorem. The goal of the following sections is to prove (see [TO, §1]):

Theorem (Deligne). If G is a finite flat commutative group scheme over R, so
that G = Spec A, A flat of finite rank m, then [m] annihilates G, that is, repeating
the group law m times gives a form vanishing identically on the scheme (the neutral
element).

Ezample. For G = p,,, a point in u, = Spec R[X]/(X"™ —1) has X = X"
neutral element.

1, the

[m] : G — @G is the repetition of the group law on an element m times, and is
dual to [m] : A+ A. To say that it kills G is to say it factors

a [m]

|7

Spec R

G

or

-
7
R

but in this case I = kere C ker[m], so it is enough to show [m](I) = 0.
We may assume that R is local (because of the flatness condition, if it is zero
locally, it is zero globally), so that A is free over R. Recall that

GR)C A, G(S)CA®S~(AxS)Y,
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so by dualizing, we have GY(R) C A, where
GY(R) = Hom’'8(Hom}°4(A,R),R) = {a € A: c(a) = a®a}
Since we may assume S is finite and free over R, we have:

Lemma. We have a map
G(R) —=G(S) - Y~ G(R)

Proof. We must construct this latter map. Define N : S — R as follows: for any
s € 8, N(s) is the determinant of the multiplication by s map S — S, an element
of R. By the properties of determinant, N(ss") = N(s)N(s'). For any R-algebra
we have a norm
SoAX R A
viewing S ® A as a free R ® A-algebra.
We have
G(S)—=AV® S
|
I N
\
G(R) — AV
where the claim is that the norm N maps G(S5) to G(R).
Claim. If f: B — C is a homomorphism of R-algebras, then

Besli®% cgs
oo
f

B

C

is commutative.

Proof of claim. Let e; be a basis for S over R, so that 1®e; are a B-basis for B® S
and a C-basisfor C® S. Ifa € B® S,
for p;; € B so N(a) = det(p;;).
Hence
fla)I®e;) =37 f(nij)(1@ej)
and N(f(e)) = det(fui;) = f(N(a)). 0

We apply this to AY Ma®l, gv g AV by substitution into the first coordinate,
then N(f®1) = N(f)® 1. If we apply this to A" i>AV®AV, we find N(c¢" f) =
¢’ (N(f))-

If f € G(S), then f is a unit and ¢"(f) = f ® f. Hence N(f) is also a unit, and
we verify

c'(N(f) =N(c"(f)) =N(fef)=N1® f)N(fe1)
=(N(f)@ 1A @ N(f)) =N(f)® N(f).

This proves the lemma. O
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Proof of theorem. Tt is enough to show that G(R) is killed by [m]. Let u € G(R) C
AY be a section. We have c¢(u) = u ® u, so [mJu = u™, and we want to show that
u™ = 1.

For v € G(R) = Hompg(A, R), we have the composition map G(R) — G(A) 2,
G(R). From the map G(R) — G(S), we may lift u, and we obtain a map G(S) —
G(S) for every S, which is translation by u in the group. By the Yoneda lemma,
these come from a map on the corresponding algebras, namely

A A

ida ®UT /

AR A

because it is obtained from
G(A) =Hompg(A,A) - AV A
\LN l/N
G(R) =Hompg (A, R) —= AV

where the top map is the isomorphism f ® a — (b — af(b)). Therefore this
translation 7 : A — A is the composition a — ((idg ®u) o ¢)(a).
Now if we extend AV linearly to AV ® A, we have

T(f®p)=fer(3)
and for a =), 7; ® e; for e; an R-basis for A, we have
T(a) =3 ;mi © 7(es)

which implies N(a) = N(7(a)) and hence N(id4) = N(7(id4)).
For id4 € G(A), we have

T(idA) =wuidy € G(A),

since ((ida ®u) o ¢)(a) = 7(ida)(a).
Finally, since N(u) = u™, we have

N(ldA) = N(u ldA) = N(u)N(ldA) = umN(idA)
so since N(id4) is invertible, u is killed by m. O

This theorem is still unknown in full generality when G is not commutative, but
we can check it in certain cases:

Ezample. For G the set of matrices ((1) z) with 2P =0, y? = 1, we have

A= R[Xv Y]/<Xp’yp - 1>
of rank p?. We indeed find

2
12\" (1 z0+y+-+y"H) (10
0y) ~\o s —\o1

since y? = 1 and R has characteristic p.
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Exercises. The following are exercises for §3.

Problem 3.1. Let k be a field of characteristic p > 0 and let W (X,Y") denote the
polynomial ((X +Y)?P — XP —YP)/p € Z[X,Y].

(a) Show that the k-scheme Spec(k[X,Y]/(XP,YP)) with group law given by
(x,y)+ (2", y) = (x+ 2",y +y — W(x,2')) is a group scheme.

(b) Compute the Cartier dual of ay2; show it is isomorphic to the group scheme
of part (a). Here a2 denotes the closed subgroup scheme of G, given by

ap(R)={reR: a?” = 0} for any k-algebra R.

4. ETALE SCHEMES

Differentials. For background on differentials, consult [Wat, §11.1], [Mat, §26], or
[Tat, (2.11)].
If R is our base ring, A an R-algebra, and M an A-module, then

Derg(A,M)={D: A — M : R-linear, D(ab) = aD(b) + bD(a)}.
As a consequence, D(r) = 0 for all r € R. We have
Derr(A, M) ~ HomA(Q}Ll/R,M)

for a universal object Q}MR, called the Kdhler differentials [Mat, §26, Proposition,
p.182], given by

9,14/1% =@, caAda/{d(a+b) — da— db, d(ab) — adb— bda, dr).
In the case that A = R[X1,...,X,]/{(f:): is a finitely generated R-algebra, then
Vyyp = @i AdX, /(31 (0fi/0X;) dX;).
We find [Wat, §11.2]
aws)ss = La/n® 5
and that
Q(leB)/S = 9114/5 X Q}a/s-
Ezample. If we let Z[i] ~ Z[X]/(X? + 1), we have
gz = ZIi) dX/(2X dX) =~ Z[i]/(20).
From the map A — QZ/R by a +— da, we have

A*6>M

7
s
d
s

La/r

So that Hom 4 (Q}A/R, M) ~ Derg(A, M) by the universal property of QZ/R.
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Etale group schemes (over a field). We will construct a larger set of group
schemes containing the constant group schemes. We first suppose R is a field k.
Definition. A finite k-algebra A is étale if A is a finite product A =[], k; for k C k;
a finite separable field extension.

Proposition. If A is any finite k-algebra (so that it is an Artin k-algebra), then
A ~ 1, A;, where each A; is a local k-algebra with mazimal ideal m; nilpotent.

For the proof, see [AM, Theorem 8.7] or [Wat, §6.2]. For the commutative
algebra behind separable extensions, see [Mat, §27].

Proposition. Ifk is a field, A a finite k-algebra, then the following are equivalent:
(i) A is étale;

)
(iil) A@k~kx---xk;
(iv) A®k is reduced (i.e. has no nilpotents);
(V) Q}q/k = 0}'
5 Ol —
(vi) Q(A@E)/k =0.

This implies that a subalgebra of an étale algebra is étale by (iv), and by (ii)
we find that a tensor product of étale algebras and a quotient algebra of an étale
algebra are étale.

Proof. (See [Wat, §6.2] or [Mil, Proposition 1.3.1].)

(i) = (ii) is clear by tensoring the relation. (ii) = (iii) directly. (iii) = (iv)
because k x --- x k has no nilpotents. (iv) = (iii) because it is a product of local
algebras and hence we must have all m; = 0.

(iii) = (i): If A®k ~ k x ---x k, then A has no nilpotents, so by the proposition
above, A =[], A; and each A; is a field. Thus

Homk (A,E) = LJz Homk (AZ,E)

By Galois theory, the order of the right-hand side is < the sum of the degrees of
A;, which by the left-hand side is < rk(A), with equality iff all A; are separable.
But

Homy, (A, E) = HOHlE(A X E, E)

has rank equal to that of A since A ® k is a product of k, we conclude that the A4;
are separable and thus A is étale.

(iii) = (vi) because the differentials of a product is the product of the differen-
tials, which then is trivial, and clearly (v) < (vi).

(vi) = (iii): We may assume k = k is algebraically closed. We have Q /5 =080
91141-/1@ =0, where A =[], A;, each A; a local k-algebra. For m; the maximal ideal
of A;, then for A; = k[z1,...,x.)/{fi)s,

D,y = @i Adai/ (3], (0fi/0x5)dx;)
and reducing modulo m; (by tensoring with the residue field), we obtain
0 =@,k di/(3)_,(0fi/02;)(0) drj) =~ m;/m?.

Therefore we find m; /ml2 =0, so m; = 0 by Nakayama’s lemma, and A; is a field
and hence k. [l
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Let m = Gal(k®*°P /k). We have a functor
{Finite étale algebras} — {Finite m-sets}
(i.e. those with a continuous m-action) defined the dual
{Finite affine étale k-schemes} — {Finite m-sets}
X = Spec A — X (k*P) = Mory(Spec k*P, X) = Homy (A, k*P)
with o € 7 acting on f: A — k*P by

(0f)(a) = o(f(a)).

We also have an inverse functor Y +— Map, (Y, k°P), and if we tensor with k5P
we obtain étale algebras over k. These functors induce equivalences of categories
[Wat, §§6.3—-6.4], [Sha, §3]. (For more information about Galois coverings of fields
and the fundamental group, see [Mil, §5] or [Tat, (3.6)] and for proofs, see [Mur,
Chapter IV].)

The same functors induce an equivalence of categories [Wat, §6.4]

{Finite étale affine commutative k-group schemes} < {Finite m-modules}

G — G(k*P) = G(k)
The m-module structure commutes with the group structure, since this is in fact
a functor, and so the product is an element of the left-hand side.

Ezample. In this equivalence, we have constant group schemes correspond to exactly
those with trivial 7-action. T'(k) = Hom(k(™) k) by fyiey— 1, ey — 0for v .
Explicitly, we see

(afy)(ey) = o(fy(ey)) = fy(ey)
since this is 0,1 € k and so is fixed by the Galois action.
Ezample. Let k = R and take p3(S) = {s € S : s* = 1}, where
p3 = Spec A, A=R[X]/(X?-1)~R xC.
We have
,u;;((C) = HOHI}R(A7(C) = HOIDR(R X (C, (C) = {f1> f2, fg}
where fj : R - C,C - 0, fo: R - 0,C - C, f3: R — 0,C — C. Check that

ofi = f1, ofa = f3, 0fs = fa, where o(z) = Z is complex conjugation generating
the Galois group.

Characteristic zero. We will now prove:

Theorem (Cartier). If k is a field of characteristic 0, then every finite group
scheme is étale.

We will need the following result:

Proposition. If R is a noetherian ring, A an Hopf algebra over R, and G =
Spec A, then

Vy/r = A®r (I/1%)
where I = ker(A = R).

Corollary. If R = k is a field, then I/I? is free, so the differentials are free over
A.
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Proof. (See also [Wat, §11.3, Theorem].) We have the following commutative dia-
grams:

GxG——GxG

idg XET AT

G _ ———— G
where the top map is (g, h) — (g, gh). This is dual to

ARA<—AR®A
iidA(X)e \Lm
A:A

where the top map is a ® b — ¢(b)(a ® 1).

Therefore we have an isomorphism of groups ker m ~ ker(id4 ®e). Since a®1 +—
a ® 1 on the top map, the A-module structure is preserved, acting on the first
coordinate.

But ker(idy ®e) = A ® I, and letting kerm = J, we have

(A D/(AD)? =ARI/I* ~J/J> ~ QY

as A-modules. To see this last map, we note that in the case that A = R[ X7, ..., X,],
we have the map A ® A 5 A which is

RIX1,..., X0, Y1,.. ., Yl (fi(X), £;(Y)) 2 R[Ty,...,T,]/{f:(T))
X, Y= T
It is clear that Y; — X; are elements of the kernel, but we can always convert an

element in the kernel to a polynomial in X; so actually kerm = J = (Y; — X;);.
Let ¢, = Y; — X;. Then

A®A = k[Xl,...,Xn,€1,... 7€n]/<fi(X)7fi(Xi +6i)>i

so that
J)J? = (e, .. .,en>/<ei6j,2(8fi/8Xj)ej> ~ Q114/R'

J

(This also works even when A is not finitely generated.)
Therefore A ®p I/1? = Q) 5. O

Corollary. If m € Z kills G, then it also kills Qi&/R'

Proof. If m € Z kills G then the multiplication map [m] factors through Spec R; by
duality, it suffices to show that it factors through Q}% /R = 0, for then it would also

kill QZ/R. But we showed that if a € I C A, then c(a) =1®a+a®1 (mod I®I),
so [n](a) = na (mod I?), and therefore if n kills G then [n](a) = 0. O

We are now able to prove the result of this section:

Theorem (Cartier). If G is a finite (flat) group scheme over a field k of character-
istic 0, then G is étale, which is to say that if G = Spec A, then AQpk ~kx---xk.
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Proof. (See [Wat, §11.4, Theorem], [Tat, Lemma 3.7.1], [Sha, §3, Theorem].) Let I
be the augmentation ideal of A and w1, ..., 2, a basis for I/I%2. Then

lim A/T" = A/, I" = A/J;

since A =[], A; with A; local and m; nilpotent, taking large powers each component
will either vanish or remain the unit ideal, so J is a direct factor of A as an R-
algebra. Thus

A)T ~Klz1, ...,z /{fi)i
and A~ A/J x A/J since it is a direct factor for some .J'. Since

9114/1@ ~ A®y I/I?
is a free A-module, we have it as @;_; Adz; as an A-module, and

/e = Qs X Uajom
so that Q%A/J)/k ~ @;_, A/Jdx; is free over A/J, since the ideals are coprime.
But this is also isomorphic to
D=1 (A/J) dxi/(3;(0fi/0x;) das)i

so if f € J then f/0x; € J for all i. But up to certain factorials, every coefficient
is already in J (by taking a high partial derivatives), so since the characteristic of
k is 0, we already have every coefficient in J and thus all coefficients are 0. Thus
A/J ~klx1,...,2,)], but this is a finite-dimensional algebra, so n = 0, so I/I? = 0,
SO Qz/k =0, and so A is étale. O

This immediately implies Lagrange’s theorem, since an étale group scheme is also
just a module which is a group, so it follows from the classical Lagrange’s theorem.

Etale group schemes (over a ring). We now extend the results of the previous
section from fields to more general rings.
Definition. If R is a connected (noetherian) base ring, and G a finite R-group
scheme, then G = Spec A is étale if it is flat (locally free) and A ® k is étale for any
residue field R — k& — 0.

A over R is étale iff Q}A/R =0 and A is flat.

Remark. If K C L is a finite extension of a number fields, then 9 is an étale
Og-algebra iff L/K is unramified.

Pick a geometric point of Spec R, Spec(k*P) — Spec R from R — k — kP (the
first map surjective). We have seen that there exists a functor F' from the category
of finite étale affine R-schemes to sets, which for X = Spec A takes

X — X (k*P) = Morg(Spec k*P, X) = Homp(A, k*°P).

We have m = Aut(F), i.e. 7 consists of automorphisms of functors mg : F(S) —
F(S) for any R-algebra S. = is a profinite group; think of it as the absolute Galois
group of k if R =k is a field (see especially [Mil, Examples 5.2]).

If we restrict the functor to finite sets, then it factors through finite m-sets, and
it is a theorem is that this functor (from finite étale affine R-schemes to finite 7-
sets) becomes an equivalence of categories [Mil, Theorem 5.3]. This immediately
implies by functoriality that there is an equivalence of categories F from finite étale
commutative affine R-schemes to finite m-modules (we just equip each with a group
structure).
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Ezample. If R =k is a field, then 7 = Gal(k®P /k).

If R is a complete local Noetherian ring, we can look at algebras over the residue

field k = R/m by Hensel’s lemma, hence m = Gal(k*P/k).
Example. Let R = Og be the ring of S-integers of a number field F', where S is a
finite set of primes of Og, i.e. elements which are integral at every prime p & S).
Then © = Gal(L/F) where L is the maximal algebraic extension of F' unramified
at the primes outside S.

For example, if we take S = (), 7(Z) = 1 by Minkowski (there are no unramified
extensions of Q). Also, m(Z[v/—5]) = Z/2Z, where the unramified extension is
Z[\/=5] C Z[i, (v=5 +1)/2]. Finally, 7(Z[(1 + +/—283)/2]) ~ A4.

There are no known examples of 7 if S is not the empty set. If S = (), then
7 /[m, 7| is finite (it is the ideal class group), but 7 need not be finite (a problem
related to infinite class field towers).

Example. Take O = Z[y/—5], so that 7 is order 2. There should be an étale group
scheme over O of order 3 with nontrivial action by 7. We hope that G = Spec A,
A = O[X]/{f(X)), which may not be the case in general, but here we are lucky.
By translation to get the origin at zero, we guess that A = O[X]/(X? +aX?+cX).
Since A is étale, ¢ is a unit (either computing the differentials or because the
determinant must be invertible, as it must be unramified). Writing down quadratics
with discriminant —1, we find a = /=5, ¢ = —1. (As an D-algebra, since there is
only one unramified extension of , we must have A isomorphic to O[(i++/—5)/2].)
Thus
A =9[X]/(X?+V-5X? - X),
with the three points (tensoring with the quotient field) 0, (—+/—5 £ i)/2. The
multiplication law is

X=X+ X +aXX +b(X?*X + XX"?) +c(X2X"?)

for certain (different) a,b,c € O. Since we can compute directly by adding the
points together in the cyclic group, we have to solve a linear system. It turns out
to have solutions in O, and in fact

X=X+ X' +3V-5XX +6(XX"?+ X"?X) - 2/-5X?X".

Characteristic p. What can be salvaged from the previous proof when char k = 07
We go to the other extreme, and look at the following objects:

Definition. A local group scheme G = Spec A is a group scheme for which the base
ring R is a local ring, A is a local algebra over R (i.e. the map R — A is a local
homomorphism).

We will restrict to the case where R = k is a field with char k = p > 0 (and later,
using Hensel’s lemma, we will get information about complete local rings).
Proposition. Let G = Spec A be a finite local group scheme of height 1 (if A =
k[X1,...,X,]/J then J D (XY, ..., XP)). Then

A~ kX, .. X (X, XP),

Proof. (See [Tat, Lemma 3.7.3].) Let I C A be the augmentation ideal. I must be
the maximal ideal of A and therefore is nilpotent. If x1,...,x, is a k-basis of I/I?
then by Nakayama, A ~ k[zq,...,2,]/J. Hence

A I)I? ~ Qi/k ~ @ Adz;
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is free over A of rank n, which is just

@i Adxi/(3;(0fi)0x)ay)
so this ideal of partials must be equal to zero; if f € J then 0f/0z; € J, so
again we have a factorial multiplied by each coefficient must vanish. In particular,

every coefficient of a monomial f = z{'...z» € J with all 44 < p must vanish,
so J C (zf,...,2P). Since we have assumed containment in the other direction,

equality must hold. O
Our goal now is to prove:
Theorem. If k is a perfect field of characteristic p > 0, G = Spec A a finite local
group scheme, then
A [Xy, . X J(XPT X,
Since dimy A = p¥1+ " Fén we have:
Corollary. If G is a local finite group scheme over k, then #G is a power of p.

Corollary. If G is a finite local flat group scheme over R which is a complete local
Noetherian ring with perfect residue field, then (after lifting variables by Hensel’s
lemma) G = Spec A, and A is a complete intersection algebra.

Corollary. If R is a complete local noetherian ring, G = Spec A a finite flat local
group scheme over R, with R/m perfect of characteristic p, then

A~ R X1, Xl /{1y ooy fa)

where f; € Xferi + mR[X1,...,X,] where the polynomial in the mazimal ideal is
degree < p°©i.

Proof. If G = Spec A for A a finite flat R-algebra, then by the theorem, Gj =
Spec(A®r k) ~ k[X1,..., X, ]/(XP", ..., XE™). Lift X; to A and again call them
X;; by Nakayama, the same X; will generate A as an R-algebra. Thus
A~ R[[Xy,...,X,]]/J
so that
0—J— R[X1,...,.X,]] o A—0
(as R-modules) is R-split because A is flat and therefore free, and
0—>J®Rk—>R[[X1,,Xn]] — A®rk—0

is also k-split, and J ® k = (Xf61,...,X£€">, so we lift Xfei to J and call them

fi, such that f; € Xf’ei + mR[Xy,...,X,]; we can do this because the monomials
X X (0 < a; < p% —1) are an R-basis for the free R-module A, so the f;
generate J. (]

To prove the theorem, we will use induction with respect to the dimension of A
over k. First:

Lemma. If B C A are finite k-Hopf algebras, with B local, then A is free over B.
Proof. Letting G = Spec A, H = Spec B, we have

A<—8B

Lk

AR R<—R
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so that N = ker(G — H) = Spec(A ®p R) = Spec(A/IpA) where Ip is nilpotent.
The functor which sends a k-algebra S — G(S) x N(S) is represented by the
algebra A ®) A/IgA. The functor which sends

S — G(S) xu(s) G(S) ={(g,h) € G(5) x G(5) : img(g) = img(h) € H(S)}

is represented by A ® 5 A. These functors are isomorphic by mapping (g,n) —
(g,gn), which are isomorphisms of algebras and as A-modules where A acts on the
first coordinate. Therefore A®y A/IpA ~ A®p A as k-algebras and as A-modules.

We know that A/IgA is free over A and A ®p A is also free over A. Let
C=A®pR=A/IgA. Take ¢; a k-basis for C, and lift it to A and call it e; again.

Claim. g : ), Be; C A is in fact an isomorphism of B-algebras.
Proof. Since B/Ip = k, we know ). ke; ~ C is an isomorphism, so g is surjective

as Ip is nilpotent (B is local).
We have the diagram

@i Be; A 0

L

0—K—>@,4e; —> A A——>0

where K is the kernel. But the bottom exact sequence splits as A®p A is free over
A. Since A®p A is free of rank n, and the same is true of @, Ae;, the kernel itself
is zero. Since @), Be; — @D, Ae; is an injection and €, Ae; — A®p A, the map is
an isomorphism. O

This concludes the proof of the lemma.

Proof of theorem. (See [Wat, §14.4, Theorem].) We have G = Spec A where A is a
finite local k-Hopf algebra, char k = p. We know A ~ k[Ty,...,T,]/(f:):;- Look at
AP the subalgebra generated by T7F,...,TP?; this is in fact a sub-Hopf algebra.

By induction, AP ~ k[Xy,..., X,]/(XP", ... XP™"), for X; € AP. Choose Y=
X;fori=1,...,n. Pick

{acA:a? =0}/I°N{ac A:a? =0} — [4/13

and a k-basis z1, ..., 2y, for the quotient from {a € A : a? = 0}. Then
e]+1 en+1

C=kY1,....Yn,Z1,..., 2y /(YT ,...,YP" [ ZV .. ZP)
has an inclusion A? — C by X; — Y. C is actually free over A”, but A? — A,

K3
with A free over A,, and the map Y; — y;, Z; — z; givesamap g: C — A — 0.
We will show that g is an isomorphism modulo I 4», which is also its maximal ideal.
Since g is a surjection, and they have the same rank over A, g itself will be an
isomorphism.

We have that I4» = (T7,...,T?) = (X3,..., X,,), and modulo I4», g becomes
Elyi, ooy Uny 21y ooy 2m) /Yty oy YR, 20 oo 20 = k[T, . T J(TY . TP,
It suffices to show that these two algebras have the same number of variables
(since this determines the isomorphism class), g induces an isomorphism mg/m2, —
ma/m? on the tangent spaces, since the dimension of these spaces gives the num-
ber of variables. This is equivalent to showing that y;,z; form a k-basis for
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I4/I% = ma/m? (it is surjective by the above, so it suffices to show they are
independent).

First we prove that they generate the ideal. If x € I, then 2P € I =
(X1,...,Xn), where the X; are actually a basis for the ideal modulo squares. Thus
P = ¢p(Xq,...,X,) € k[Xy,...,X,], but 2P = ¢(y},...,y2) so that ¢ is taken
modulo 7% so it is linear. Therefore (x — by, ... ,yn))p = 0 for k perfect must be

in{acA:a? =0}N 14,50 —d(y1,... Yn) = > Aizi (mod I3).

Now we must show that the y;, z; are independent. Suppose ), oziyi+zj Bijz; =
0 € I14/I3 for a;,3; € k. Then ofy? = 0 in I4»/I3,, where the x; are a basis, so

= 0, so the a; = 0, and therefore Zj Bjz; = 0 so since the z; are a basis b; = 0.

The reason it is enough to show that C/myr ~ A/myr is as follows: Let-
ting C/mar = k[Yl,...,Y,L,Zl,...,Zm]/<Y1p,...,Yn,Zp o ZP) and A/myr =
k[Ty,...,T.)/(TF,...,TP) even though A = k[T,...,T.]/{f:):, since the Hopf al-
gebra structure is the kernel of ker(Spec A — Spec AP), which has height 1 and is
killed by Frobenius and therefore the result follows by induction. ([l

*

Ezample. If k is not perfect, this is false: choose a € k \ kP, and for a k-algebra
S we take G(S) = {(z,y) : 2*" = 0, P = ayP} is rank p3, a closed subscheme of
Gq4 X G, but is not represented in the form given by the theorem.

Connected and étale components. For the details of this section, see [Wat,
§6.4-6.7] or [Tat, (3.7)]. Let G = Spec A be a (possibly noncommutative) group
scheme, A finite flat over k. Then A ~ [], A; where the A; are local k-algebras,
so G = Spec A = | |, Spec A;. The unit section e : A =[], A; — k has all but one
e; — 0 €k, soit factors e: A — Ay — k.
Definition. For e : A — Ag — k, Gog = Spec Ag is the connected component of the
identity.

Similarly, let Ag be the maximal separable (equivalently étale) subalgebra of A.
This makes sense because if B, B’ C A are étale subalgebra, so is B ®; B’ as well
as the compositum BB’ [Wat, §6.5].

Theorem. With the abowve,
(a) Go is a closed subgroup scheme of G.
(b) Ag; is a sub-Hopf algebra, and hence G¢* = Spec Ag; is a group scheme.
(c) The sequence
0—G"—G— G
is exact, which is to say G° is the kernel of the map on algebras induced by
the inclusion.
(d) Any map H — G with H a connected group scheme factors through Go;

any map G — H with H an étale group scheme factors through G¢t.
(e) If k is perfect, then A ~ Ag ®y Ag as k-algebras.

Proof of (a). (See [Wat, §6.6].) We need to show that the composition map factors:

xG'—=GxG———=@

\/
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On algebras, then, we want:

A0®AO<—A®A:C/—A
Ao

Ap is a local ring with residue field k, because there is a section e : A — k; the
tensor product is also local because it has residue field k ®j k = k, so this factors:

AO®AO<;A®A<07A

7

k<———A4;

The composition A — k must be the unit section and hence factors through Ay by
definition; hence ¢ = 0 as desired. (One can also in this way also show that the
inverse map takes G¥ — G°.) O

Proof of (b). We first need:

Claim. Let A = []; A;, with A; local with residue field k;, k& C kP C k; finite
(kP denotes the separable closure of %k in k;). Then the product [], k;*P is a
k-subalgebra of A and Ag =[], k:*P.

Proof. Such a k-algebra is certainly étale. Conversely, if @ € A and k & [[, k;°°P,
then there exists an z; (multiplying by idempotents), a component of z, for which
x; € A; is étale, but x; & k;*°P. There is a power of p such that xfa e k;ser. If
we look at the reduction map z; € A; — A;/m; = ky, xfa — t € k5P € A;, so
xfa —tEem; so (zfﬂ —t)?" = 0 and therefore xfa% € k;*P since the maximal ideal
is nilpotent, a contradiction.

(The same is not true for an inseparable extension (we may not be able to lift & to
A): if Ais alocal k-algebra, k not perfect, then if a € k\k?, and A = k[X]/(XP —a),
we find that A/m ~ k[X]/(X? — a) has no section to k.) O

We want to show Ag; is a sub-Hopf algebra, i.e. we need to show the commuta-
tivity of:
A =A@y A

]

Agy —— Ay O Ast

First we show Ag; ®p k = (A®y k)¢ [Wat, §6.5, Theorem]. The inclusion C is
clear, since Ag ®p k is étale. For the converse, we count points over k: if we let
A =11, As, A; local, then

# Spec(A® @y k) = # Homg (Ag O k, k) = # Homy, (Ag, k)
— ¢ Homy ([T, b0, ) = X5,k & K] = 3 K.
The number of points on the right-hand side is
# Spec(A ®y, k) = # Homg ((A @4 ke, k)
= #Homp (A @y k, k) = Y, # Homy (ki k) = Y, [k : k]5°P.
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So equality holds.
Next, (A®k B)er = Ast @k Bet; the inclusion D is clear, and to prove the inclusion
C, tensor with k, and use the previous formula to conclude they have the same rank.
Now we have maps

A— =A@ A

|

Agy —— (A @) A)g
so the map factors as desired. ([

Proof of (c). (See [Wat, §6.7], [Sha, §3, Proposition].) If k is perfect, then we
want to show G° ~ ker(G — G®). The map G — G is given by the inclusion
Aer = [[; ki*P < A; the kernel is represented by A/(][;, k:*P)A since this arises
from the unit section:

Ay =L k" —=k

|

ko
But this is
A/(ipo k*P)A = (I1; Ai) /(L0 ki*P Ai) = T1,; Ai/ 11,20 Ai = Ao.
Therefore G° = ker(G — G). O

Proof of (d). (See [Wat, §6.7].) We want to show the following: If G and H are
finite k-group schemes, with G = Spec A connected, A local, H = Spec B, B étale,
then any f : G — H factors through G¢'; this is because the induced map of the
separable algebra B to A has image in Ag;, so the map on schemes factors through
G°. Conversely, if we have a map f : H — G with H connected, then the structure
map H — Speck lifts via e : Speck — G, and since H is connected its image is
also connected, hence contained in the connected scheme G°, hence the map factors
H — GY. O

Proof of (e). (See [Wat, §6.8].) We want to show A ~ Ay ®j, At as k-algebras.

From (c) we know G° x G ~ G xge G by (h,g) — (g, gh); on algebras, this is a
map A @, AY — A® e A by a® b c(b)a.

If A =T, A;, A; local with maximal ideal m;, the nilradical of A is [[, m;. If
k is perfect, A/ [, m; ~ [, ki =[], k:*P = Agt, so A modulo the nilradical has a
natural Hopf algebra structure. So if we take our original map A®; A% «— A®4,, A
modulo the nilradical, we obtain an isomorphism Ag ®5 Ag ~ A/ [, m; @ Ag >~
A/TL; mi ®a,, A~ Awhichis a— 1®a — c(a) and is indeed an isomorphism. [J

Exercises. The following are exercises for §4.

Problem 4.1. Let £ be a field.

(a) For any finite-dimensional k-vector space M, determine the group scheme
that represents the functor that maps a k-algebra S to the additive group
Ends (M ® S)

(b) Answer the same question for the functor that maps a k-algebra S to the
multiplicative group Autg/,(M ® S).
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(¢) Assume now that R is a finite k-algebra (resp. Hopf algebra). Show that
the functor that maps a k-algebra S to the multiplicative group of algebra
(resp. Hopf algebra) automorphisms Autg/r(R @ S) is represented by a
closed subgroup scheme of the group scheme of part (b).

(d) Let R be a separable k-algebra. Show that Autg,r(R) is étale.

Problem 4.2. Compute the Kéhler differentials QY /R for the following rings R
and R-algebras A:
(a) R=7 and A =Z[V2].
(b) R=Zand A = (Z/6Z)[X]/(X%+ X + 1).
(c) R=Q[T) and A= Q[X,Y]/(X?+Y? - XY +X,Y*— X3V + X?Y) where
Ais an R-algebra via T- f(X,Y) = X f(X,Y) for f(X,Y) € A.

Problem 4.3. Let k& be a non-perfect field and let a € ksetminuskP. Let G be
the closed subgroup scheme of G, x G, defined by G(S) = {(z,y) € § x § : a?” =
0, 2P = ayP} for a k-algebra S. Show that the Hopf algebra of G is not isomorphic
to a k-algebra of the form k[X, ..., X,]/(XP™", ..., X2™).

Problem 4.4. Let ¢ = (1 ++/—3)/2 denote a cube root of unity.

(a) Show that the fundamental group 1 (Z[¢]) is trivial. [Hint: Use Minkowski’s
theorem.]

(b) Show that 71 (Z[v/6]) has order 2. Show that the ring Z[/—2, (] is a qua-
dratic unramified extension of Z[v/6].

(c) Show that the étale Z[v/6]-algebra Z[v/6] x Z[/—2, (] has the structure of
a Hopf-algebra.

Problem 4.5. Let G = Spec A be an R-group scheme. Suppose that n annihilates
the group scheme G. In other words, the morphism [n] : A — A factors through
the counit morphism e : A — R.
(a) Prove that n kills the group I/I2.
(b) Suppose that R = k is a field of characteristic p and assume that G is
commutative. Show that G is étale whenever n is coprime to p. (This is
also true when G is not commutative.)

Problem 4.6. Let a = (3 ++/—23)/2 and let R denote the ring Z[a]. By @ we
denote the conjugate (3 —+/—23)/2.

(a) Show that the polynomial f(X) = X®—aX?—aX+1 € R[X] is irreducible
and has discriminant 1.

(b) Let [ denote a zero of f(X). Show that Q(/—23) C Q(v/—23, ) is Galois
of degree 3.

(¢) The R-algebra R x R[3] ~ R[X]|/(X f(X)) can be given the structure of a
Hopf algebra of an étale group scheme of order 4 and exponent 2. Determine
the group law explicitly in terms of the coordinate X. [Hint: Work over
Q(v/—23) and solve a linear system in six unknowns.|

5. FONTAINE’'S THEOREM

The goal of the final section of these notes is to establishing the following the-
orem: If GG is a finite flat group scheme over the ring of integers of a number field
D, then adjoining the points of G to K, we obtain an extension with very little
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ramification. It will imply that there are no abelian varieties over Z and other small
number fields.

Ramification theory. For more information, consult [Ser, Chapter IV].
Consider a finite extension Q, C K C L where G = Gal(L/K), 7 € Ok a
uniformizer, with valuation v(7w) = 1. The ring of integers is Oj, = Ok [a]: take «
to be a uniformizer in L, and add (, a lift of a generator of the multiplicative group
of the residue field (Op/7.)* [Ser, III, §6, Proposition 12].
Extend the valuation v to L in a unique way, with v(7) = 1/er,/x, where ey
is the ramification index. The inertia group

I={ceG:o(x)=z (modng) forallz € O} CG

is a normal subgroup, and #I = er/k [Ser, IV, §1, Proposition 1]. We also have
I={0ceG:v(o(a) —a)>0}.

This numbering matches that given in the article by Fontaine [F], and is off by
1 from the one used by Serre [Ser].

Definition. We define the higher ramification groups (with lower numbering) as
follows: for i € R,

Gu={oceG:v(o(x)—x)>iforallzeOr}
={oceG:v(o(a) —a)>i}.

Definition. We let i(0) = v(o(a) — a) = mingep, v(o(z) — z) (if 0 = idg, then
i(0) = +00), and i/ g = MaxXy2id, 1(0).

We know iz, i(0) € (1/er;x)7Z.
Example. 1If © < 0, then Gy = G. If i > 0, then G; C I. Gy =1Tiff0 <@ <
]-/eL/K'
Definition. We define the function

/(i) = > eqmin(i,i(o)) : Rsg — Rxo.

¢r/K is piecewise linear, monotone increasing, and continuous [Ser, IV, §3,
Proposition 12]. If i > 0, then G(;) = {1}.
Definition. We define the higher ramification groups (with upper numbering) as
follows: Let G(¢z/x(1) = G 4), 80 G = Gyt (uy) for u=0.

L/K

For the lower numbering, we have G ;) C Gy if i > 7', G(;) = {1} if i > 0, and
Go =G.
Definition. Let up x = ¢r/k(in/Kk)-

ur/i is the largest u for which GW £ {1}, since i,k is the largest i for which
Gy # {1} [Ser, 1V, §1, Proposition 3]. We have

up/k = ¢/ (in k) = Z min(ip, g, i(0))
oeG

ZiL/K-l- Z i(o) —ZL/K+ Z (ca—a +'LL/K
oc#leG o#leG

=ip/k +v (Hg#leg(aafa» .
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Let f(T) € Ok[T] be the minimal polynomial of «, so that f(T) =[]
o). Then

UEG(T -

flla)=wv (Ho’;ﬁleG(Ua - 04)) +irx = (L) ik,

where 1 is the different, and Ny, x (Z1/x) = Ak is the discriminant of L /K.
We conclude that v(Zr, k) = ur/x —ir)x and v(Ap k) = [L : K](up/x —ir/K)
[F, Proposition 1.3] (see also [Ser, IV, §1, Proposition 4]). This implies that if the
higher ramification groups G = {1} for u > o, then v(Ay k) < [L : K]up.
Therefore K C L is unramified iff uz/x = 0, and in this case ¢k (i) =i. K C L
is tamely ramified (p { er/x) iff up;x = 1, and K C L is wildly ramified iff
Ur/K > 1.
Ezample. (See [Ser, IV, §4].) Let K = Q, and L = Q,({pn), p™ > 2. Then G =
Gal(L/K) ~ (Z/p™Z)*, and o = (pn so that O, = Zy,[(pn] lies over O g = Z,,. If we
normalize v(p) = 1, then for ¢ € G we have i(0) = v(0(pn —(pn) = v((0Cpn)/Cpn—1).
We compute i(c) = p/ /(p — 1)p"~! for all o # 1 such that ¢ = 1 (mod p’) but
o #1 (mod p/*1) for each 0 < j <n—1. Hence iy x =1/(p—1).
We find that

1 1 1
Giyy=G={oceG:0=1 (modp)}, for0<i§g

-t #G
If i is such that 1/(p — 1)p"~! <i <p/(p— 1)p" ! then

Giy={c€eG:0=1 (modp®)}.
Continuing, we find

Gihy={ceG:0=1 (modp" ')}

for p" 2 /#G < i < p" ' /#G, and Gy =1 for i > p" 1 /#G =1/(p - 1).
We can also compute ¢(i): for 0 < i < 1/#G, ¢(i) = i/#G. For 1/#G < i <
p/#G,

¢(i) = Y min(i(c),i)

ceG
= Z i(o) + i
a#1 (p) o=1 (p)
1 . 1 #G |
= (#G — #G1)— Gii=1— — + —
(# #1)#G+# 1 ST,

where G; = {0 € G : 0 = 1 (mod p)}. Continuing, we find for p"~2/#G < i <
P #G,
. 1 #G ,
1)=n—1-— + 1
o) p—1 pr3p-1)

and the largest ¢(ip k) = ¢(1/(p—1))=n—-1-1/(p—1)+p/(p—1) =n.
So in this case ur, g = n, and

VP, (¢m)/0,) = ULk ik =n—1/(p=1),
and therefore Ag, (¢,n)/0, = p(n=1/(p=1)e("),
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Fontaine’s theorem: Statement and examples. We are now ready to state
[F, Théroeme Al:

Theorem (Fontaine). Suppose that a finite flat group scheme I' over Ox D Zj, is
killed by p™. Let the absolute ramification index of Ok be ex (i.e. v(p) = ex),
and let L be the field obtained by adjoining the points of T to K, a finite Galois
extension of K, with G = Gal(L/K).

Then G = {1} for u > ex(n+1/(p —1)).

The points of I are obtained as follows: if I' = Spec A, for A a finite flat O
algebra, then A ®¢o, K is a finite dimensional étale algebra and therefore can be
written in the form [[, L; for L, D K, with L; — K. Take L to be the compositum
of the L; C K.

Corollary. up/x <er(n+1/(p—1)) (by definition of ur, k).
Corollary. v(Zr/k) = ur/x —ir/xk <ex(n+1/(p—1).
Ezample. Let K = Q, and T' = ji,n = SpecZ,[X]/(XP" —1) = Spec A, A® K ~
[T o Qp(¢pi) so that L = Qu((pn). Then up i = n and iy ;x = 1/(p —1). The
Fontaine bound is ur/x <n+1/(p — 1), which is quite good for p large.
Ezample (Katz-Mazur). Let R be a ring (e.g. Z,) and € € R*. Let S be an R-
algebra, n > 1, and define G(S) = {(z,i) : x € S* : 2" = €', 0 < i < n}. The
composition
N xy,i+j), i+j<n
@ i).i) = D
(zy/e,i+j—n), i+j>n
has neutral element (1,0) and inverse (ex~!,n—1) if i # 0 and (x=1,0) ifi = 0. This
is associative, and is functorial, and therefore G, is a group functor, represented by
a group scheme G, = Spec [[/—) R[X]/(X" — ¢').
We have a map

T 200X — €)= RIX] /00— 1),

which gives a map of group schemes p,, — G.. We also have an injection H?;Ol R —
H;:Ol R[X]/(X™ — €'), which induces a map G, — Z/nZ. In a suitable category
(which will be explained later), the sequence

0— pup — Ge —Z/nZ — 0

is exact, and therefore GO = p,, is the connected component and G ¢ = Z/nZ is
the étale component.

n kills G¢ because (x,4) - - (x,4) = (1,0). If we take R = Z,,, K = Q,, n = p,
then L = Q,((p, ¢/¢). The extension L/K is abelian with H ~ Z/pZ, but G =
Gal(L/Q,) is no longer Galois. It is not necessary but we take ¢ = 1 (mod p),
e Z1 (mod p?).

One computes that up/x = 1+ 1/(p — 1). Fontaine predicts that up,x <
1(1+1/(p — 1)), which is then sharp.

A converse to Krasner’s lemma. We now proceed with the proof. We will show
first that there is a sort of converse to Hensel’s lemma.

Let Q, C K C L, with G = Gal(L/K), X = SpecOy, v(mg) = 1. For any finite
extension K C E C K and any t € R>q, let mi, = {z € Op : v(z) >t} [F, §1].
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Proposition. Let 0 <t < 1. Then K C L is unramified iff for all E that
X(DE) = MOI‘DK(SpeCDE,X) = HOmQK(DL,DE) — X(DE/mt)

18 surjective.

Proof. For the implication (=), take any E. A point of X (Og/m!) is an algebra
homomorphism f : O, — Og/mf. Since O = Okla] = Ok [X]/(f(X)), there
exists 3 € Op such that f(8) = 0 (mod m'). Since ¢t > 0, the polynomial has
no double roots and thus by Hensel’s lemma, there exists a B € Opg such that
f(B) =0, so we have a map O — Og by a — 8, with 8 =  (mod m), so the
map is surjective.

For the implication (<), take E = K’ to be the unramified extension of K that
has residue field &z, so K — K’ = L' — L. We have a surjection O — ki ~
kg =9Op/mh, =9Op/mg =9Or/mkOp. So by assumption, this lifts O, — Og, so
we have an inclusion L C F, but F is unramified, so L = E is unramified. (I

Lemma. Let O, = Okla], K C L with G = Gal(L/K). Suppose 3 € K, and let
u=v][],cqloa—=p), i =sup,cqv(ca— ). Then u= ¢r k(i)

Note that v and ¢ depend only on 8 up to conjugacy (because of the unicity of
the extension of v).

Proof. (See [F, Proposition 1.4].) i is the largest of v(ca — §). Without loss of
generality, we may assume that v(a — ) is the largest by considering conjugates.
Then

v(8 - 0a) = min(v(8 — a), v — 0a)),

and if the inequality is strict then they have equal valuation, so this is v(8 — a) <
v(B — o), so we have equality.
We have

br k(i) = Z min(i(o),1) = Z min(v(ca — a),v(a— §)) = Z v(B —oa) = u.
oceG oeG oeG
(I

‘We will also need:

Lemma (Krasner’s lemma). If o, 3 € K, and v(B — a) > v(ca — a) for all o €
Aut(K), oa # «, then K(a) C K(3).

Proof. ([L, 11, §2, Proposition 3].) Take 7 € Aut(K) fixing 3. Then v(78 — Ta) =
v(B — a) > v(oca — a) for all o € Aut(K) such that oo # . Then

v(Ta — ) > min(v(ra — §),v(a—F)) > v(ca — a)
so T fixes a. O

Proposition (Fontaine). If K C L, O = Okla], v(rk) = 1, and ml, = {x €
Op:v(x)>t}, Op CECK. Let X = SpecOy, and t > 0.

Ift > up K, then for all finite extensions K C E such that X (Op/m') # 0 we
have X (Op) # 0. If this latter condition holds, then t > up/x —1/er /K.
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Proof of first implication. (See [F, Proposition 1.5].) For the first implication, we
have t > up, k. A point is an O g-algebra homomorphism Oy = O [X]/(f(X)) —
Op/mly, with o — 3 with f(8) =0 (mod mfy), i.e. v(f(8)) >t > ur k. But this
is
v ([lrea(B = 0@)) > up/i = sup (B = o(a)) > ik = sup (o(a) —a).
ceCG o#lEG

Therefore there is 7 € G such that v(6 —7a) > sup,cq(ca—a) = sup,(cT7a —Ta).
So by Kranser’s lemma, K(ra) = L C K(8) C E, so we have an inclusion O —
DE, SO X(DE) 7é @

For the second implication, first if K C L is unramified, ug,x = 0, so the
theorem is true. If it is ramified, we want to show that if t <wuy/x —1/er/k, then
there exists an O for which X (Og /7t Og) # 0, but X (Og) = 0. Without loss of
generality, we may assume t = up, g — 1/eL/K.

If K C L is tamely ramified, then uy,x = 1: To be tame is to say that v(o(a) —
a) > 1/ey ik implies o = id, which implies that i(c) = 1/ep i for all o # id, which
implies that iy,/x = 1/er/k, hence

ur/k = ¢in k) = Zmin(iL/K»i(U)) =er/k(l/ep k) = 1.

In this case, t =1 —1/er/x > 0. Suppose we have K C K’ C L where the inertia
group I = Gal(L/K'). Let E be the totally ramified extension of degree d < e over
K'. Then X(Og) = {¢: O — Og} = 0 since they have different ramification
indices. There does exist, however, f: O — Op/(rt-Og) where

O =k — /e k €{r € Op:v(x) >1—1/er k} = (Tk)

(as 1 —1/d < 1—1/er/k.) We have f : Op = Okla] — Op/nx where « is
a uniformizer, where we may « to a uniformizer § € Opg. Then the minimal
polynomial of a evaluated at 3 has v(]],(o(a) = 3)) = er x(1/er k) = 1.

If K C Lis wild, then p | ey . Although t = up/x —1/er i, we claim that
t > 1. As proof, up /g > 1+ plep/x sot > 1+ (p—1)/er/k, as this is the
slope and the function is increasing. Since t € (1/er/k)Z, e gt € Z, so write
ep/kt = rep i + s where 0 < s < ep/g; then if K € K' C L = K'(«) where
again K C K’ is unramified, let f € O/ [X] be the minimal polynomial of . Take
F = K'(8), where 3 is a zero of f(X) — nha®.

The claim is that this polynomial is Eisenstein: it has degree er/x > s so it is
still monic, r > 1 so g still divides all other coefficients, and if s = 0, » > 2 so
T 1 fo still. So v(B) = 1/er,k, and there exists O — Op/7}Op by a — 3.
Check: f(B) = 7 B°, v(f(B)) = v(nyB%) =7+ s/er/k =t, so0 it is well-defined. If
X(Og) #0, then O — Op implies L C E so L = E, which implies «, 3 are both
in E' = L, and therefore v(ca — 3) € (1/er,k)Z for all r, but on the other hand,

[[(o(a) = 8) = f(B) = micp* = 5 *e
sov(mo(a) = B) =r+s/epk =t =up/x —1/er/k.

By the lemma, sup(v(ca— ) = ¢~ (ur/x —1/er k), and we know ¢(iy k) =
ur/K, 50 by slopes ¢(ir/x — 1/der/x) = ur/xk — 1/er;k, therefore sup(v(o(a) —
B)) =ir/x — 1/der i, but 1/der i € (1/er,x)Z implies d = 1, a contradiction.
Therefore X (Og) = 0. O



GROUP SCHEMES 39

Definition. A divided power ideal I C R a Z,-algebra if x € I implies 2" /n! € I for
all n > 1.
Then 1" = (29 .. 2% /(a1!...as)) : @y + -+ +a; > n) is also divided power,
and I =1 > 12 5 If N, I =0, then I is topologically nilpotent.
Ezample. If O is a ring of p-adic integers, then {a : v(«) > t} is divided power iff
t > ex/(p—1), and topologically nilpotent iff ¢ > ex/(p — 1).
(p) C Z,, is a divided power ideal since p | « implies p | 2™/n!. For p > 2 it is
topologically nilpotent, but for p = 2 it is not: v(22" /2k1) = 2k —(2k=14...41) = 1.
We have [F, Proposition 1.7]:
Proposition. Let A be a finite flat O = O -algebra, Y = Spec A. Assume that
A~ Okllxr, ..., xm]]/{f1,-- ., fm) and Q}4/DK is a free AJ/aA-module for some
0#a€Ok. Then:
(a) For every finite flat Ok -algebra S and for all I C S topologically nilpotent
divided power ideal, then

Y(S) ~img(Y(S/al) — Y (S/I)).
(b) L = K(Y(K)), then ur g <va)+ex/(p—1).
This implies [F, Corollary 1.8]:
Corollary. If I' = Spec A is a finite flat commutative group scheme over Ok

killed by [p"], and G = Gal(L/K), L = K(T(K)), then G™ is trivial for u >
ex/q,(n+1/(p—1)).

Proof. QY Jox = A ®p I/I% as A-modules (from our theory of group schemes). If
[p"] kills T, then p" kills I/I? (it acts linearly on the tangent space). Therefore
Q}4/DK is an A/p™A-module.

If n=1,1ie [p]kills T, and ex/q, = 1, K unramified over Q,, then O/p9O is a
finite field, so I/I? is free over 9/p9, so Q}4/DK is free over A/pA.

Therefore we may assume that QY /o, is free over some A/aA (for the more
general result, see [BM]). Write A =[], 4;, A; local. Then

A=TI0uX0 X/, 50,

where the 9; are unramified DVR extensions of O. We may replace O by O;
(the upper numbering stays the same). From (b), we know that ur, x < v(a) +
ex/(p—1) <nv(p)+ex/(p—1) =ex(n+1/(p—1)), where L; adjoins the points
of Spec A; to K, and L is the compositum. Then uy/x < ex(n+1/(p— 1)), and
G(L/K)®™ /H; ~ (G(L/K)/H;))™ (we need to show that the numbering behaves
well with respect to quotients). O

Proof of (a) = (b). We will show that for any ¢t > v(a) + ex/(p — 1), we have the
property in the the converse to Krasner’s lemma (for every K C E C K finite, if
X(Op/rxOp) # 0 then X(Op) # 0). Then t > uy/x — 1/ey/k, which implies
that ur g <wv(a)+ex/(p—1)+1/ep k-

To show that ¢ > v(a) + ex/(p — 1), we let K C E C K be finite. Suppose we
have a point modulo 7t: O — Op/miOpr. We want to show that there exists
O — Op. Let L be the field generated by the points of Y. Then Y () has all
points, so for every E, #Y (D) < #Y(9OL), with equality iff L C E iff we have a
map O — Op.
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Now 7t Op = al, I = {A € O : v(a) >t —wv(a) > ex/(p—1)}. Iisa
topologically nilpotent divided power ideal. The kernel

I/ = ker(DL — DE/T('%DE — IDE)

is also a topologically nilpotent divided power ideal. So now take S = O, [ =1
and S =9Op, I =1I'. Then by (a),

Y(Op) ~img (Y (Og/al) = Y(Ogr/I))
and
V(D) = img (Y(, /al’) — Y(D,/T)).

we have a diagonal map and therefore we have an injection on the right, and hence
all are isomorphic. Hence #Y (D) < #Y(Op). O

Remark. It would be enough to prove that if A ~ O[[X1,..., X.])1/{f1,- -, fm)
finite flat, and suppose 0 # a € O kills 9,14/97 then if there exists B — A — 0, with
B also complete intersection finite flat, then Q7 /o 18 free over B /aB. (This would
be a significant shortcut, but it is not yet known.)

Proof of (a). Write J = (f1,..., fm) C Ol[z1,...,2m]], z; a basis of m/(m? +
mrm), and 9114/9 free over A/aA, 0 # a € ©. This means 9f;/0x; = ap;; with
pij € A. The matrix (p;;) is invertible, because it has inverse obtained from a dz; =
> i dfj-

Suppose we start with a point of ¥ modulo al, and we must lift it uniquely
modulo 7. Consider I™; we have (), I = 0. We will lift in steps. Assume
we have a point modulo al™). We will now lift the image modulo I to a point
modulo a1, Lift to ui,...,uy € S such that f;(uy, ..., un) € al™. We want
to find ¢; € I, unique modulo I+ such that f(uy + €1, ..., Un +€n) € al 1,

Write a Taylor expansion: for f; € J,

filur + e, .. um +€m) =

= Of; o fi e
fz(ul,...,um)—i—jz::laxj (ul,...,um)e]—i—lg; o, (u1,.‘.,um)ﬁ

which converges because the ideal is a topologically nilpotent divided power ideal.

Let a\; = fi(u1,...,uy) for some \; € I, We have 0fi/0x; = ap;; + ¢ where
pij € O[z1,...,2m]], ¢ € J. Then (0f;/0z;) (w1, ..., um)e; = (apij(u1, ..., um) +
é(u1, ..., Un))ej, and since the d(ui, ..., um) € alIlM 1M c aIl"*+1 ) we have

¢ € apij(ul’ cee 7um> modulo eI+,

For the last piece, for f € J, then 0f/0z; € aO[[z1, ..., xm]]+J and the same is
true of all higher derivatives. Substituting u, (0" f/dx,)(u1, ..., uy) € aS+al™ C
aS. The monomials are in (") ¢ 11"+1) (see the lemma following), so the whole
thing is in all"+1.

We are left to solve

0= a')\i +Zja’pl3(u177um)€_] (mod CLI[TH—H)’
which is the same as

0=Ni+>pij(ur, -, um)e;  (mod IHH),
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which has a unique solution (modulo I™+1) because the matrix defining the p;;
is invertible (due to the freeness of the Kahler differentials), and is in I since
A € I[n] 0

Lemma. (1" ¢ rin+1],

Proof. Let xy be such that z,y € I, 2?/2 has z € I we want to show that
x € I implies 22/2 € I+ We may assume that p = 2, and that

ai a 2

p= 1Tt implies T e i+,

ar!...ay! 2
We may replace x; by the one with the smallest valuation. x = a“1+"'+“ﬂ/a1! coeagh
the hardest case is © = o”/n! € I implies (1/2)(a™/n!)? € "1 but this is
a?(2n)!(1/2) (") € 127 ¢ 1in+l, O

Fontaine’s theorem: An overview.

Theorem (Fountaine). There exists no abelian variety over Q having good reduction
at all primes; equivalently, there are no abelian varieties over Z.

The method of proof will also give the result for “small” fields K, e.g. Q((y)
for n < 7. We will examine the torsion A[p] and show it cannot exist for certain
primes, say, p = 2: the p-torsion is a finite flat group scheme of rank p??, hence
affine and can be investigated by the methods we have learned so far.

Here is an outline of the proof: Let G be any finite flat group scheme over O g
annihilated by p. Let K C L = K(G(K)). We will show the following:

(1) L/K is unramified outside p.

(2) L/K is “moderately” ramified over p (Fontaine).

(3) 6L = [Ap gV U < fp T/ (1),

(4) By the Odlyzko discriminant bounds, [L : Q] is bounded.

(5) By class field theory, Gal(L/K) is a p-group.

(6) Any finite, flat, commutative, simple (having no closed subgroup scheme)
group scheme over O g of p-power order has order p.

(7) Filter A[p] such that all quotients are simple. (We can get away even though
we have not defined quotients because they correspond to Galois modules.)
Suppose we know these quotients for p and O

(8) Conclude that Afp] or AY[p] has “too many points” when reduced modulo
a prime of Ok (by the Weil bounds.)

Proof of (6). Let G be a p-power order and simple. G[p] — G, so this must be an
isomorphism, and therefore G is annihilated by P. So if we can prove that Gal(L/K)
is a p-group (assuming (5)), then G/K = G Xgpec 0, Spec K corresponds to a finite
group of order #G together with an action of Gal(K/K) by automorphisms. This
action factors via Gal(L/K), which is a p-group. Since the number of fixed points
is congruent to 0 modulo p, there exists a nontrivial subgroup of order p fixed
by Gal(K/K), hence a subgroup scheme G, — G/K; from the exercises, this
corresponds to a subgroup over 0k which by simplicity implies G;, = G and thus
G has order p. (I

Ezample. If p =2, K = Q, we know that any G/Z of order 2 is either us or Z/27Z;
and if K = Q({7), G/Z[(7] of order 2 must either be p2, Z/2Z, G, Gz where
77 = 2 (see the exercises); these are just G, for factorizations ab = 2.
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Let G = Spec A be a finite flat commutative group scheme over Oy annihilated

by p, and let L = K(G(Q)).
Proposition (1). K C L is unramified outside p.

Proof. Let A D I be the augmentation ideal. We know that [p](I) = 0. Looking at
the comultiplication map modulo 12, [p]I = pI (mod I?); therefore p annihilates
I/I?, so it annihilates Q4 /0, = A®p, I/I?. Let q be a prime of O not lying over
p. Then for k(q) = O /99K, A®p, k(q) is étale over k(q) (since the differentials
are killed by p, a unit in the field, and therefore vanish). A®g, O, is finite and étale
as well over O (the differentials again vanish). The two categories of finite étale
algebras over k(q) and O, are the same (we reduce or lift via Hensel), so A®g, O4
is the product of extension rings Oy O Oy, so local extension is unramified at q as
claimed. d

The statement of (2) follows from Fontaine’s result: For Lq/K,, we have
0(Z(La/Kp)) < ex,(1+1/(p— 1)),
where e, is the absolute ramification index of p, and v(7,) = 1 for 7, a uniformiser.

Proposition (3). 5, < Septti/ (1),

Proof. Ap g = (NK/QAL/K)A[;?}S] by familiar formulae, so

o1 = 0k (N oA r)/1H9,

We know that L is unramified outside p so this norm is only divisible by primes
lying over p.

For any prime p of K lying over p, since L/K is Galois it factors pO; =
(d1...9,)¢ where we let f = f(q;/p) so that n = ref. Then DLy /Ky = A4
and therefore m < e(eg, )(141/(p —1)). We conclude that

(Zoyk)p = (1. q,)™ = (pOL)™/°
where m/e < eg, (1 +1/(p —1)). Taking the norm from L/K we obtain

(AL/K);J _ pfrm — p[L:K]m/e ="

so ordp(Ar k) < [L: Kleg,(1+1/(p—1)).
Now let pOx =[], p;", with f; = f(p;/p) and s, = s;. Then

ord,(Ni/o(Ar k) = Z sifi < Z[L Klei(14+1/(p—1))f;

?

=[L:KJ(1+1/(p=1) Y eifi = [L: Q1+ 1/(p 1))

7

as claimed. O

For (4), we use lower bounds on discriminants for totally imaginary fields (see the
table below) [Mar, Table IV]. If [L : Q] = n = r1 + 2rg, then there exist constants
a1,as € Rs( depending only on (71, 72) such that

Ap =180 gl > a3
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N | Lower bound || N | Lower bound N | Lower bound
2 1.7221 72 15.3591 360 19.5903
4 3.2545 76 15.5549 380 19.6813
6 4.5570 80 15.7371 400 19.7652
8 5.6593 84 15.9071 480 20.0443
10 6.6003 88 16.0663 500 20.1029
12 7.4128 92 16.2158 600 20.3483
14 8.1224 96 16.3563 700 20.5363

16 8.7484 100 16.4889 720 20.5688
18 9.3056 110 16.7898 800 20.6858

64 14.9193 320 19.3823 3000 21.6585
68 15.1479 340 19.4911 4000 21.7825
If ¢, is reasonably small, we obtain an upper bound for [L : Q].

Theorem. If G is a finite, flat, simple, commutative group scheme of 2-power
order over Z, then G ~Z/2Z or G ~ us.

Proof. G is killed by 2 by the above arguments. Replace G by G =G x G_1,
where G, is the Katz-Mazur group scheme annihilated by n = 2, ¢ € R*; recall
G(S)={(x,i):2 € 5,0<i<n-—1, 2" =€}, with

1— pp — Ge > Z/nZ — 1.

Let L = Q(G(Q) > Q(i) D Q. L is unramified outside 2 and 67, < §o21+1/ 21 =
4 which implies that [L : Q] < 4 by the Odlyzko bound. Hence L = Q(4) or L is
a quadratic extension of Q(i). So Gal(L/Q) is a 2-group, and by our standard

arguments, L D Q(G(Q) = L' D Q, and the order of G is 2. So over Q, it must be
G, which over Z gives us the two above. O

Example: Z[(7]. We now give an example outside of Z.
Theorem. The only simple 2-power order group schemes over R = Z[(7] are us,
727, G, G, where G = Spec R[X]/(X? + 7w X) with group law X — X + X' +
TXX', and m = (1 +/=7)/2.

To do this, we prove:
Theorem. If G is a finite, flat commutative group scheme over Z[(7], then G has
order 2.

Proof. Take G to be the product of G with all of the Galois conjugates of G over
Q together with all G, for n = 2, € € Z[(7]* /Z[(7)*%. Let L = K(G(Q)) containing
K =Q(¢r) € Q(¢ry i, 1/€1,1/€2) (of degree 48) if we let Z[(7]* = (—(7) X (e1) X (€).

Then 0y, < 0 (21+1/2=1) = 75/6 . 4 ~ 20.245, so from the table, [L : Q] < 600, so
deg L/Q(Cr, 4, v/e1, v/€2) < [600/48] = 12.
Q(¢7) = K C L is unramified outside 2. We want to show that Gal(L/K) is a
2-group. We have
Q C6 Q(¢r) € Q(Cas) Ca Q(Cos, ver, Ve2) C<ia L

The extension Q((a2g) is the maximal abelian subextension, since if ' C L is such,
then Q(Cog) C F C Q((s6), which has § = 4 - 7/6 a contradiction (the inequality
is strict). So E = Q((28) C L gives the commutator subgroup 7’.
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We will show: 7’ is a 2-group. #7’ < 48 is solvable, so we have 7’ D7/ D --- D
{1}.

Step 1. 7' /7" is a 2-group. If not, there exists £ = Q({25) C F C L where F
is abelian of odd degree unramified outside 2. Let F S E be the maximal abelian
unramified outside primes p1, po lying over 2 and at most tamely ramified at p. By
class field theory, Gal(F /E) is the ray class group Cl, modulo p, and we have an
exact sequence

1 — (O/p1p2)*/imgO* — Cl, — Cl — 0.
But Q(¢2s) has Cl(Z[(25]) = 1 (one shows it has a trivial Hilbert class field via the
Odlyzko bounds, since the two have the same Hilbert class field and the degree is
bounded). So we obtain

(D/p1p2)”/img O* ~ F¥ x FY/img Z[¢®]* = 1.
It suffices to show that all simple group schemes have order 2.
Claim. If every extension L of Q({7) such that we get L by adjoining the points of
a group scheme killed by 2 to Q((7) has: 61, < g2t/ 2D =4.75/6, Q(¢7) C L
is unramified outside 2, Q C L is Galois, /e € L for all € € Z[¢7]*, and [L : Q({7)]
is a power of 2, then all simple 2-group schemes have order 2.

To verify the conditions of the claim, we have

Q C Q(C'?) C Q(C’T} i7 \/57 \/5) cL

where Z[(7]* = (£(7) x €2 x 5. The Galois group Gal(L/Q) is solvable, since
L/Q({7,1, /€1, +/€2) has degree < 12. We have m/7’ covering the Galois group
Q C Q(¢7,9).

The claim is that 7’ is a 2-group. We will show that «'/7” is a 2-group, etc.
Class field theory tells us there is a maximal abelian unramified extension H of a
number field F with Gal(H/F) ~ Cl(OF), and one Fg that is unramified outside
a finite set S of places, and

0— (J]©;)/(imgOF) — Gal(Fs/F) — Gal(Fy/F) = Cl(Dr) — 0.
peS

In our situation, we take S to be the primes dividing 2, including oco. If we
reduce

0 =TI} )/ (imgOF) = [,esOp /(img OF) — [[,esky /(img OF) — 0.

The first is a pro p-group, and the latter has order prime to p isomorphic to the
Galois group of the maximal extension uramified outside S which is tamely ramified
atpes.

Every abelian extension of F' unramified outside p is a p-group iff hp = # CI(F)
is a power of p and Oy — [, k' — 0. For F' = Q((as), # Cl(OF) = 1, and the

Galois group F§ x FJ generated by (Cas, 1 — C2s), and thus #’/7” is a 2-group.
Claim. If 7 is a finite group, 7' /7" is a 2-group, and #7”” < 9. Then 7’ is a 2-group.

Proof of claim. 7' is solvable, so it suffices to show that 7" /7" is a 2-group (and

then repeat). Let 7/ C H C 7/ where "/ C H is the 2-part, and H C 7" is odd.
We have

1—-7"/H—7'/H—x'/r" — 1.
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The group «”//H is odd order, and 7 /x" is 2-power, so the groups have relatively
prime orders, so the sequence is split (it is a semi-direct product).

7' /7’ acts trivially on 7 /H because m — Aut(n”/H), where " /H is odd < 9
and hence cyclic and thus abelian, so 7’ is contained in the kernel. Therefore w/H
is a direct product, and thus abelian, but 7'/7” is maximal abelian, so 7/ = H,
and 7" /7" is indeed a 2-group. O

The lemma is sharp: take the semi-direct product of (Fs x F3) with SLy(Fs).

So #x' /7" > 4. If > 8, #x” < 6, we are done by the lemma. If = 4, show (by
Odlyzko) that Cl1(Q(Cz2s, v/€1,/€2) = 1 by the Odlyzko bounds, so there is no tame
extension and 7" /7"’ is a 2-group. If = 1, we are done by solvability, and # > 2,
#7""" < 6, so we apply the lemma to 7’.

So to finish, we know #7’' /7" > 4. Therefore if #n’'/7"” = 8 and #x”" < 6, and
the lemma applies. If #m /7" = 4, then work to show that hqc,, e, v&) < 2 by
the Odlyzko bounds, so there does not exist a tame extension unramified outside
2, hence 7"’ /7" is a 2-group. O

Reduction to the étale case.

Lemma. If R is a Dedekind domain, and G is a finite flat group scheme over R,
then we can consider G over the quotient field K. The goal is to show that there

is a one-to-one correspondence between closed flat subgroup scheme between G over
R and G over K.

Proof. If Ris a Dedekind domain, A is a flat R-module iff torsion-free. Always have
flat implies torsion-free over a domain, because if 0 2 A € R, R X Ris injective,

so tensoring with A we have A A injective. Conversely, it suffices to show that
(I C R) ® A is still injective. If we localize, R, is a PID, so I C R, is principal,
I = (a) ~ R, and thus R % R, tensoring over R with A we have A % A is injective
since it is torsion-free, and thus A, is flat for all p, and thus A is flat.

If G = Spec A, where A is a finite flat R-algebra, a closed flat subgroup scheme
H of G is Spec A/J where J is an ideal that is a Hopf ideal (¢(J) C A® J+J® A)
and A/J is flat. Now G/K = Spec(A ® K); we have a map of ideals in A to ideals
inA® Kby J— JR K. If JC A® K is an ideal, then if we tensor the injection
R — K) ®gr A we have an inclusion A — A ®g K, so we can take J N A, which is
an ideal of A. Indeed, A/(J N A) is flat, because we have

]
0 Aer II A/(ANJ)——=0
0 J AR K (AR K)/J—=0

is Cartesian, so by a well-known diagram chase, A/(A N J) is torsion free, hence
flat.

Therefore we claim that we have a one-to-one correspondence between Hopf
ideals J C A such that A/J is flat, and Hopf ideals of A®@ K by J — J® K
and J' — J NA If J C A, then (J® K)N A = J; clearly we have D, and if
x € A, there exists a A € R such that Az = 0, and looking at « € A/J which
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is flat, and hence torsion free, we find x € J. Similarly, (J'N A) @ K = J.
Finally, we need to check that Hopf ideals correspond to Hopf ideals. If we have
co(J) CA®J+ J® A, this remains true after tensoring with K. Conversely, if we
have J' C A® K a Hopf ideal, and ¢(J') C (A®r K) @k J' +J @k (A®r K),
and we want to show for J = J' N A, that ¢(J) C A® J+ J ® A. We know that
o(J)C(AJ+JRA)QK)N(ARA) C A J+ J® A, since if we do the same
thing as above, since AQ A/(A@J+J®A)~A/J® A/J is flat. O

We can apply this as in the following example:

Example. Let R = Z[(1 ++/—7)/2] = Z[r]. We have the 2-group schemes Z/27Z,
pe2, and G and G, since 2 = n7, where G = Spec R[X]/(X? — nX), with group
law X — X + X' —7XX'.

Consider G x G, of order 4, given by A = R[X,Y]/(X?—7X,Y? —7Y. What
are the closed flat subgroup schemes of order 2? If we tensor with K = Q(v/—7),
it has the 4 points {(0,0), (7,0), (0,7), (r,7)}. The action of Galois Gal(K/K) is
trivial, and thus there are three subgroup schemes generated by each of the three
nontrivial points (it is a group of type 2-2).

For example, J C A® K for ((w,0)) is J = (Y) since y = 0 on (0,0) and (7, 0).
So we have H = Spec(A/(Y)) ~ Spec R[X]/(X? — nX) ~ G,. Similarly, ((0,7)
gives Spec(A/(X)) ~ G=. Finally, for ((m,7)), we take J C A® K is (Y — (7/m)X.
So

JNA={f(X)=0bX+cY +dXY € A: f(n,7) =0}
={bX +cY +dXY : b+ Tc+ 2d = 0}
= 7TX - XY, 7Y — XY).
This may not at first appear to be flat, but the map A = R[X,Y]/(X? —7X,Y? —
7Y) — R[T)/{(T?> - T) by X — «T, Y +— YT, since (7T)? = n°T = =n(aT).
It is surjective because ged(m, 7) = 1, and the kernel consists of polynomials a +

bX + c¢Y +dXY for which a + brT + ¢&T + drwT? = 0, which requires a = 0 and
br + ¢ + 2d = 0, which is exactly I. Hence the third group scheme is Z/2Z.

An equivalence of categories. For the material in this section, see [J, Lemma
2.4.4, Remark 2.4.10] or [A, Theorem 2.6]. Let R be noetherian, p € R, and

~

R=Ilim R/(p™), with maps

R1/p]

/N

R[1/p] R

R

Let € be the category of triples (M7, Ms, ¢) where M is a finitely generated R-
module, M> is a finitely generated R[1/p]-module, and

¢: My ®p R[1/p] ~ Ms ®@gp1 ) R[1/p).
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Theorem. The functor
M — (M ®p R, M ®g R[1/p],id ®R[1/p))

induces an equivalence of categories between the category of finitely generated R-
modules and €.

Corollary. The functor
G — (G Xgpec R Spec R.G Xspec & R[1/p],1id)

is an equivalence of categories between the category of finite flat group schemes over
R and triples (G1, G2, ¢) where G1, Go are finite flat group schemes over R and
R[1/p], respectively.

Proof. We need only to check that if G Xgpec g Spec Rand G Xspec & R[1/p] are flat
that G is flat. The reason is that R — R[1/p] x R is faithfully flat. It is flat because
completion and localization are flat, and faithful because Spec(R[1/p]) USpec R —
SpecR since if p € p then p is a prime of Spec R[l/p] and if p € p then we have a
map R — R/p and the kernel gives a prime of R. Soif G = SpecA where A is an
R-algebra, where R®@p R, A®g R[1/p] are flat, then A®p (R x R[1/p]) is flat and
R x R[1/p] is faithful, so A is flat. O

Main application: If R = O is a ring of integers, p € Z a prime number,
then if G/ is a p-power order group scheme, then by the theorem, we may look
at (G x Specﬁ,G x Spec R[1/p],id), where R= lep O, where the O, are finite
extensions of the p-adics, and G is étale outside p and therefore localizing at p we
know that G x R[1 /p] is étale, and hence a m-module, where 7 is the fundamental
group, namely Gal(K /K), where K is the maximal extension of K inside some K
which is unramified outside p.

Ezample. Here is an example of an “exotic” group scheme over Z[(1 + v/—11)/2].
It will be described by G < (G1/R,Gs/R[1/p],$). G is of order 4, p = 2, R =
Z2[(1 4+ +/—11)/2] ~ Z[(5]. For G2, we take Q(+/—11) which allows a cyclic cubic
extension F' which is only ramified at 2, the ray class ﬁeld of conductor 2 with
Galois group FJ, where F' = Q(v/—11 a) where o3 + 0?2 —a+1 = 0; we let Gy
be Z/27Z x 7Z/2Z with nontrivial action by m = (1 4+ v/—11)/2, namely by matrices
((1) 1) For G, take the elliptic curve Y2 +Y = X3 over Z[(3] = R, which only
has bad reduction over 3. E[2] is finite and flat of order 4; we need to show there
is an isomorphism Spec R[1/p] x G1 — G x Spec R[1/p]. But R[1/p] = Q4((3) is
a local field, so we need only check that the Galois action of the local Galois group
of points of G and G4 coincide.

The 2-torsion points of F are given by the roots of X3 +1/4, i.e. X = (3(v/2/2).
We have to show that Qo((3)(a) = Qo(v/—11)() = Qo(3, ¥/2); from local class



48 GROUP SCHEMES

field theory, we have

Q2(¢s)(@) = Qa(V-11)(a)

-3
+,3

But the extensions correspond to these eigenspaces, so we indeed have equality. In
terms of equations, G = Spec R[X|/(X*+ (1++/—11)X3+ (-3 ++/—11)X? —2X).
This group scheme also actually comes from the 2-torsion points on a Neron
model of an elliptic curve of conductor 121 with CM by —11 over Z[(1++/—11)/2].
(It is also an example of Raynaud.)
Now we begin with the proof of the equivalence of categories.

Lemma. If M is a finitely generated R-module, the square
M M ®pg ﬁ

| |

M ®g R[1/p] —= M ® R[1/p]

is Cartesian, i.e. it is a fibre product in the category of modules.

Proof. Tt suffices to show this for p-torsion free M: Let T = {m € M : p'm =
0 for some i > 0}. Let T®r R = li_n)lT/piT ~ T by the notherian hypothesis. We
have

0 T M M/T 0

R

0—=T@R—>M@R— (M/T)® R—0
From the commutative cube obtained by the faces of these cartesian squares, we
obtain

M&R
A
® R[1/p]

7l

(M/I)® R[1/p] — (M/T) ® R[1/p]
since if we tensor 0 - T — M — M/T — 0 with R[1/p] we have an injection
M @ R[1/p] — (M/T) © R[1/p].
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So let M be p-torsion free. Then M ®p Ris pﬁ—torsion free, since M 2 M ® R
is injective. Since M is p-torsion free, M C M & R[1/p] by m — m ® 1. We want
to show

M —— M ®g [1/p]

N

M®R— M ® R[1/p]

fye M® R and z — y for x € M ® R[1/p], we want € M. Consider inside
M ® R[1/p], M C (M,z). Then (M,z) ® R = M ® R and (M,z) ® R[1/p] =
M @ R[1/p], so (M,z) ® (R x R[1/p]) = M @ (R x R[1/p]), where the latter is
faithfully flat, so M = (M, z) (by the cokernel property of faithful flatness), and
thus x € M. (]

Theorem. If R is a noetherian ring, p € R, the functor
F:M— (M®gpR,M®gR[1/p],id®R[1/p])

from the category € of finitely generated R-modules to triples of modules finitely
generated over R and R[1/p] with an isomorphism ¢, is an equivalence of categories.

Lemma. If M is a finitely generated R-module then the square
M — M ® R[1/p]

|

M®R—> M ® R[1/]
1§ cartesian.
Corollary. F' is fully faithful, i.e.
Homp (M, N) ~ Home (F (M), F(N)).
Proof. If f: M — N becomes 0 then
f& (R xR[1/p]) =0

since the product is faithfully flat implies f = 0. This shows injectivity; for surjec-
tivity, if we have

(M ® R,M ® R[1/p],id) — (N ® R, N ® R[1/p],id)
then we have maps
M—-M®R—N®R
and
M — M ® R[1/p] — N ® R[1/p]

so by the cartesian property, we have a unique map M — N. (I
Proposition. F is essentially surjective.
Proof. For (M1, Ma, ¢), we want to construct M. We have

¢: M ®p R[1/p] — M> QR[1/p] R1/p]
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Choose m; to generate M7 such that the image generates M5. Then we have

@D, Rfj ———=PR/;

0— (NlaNQad)) g (@z ﬁeia @z R[l/p]e'tald) - (M17M27¢> — (T507O) —0

where T is p-torsion. Therefore we have
0— M/S=M — (M, M,¢)— (T,0,0) — 0
and in the first coordinate
0—=M®R—M —T—0

which gives
Exth (T, M) ~ Exth(T, M’ ® R).
O

Cokernels and sheaves. For the material in this section, see [A2], [Mil], or [R].
If f: G — H is a morphism of group schemes over R, (ker f)(S) = ker(G(S) —
H(S)), so that if G = Spec A, H = Spec B, then ker f = Spec(4 ®p R) =
Spec(A/IgA).
What is the cokernel? We would like that pug — pn — pin/q from

RIX]/(X? ~ 1) — R[X]/(X" —1) — RIX]/(X"/ — 1)

where the right-hand map is X — X%, and we would like p,,(S) — pinsd(S) by z
24 surjective, but this is not always so. Therefore we cannot take (coker f)(S) =
coker(G(S) — H(S)). We would, however, have surjectivity if we viewed the map
over the algebraic closure (a faithfully flat extension).

Let F' be a functor from R-algebras to a category 2.
Definition. F is a sheaf if for all objects S and faithfully flat extensions S — T,
the sequence

0— F(S) — F(T) — F(T®sT)

is exact.
Example. If T = [], S[1/fi], such that (f;); = S, then T is a faithfully flat ring
extension. Spec S « | |, U; where U; = Spec S[1/f;]. (It may be alright to take an
infinite index set, but we will restrict to the finite case.) Then the exactness of the
sequence corresponds to equality on the intersections U; N Uj;, which is exactly the
usual sheaf condition.

Theorem. Representable functors F' from R-algebras to A are sheaves.

If 2 is an abelian category, then the category of sheaves from R-algebras to
form an abelian category as well, which allows us to construct cokernels.
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Proof. We will show that if S — T is faithfully flat, then in fact

0 S T T®sT

is exact, where the second map is t — t® 1,1 ®t. It suffices to show exactness after
tensoring with T (since T is faithfully flat). We obtain

0——T—TQRsT —TRRsT®RsT

t— 1l®tand a®b— a®1®b,1®a®b, and now we have a reverse map h
(not quite a section) by z® y ® z — z ® yz. If Y, a; ® b; has the same image,
then Y, a; ®1®b; =) ,1®a; ®b;, and applying the map h we find >, a; ® b; =

If F is represented by A, then apply Hompg (A, —), and it is still exact. O

Therefore group schemes can be considered representable sheaves from R-algebras
to group schemes.

Definition. In the category of sheaves, if f : G — H is a morphism of sheaves,
let P be the functor P(S) = H(S)/f(G(S)), which is only a presheaf. There is a
construction “sheafify” which transforms a presheaf into a sheaf, by first taking

PT(S) = lim,  ker(P(I") —= P(T ®5T))

where S — T runs over all faithfully flat extensions, and then taking PT™" = aP is
a sheaf.
Then coker f = aP.

It has the universal property in the category of sheaves. If f : G — H is
surjective, which is to say that if S is an R-algebra, and « € H(S), then there is a
T such that there exists a y € G(T') which maps to z € H(T).

Ezample. The map G,, — G,, for n > 1 which raises each unit to its nth power,
then for any € € S, we take T' = S[X]/(X™ —¢€) which is free and therefore faithfully
flat, and then X — e for trivial reasons, so the cokernel is trivial.

For the same reason, g, — fi,/q is also surjective.

Theorem (Grothendieck). If N — G is a morphism of group schemes, G =
Spec A, and N = Spec A/J is a closed, commutative finite flat subgroup scheme
in G, then the quotient sheaf G/N = Spec B is representable where

B={acA:cla)=1®a (mod J® A)}.
Moreover, A is faithfully flat over B (and thus if A itself is flat, B is also flat).

(See [R].)
If A= R[XI;-~-7Xm]/<f1a--~7fr>a then

X Y, X1
B={¢(X1,....Xpn) €A 0| : Sl=ol |}
Xm/) \Ym Xm
for all Y; for which ¢g(Y;) =0 for all g € J.

Ezample. The map f,,/q — p, arises from R[X]/(X"/?—1) « R[X]/(X"—1) = A
by raising to the dth power, the cokernel is

{6 € RIX]/(X" = 1) : 6(X) = (XY) € R[X,Y]/(X" ~ 1,Y"/4 — 1)}
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which implies ¢ is a polynomial in X™/?, so the cokernel is R[X™/%] C A, isomorphic
to R[T]/(T? — 1), and therefore we have an exact sequence
0 — finja = Hn — pa — 0
Ezample. If R = Z[(1 ++/—7)/2] = Z[r], 2 = 7. There are four group schemes
over order 2, Z/2Z, G = Spec R[X]/(X? — 7X), G=, and ps. We have
0—2Z/2Z — G x G=

induced from R[T]/{(T? —T) «— R[X,Y]/(X? —7X,Y? —7Y) by X,Y — «T,7T.
(It is the map 1 — (m,7).)

The cokernel consists of polynomials {¢(X,Y) : ¢((X,Y) + (7,7)) = ¢(X,Y)},
where the group law now gives

X +7m—TXn,Y +7T—7YT) = ¢p(X,Y)

and therefore ¢ = —7X — 7Y + 2XY. We check that ¢?> = —2¢ and therefore
B~R[T|/{(T? =2T), c(¢) = ¢ R1+ 10 ¢ — ¢ .
The exact sequence

0—2Z/2Z — Gz X Gz — p2 — 0
is not split (look at étale and connected parts), even though everywhere the Galois

action is trivial.
If we have 0 = N — G — G/N — 0, arising from B — A — A/J, then

A®BA2A®RA/J.

If we localize and compute ranks, ((tkG)/(tkG/N))(tkG)/(tkG/N))rtkG/N =
(rk G)(rk N) and therefore tk G = (tk N)(tk G/N), i.e. #N - #G/N = #G.

We also have a Mayer-Vielois exact sequence. If R is noetherian, p € R, and G, H
finite flat commutative group schemes over R; we are interested in Ext}z(G, H) =
{0 = H— A— G — 0}/ ~ in the category of sheaves, but one can show that any
such A is representable if H and GG are. We have

1/p]
R[1/p]

.
N

We know G and H are p-power order.

Theorem. There exists an exact sequence

0 — Hompg(G, H) — Homg(G, H) x Hompg (G, H) — Homﬁ[l/p]

%, Bxth(G, H) — ExtL(G, H) x Exthy (G, H) — Extpy, (G, H)

(G, H)

where & is defined by o € Homp, , (G,H) is
da = ((G X H)}AW (G x H)R[l/p]aidH idg —I—a).

The exactness follows from the equivalence of categories above.
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Remark. This was constructed by hand; a good question would be to understand
what the Ext? groups are.

If we work over a field, and G is finite and flat, then we have an exact sequence
0—-G"'—G— G —o0.

Moreover, we have exact functors G — G°, G — G*'.
If G; are commutative, and 0 — Gy — Go — G3 — 0, then we also have an
exact sequence

0 GY — Gy «— Gy 0.

Nonexistence of abelian varieties. To prove that there are no abelian varieties
over Q with good reduction everywhere, we will use:

Theorem. FEvery finite flat 2-power order commutative group scheme G over Z
sits in an exact sequence

0—-M-—-G—-C—0

where C' is a constant group scheme, and hence C ~ @ 7Z/2*Z, and M is diagonal-
izable and hence its Cartier dual is constant, so M ~ @ por.

Proof that the theorem implies Fontaine’s theorem. If A is an abelian variety of
good reduction, then A[2"] is a finite flat group scheme over Z of order 22"9 where
g = dim A. Then we have an exact sequence

0—-M—A2"—-C—0

by the theorem. Consider C — A/M, and reduce modulo a prime ¢g. Since C
is étale, it remains étale and constant under the reduction map, and therefore
C(F,) Cc A/M(F,). By the Riemann hypothesis,

#C(Fy) < (Va+1)*.
So as n — oo, C is bounded. If we dualize, we obtain
0—CY — A[2"])Y — MY —0;

there is a natural identification of A[2"]Y ~ AY[2"], where now C" is diagonalizable
and M" is constant. The same argument implies that #M" = #M < (\/q+ 1)%9).
This is a contradiction, since then #A[2"] is bounded, hence g = 0. (]

The first theorem will follow from the following concerning extensions of Z/27Z,
Ha.
Theorem.

(a) Any extension of a group scheme composed of Z/2Z is constant
(b) Any extension of a group scheme composed of po is diagonalizable.
(¢) The sequence 0 — Z/27 — G — ps — 0 splits.

Proof. If G is an extension of Z/27, G is étale, since
0—(2/22)° =0— G° — (2/22)° =0 — 0.

Since Gal(Q/Q) acting on G is unramified at all p, and h(Z) = 1, the action is
trivial. This proves (a), and (b) follows by taking Cartier duals.
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For (c), we use the Mayer-Vietais sequence. Let R = Z, p = 2, R = Zy,
R[1/p] = Z[1/2], and R[1/p] = Q2. Then we have

0 — Homg(p2, Z/27Z) — Homgz, (u2, Z/27) x Homgyy ) (pe, Z/27)
— Homyg, (p2, Z/27) — Exty (g, Z,/27)
— Exty, (2, Z/27) x Exty, 9 (12, Z/27) — Extg, (2, Z/27).

Since 0 — Z/27 — G — ug — 0 is split over Zs, taking connected components we
have

0—(Z/22)° =0 — G® — py = pa — 0
and therefore we get a section. Since it is split over Zs, it is killed by 2 and by

flatness, it is also killed by 2 over Z. As a Galois representation, it looks like (é )1()

where y is unramified outside 2. But since the sequence splits, it is also unramified
at 2, but since h(Z) = 1, the character must be trivial, so the Galois module is
trivial. Therefore

Exty, (2, Z/2Z) x Exty, s = 0.

Now Homg, (112,7Z/2Z) = 0 since any morphism must factor through the unit
section (as one group is étale, one is connected), and the same argument shows
Homg(p2,Z/2Z) = 0. Therefore Homg, (p2, Z/27) = Homyyy o) (pe, Z/27) = 2,
and we obtain

0—0—0x2—2— Exty(ug,Z/27Z) — 0

so this extension group is trivial. O

Proof that it implies the above. If G is 2-power order over G(Q); we have seen that
a simple 2-group scheme of 2-power order is either Z/27 or us. We can therefore
filter G with quotients isomorphic to one of these two simple groups. Using the
splitting, we can modify the filtration so we can switch if Z/2Z is on the left of a
2. Pushing all of the quotients Z/2Z to the right, we obtain a filtration composed
first of o and then of Z/27Z, for which the first by (b) is diagonalizable and the
second by (a) is constant. O

If we now look at cyclotomic fields, Q(C¢), f the conductor, f # 2 (mod 4). It
is known that Jac(X1(f))/ Jac(Xo(f)) acquires good reduction over Q({y). This
construction gives nonzero abelian varieties with good reduction everywhere when
the genus of X;(f) # 0, ie. f & {1,3,4,5,7,8,9,12}, and such that the genus of
X1(f) is not the genus of Xo(f), i.e. f ¢ {11,15}.

Theorem. For all f in this list, except possibly 11,15, there do not exist abelian
varieties with good reduction everywhere over Q((y). Under the GRH, the same is
true for f =11,15.

We treat the case f = 7. Look at finite flat group schemes over R = Z[(7].
Choose p = 2. The only such simple group schemes of 2-power order over R are
Z)2Z, uz2, G-, and Gz, where G = Spec R[X]/(X? —7X), where m = (1++/=7)/2
with group law X — X + X' —7XX".

Theorem. For all finite flat group schemes G over Z[(;] over 2-power order, there
exists a filtration

0cGicGyCc @G
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such that Gy 1is diagonalizable, G /G4 is constant, and Go /Gy is a direct product of
factors from G, and G=.

If we apply this to G = A[2"], where A is an abelian variety with good reduction
everywhere, then #G; < (/g + 1)* as above, and #G/G> < (/g + 1)*. Since
A[2"] ~ (Z/2"Z)%9, and Go/G, is of exponent 2, #G2/G1 < 229, we again have
that #A[2"] is bounded, a contradiction.

Theorem. If G is a finite flat group scheme over Z|(r].

(a) Any extension of a group scheme composed of Z/27 is constant.
(b) Any extension of a group scheme composed of o is diagonalizable.
(¢) Ext'(uo,Z/27) has order 2, generated by

0—2/2Z — Gr X Gz — ps — 0.

(d) Ext’(G,,Z/2Z) = Ext'(G# Z/27Z) = 0. By Cartier duality, we have
Ext!(p2, Gr) = Ext!(u2, Gx) = 0.
(e) Ext (G, G%) = Ext’(Gr,Gr) = 0.
This implies the filtration theorem, because we can filter with simple quotients

as above, switching the order except when Z /27 is next to psg, for which we replace
it with G, x G=.

Proof. If G is an extension of Z/27Z, then G is étale, so the Galois action is unram-
ified, but ~(Q(¢7)) = 1 (the group is a pro-2-group), so the action is trivial, so G is
constant. This gives (a), and (b) implies (a) by duality.

~

For (c), we have now R = Z[(7], p = 2, R = O x O, where O is an unramified

~

extension of Zy is of degree 3, R[1/2] = K x K, and R[1/2] = Z[(7,1/2]. Then
0 — Hompg(p2, Z/27) — Homg(po, Z/27) x Hompgyy o) (p2, Z/27)
— Hompy, o) (n2, Z/22) — Extr (2, Z/27)
— Ext}gb(/u, Z/2Z) x EXt}{[l/Q] (p2,Z/27) — Ext}%[l/m (p2,Z/27)

If we have
0—>2Z/2Z — G — pg — 0

again by looking at Galois representations, we have the product extension group
trivial. As before, we obtain

0—-0—-0x2—2%x2—-G—=0

and therefore Ext}, (12, Z/27) has order 2.
For (d), we look at extensions

0—Z/2Z — G — Gy — 0.
Locally, G, ~ us at m and G, ~ Z/2Z at 7. At 7 (i.e. over O,), we have
0—2/2Z — G — ps —0
which is split, and at T we have
0—-2/22Z —G—Z/2Z — 0

so G is étale at 7. So it is killed by 2 over R, we again have a Galois representation
with a character which is unramified everywhere, so y is trivial. So it is locally
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trivial, and therefore because it is étale at 7™ and determined by this Galois action,
it is also split at 7. This time,
Homp(Gr,Z/2Z) = Homp, (2, Z/27) x Hompg, (Z/27,2/27) = 0 x 2
so we have
00— (0x2)x2—2x2— #Exth(u2,2/2Z) — 0 x 0

and thus this group is trivial.
The latter follow from the claim:

Claim. If R is a PID, char R # 2, R*/R*? finite, R has quotient field K, and
0 — pe — G — Z/2Z — 0, then the points of G are defined over K (4/€) for some
€ € R*, and G is determined by its Galois module.

Proof of claim. We know (for instance) the Katz-Mazur group schemes
0— pus— G —7Z/27 — 0
killed by 2, where now  corresponds to /€, ¢ € R*/R*2. We also have

2

0 H2 Gm Gm 0
0 H2 G Z/QZ ——0
On the level of Hopf algebras, they arise from
R[T,1/T) R[T?,1/T?)

| |

R[T))(T? —1) =<— R[X,T)/(X? - X,T? — 1 +2X) =—— R[X]/(X%2 - 1)

where the vertical map is T2 — 1 — 2X. The group law in the pullback is obtained
from

(z,t)(z',t) = (x + 2’ — 2z, t1").

Over a field, the points are the zero element (0,1), and
(132)(1a2) = (Oafl)v (0771)3(0771) = (071)

Therefore # Ext'(Z/27Z, uz) > 2#R* /R*2, and each of these are distinguished
by their Galois modules, and if we show equality then we are done.
From 0 — ps — G,,, — G,, — 0, the functor Hompg(Z, —) gives

R* — R* — Exth(Z, pg) ~ R /R*? — Exth(Z,G,,) = H'(Spec R, G,,) = 0

where the latter vanishes because it is the Picard group and R is a PID. Doing the
same to

0—-Z—->7Z—7Z/2Z—0

we obtain
0 — pa(R) — Exth(Z/2Z, jis) — R* /R*? — 0

which gives the correct rank. ([l
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To prove (e), then, we want to show that any sequence
0—-Gr—>G—G=—0
over R = Z|[(;] splits. Locally at 7, this looks like
0—pe—G—7Z/22 —0
and at 7 it is
0—-7Z/2Z — G — pg — 0
which splits, and therefore G is killed by 2 over O, and by flatness G is killed by
L X
01
7, and at 7 it arises from cutting out /€, so the conductor of y divides 72.

But the ray class field of Q({7) of conductor 72 is trivial, as O, is unramified of
degree 3 over Zs, so

{r=1 (mod7)}/{x=1 (mod %)} ~TFy

where we map in the global units Z[{;], and we want to show that it is surjective. We
have —1 =1 (mod 7) but —1 # 1 (mod 72) and cyclotomic units (¢* —1)/(¢ — 1)
where a € (Z/7Z)* which give us 1,{/(1—¢),¢?/(1—¢?) which are a basis over Fa,
so the map is surjective, and x is trivial. Therefore the global Galois acts trivial,
so the local Galois acts trivial, so by the claim it is determined by this action, and
locally at 7 it is also split. The rest follows from the long exact sequence. (I

2 over R. The Galois representation ( > has y unramified at p |/2, and spli at

Exercises. The following are exercises for §5.

Problem 5.1. Let p be a prime, let ¢ € Z) be ¢ = 1 (mod p) but e # 1
(mod p?). Let F = Q,((p, ¥/c). We have G = Gal(F/Q,) and its subgroup
H = Gal(F/Q,((p)). Let v denote the p-adic valuation on F normalized by
v(p) = 1.
(a) Show that Op = Z,[(p, ¥/€] iff p = 2.
(b) Show that o = ({, — 1)/(¥/€ — 1) is a uniformizer for Op; show that
Op = Zy[al.
(c) Show that i(0) = 1/p(p — 1) when o ¢ H while i(c) = 2/p(p — 1) when
o€ H\{1}.
(d) Determine the lowering numbering of the higher ramification groups: show
that G;) = G when i < 1/p(p — 1), that G(;) = H when 1/p(p —1) <i <
2/p(p — 1) and that G;) = {1} when i > 2/p(p — 1).
(e) Determine the upper numbering of the higher ramification groups. Show
that G = G for 0 <wu <1, that G = H for 1 <u<1+1/(p—1) and
that G™ = {1} when u > 1+1/(p — 1).
(f) Determine ipq, and up/q,. Compute v(Zr/q, )

Problem 5.2. Let R=Z[(1++/-7)/2].

(a) Show that R has class number 1.
(b) Show that, up to isomorphism, there are precisely four finite flat group
schemes of order 2 over R, viz. Z/27, u2, and two others G; and Gs, say.

Problem 5.3. Let R = Zs[i] and let 7 € R denote the uniformizing element ¢ — 1.
Let G denote the R-group scheme with Hopf algebra R[T]/(T? + nT) and group
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law T +— T + T’ 4+ inTT’. Let A denote the Hopf algebra of the group scheme
G X 2.

(a) Determine the Kéhler differentials QY IR
(b) Show that there is no element a € A for which Q1 /g is free over A/aA.

Problem 5.4. Let G be a finite flat commutative group scheme of 2-power order
over Z[(3).

(a) If G has exponent 2, show that the extension generated by its points has
degree at most 5 over Q((3).

(b) If G is simple, show that it has order 2.

(¢) If G is simple, show it is isomorphic to Z/2Z or to ps.

Problem 5.5. Show that the only simple finite flat commutative group schemes
over Z[(s] of 2-power order are Z/27Z and ps.

Problem 5.6. Show that all simple finite flat commutative group schemes over Z
of 3-power order have order 3. [Hint: If G is simple, consider the extension L of Q
generated by the points of G x u3 and show that [L: Q(¢3)] | 3]

6. COMMENTS ON THE EXERCISES

Problem 1.1. We are still in characteristic 0, so we look at Y2 = X3 + a, X"? +
ay X'+ af = f(X') with A’ = 26A, A =1, —1,4,—i, and a} € Z[i] (we still have a
global minimal model because Q(7) has trivial class group).

To show that there exist 2-torsion defined over Z[i], we first treat A = £1 so
VA € Q(i), and thus the field L obtained by adjoining the 2-torsion is a cubic
cyclic extension of K = Q(¢) ramified only at 1+ i, so it is contained in a ray class
field of conductor ¢ = (1 + )¢ for some e; but for e sufficiently large,

hc _ hK(,ZS(C) _ 2673
(U :U,)
hence [L : K] is a power of 2, a contradiction. Second, if A = +i, then K =
Q(vi) = Q(¢g). Here (2) = (1 —(g)*, and again L/K is cyclic of order 3 unramified
outside 1 —(s. Q((s) has class number 1 (Ap /g = £2° and 41/4*(4/m)?V/28 < 3 but
2 is already principal). The same argument (without computing the unit group)
shows that [L : K| has order dividing 2, a contradiction.

We again are reduced to the situation +2% = a/Z(a? — 4aj}). Z[i] is a UFD, so
aly | 2%, so we check a} = u2* for 0 < k < 4, u = +1,4i. Testing each one for
when 42872%F 1 442% is a square (using the fact that only 2 ramifies) gives only the
possibilities (a5, a}) = (0,£4), (£6,8) as before and now also (aj,aly) = (+6i, —8).
Since this last case only differs by a unit, the same arguments as before show that
these cannot occur.

Problem 2.1. We find that Homg(R[X,Y, Z, W|/(XW —Y Z —1),5) = SLy(S) so
A=R[X,Y,Z,W]/(XW —YZ — 1). Since

z y\ (2 ¥\ [z +y xy +yw
zw)\Z w/) \dz+wd yz+ww
we have the comultiplication ¢ : A - A Aby X — XX' +YZ',.... W —

Y'Z + WW’. The identity matrix givese: A — Rby X,Y,Z, W — 1,0,0,1, and
the inverse i : A — Ais X, Y, Z W — W, =Y, -7 X.
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Problem 2.2(a). We have
Homp(A® A, A) =<—— Hompg(A, R) x Homgp(A,R) =G x G

/
HomR(j, A) =G

The diagonal map A maps ¢ — (¢, ¢); the top map takes (¢, %) — ¢ ® b which
maps (¢ @ ¥)(a ® b) = ¢(a)ip(b), so the map m is the map on the left which takes
¢+ ¢pom = ¢® ¢, which since (¢ ® ¢)(a ®@b) = ¢(a)p(b) = p(ab), m: AQ A — A
isa® b+ ab.

Problem 2.2(b). This is the dual statement to the property of the inverse morphism,
which says co (i x idg) 0o A =e.

Problem 2.2(c). In terms of groups, this says that co A = e, so on groups this
means g2 = e for all g, which implies G is commutative gh(hg)? = --- = hg.
Problem 2.3(a). Such a map ¢ : G,, = Spec R[X,1/X] — G, = Spec R[X] would
arise from a map ¢f : R[X] — R[X,1/X], determined by X  f(X) € R[X,1/X].
If ¢ is a group morphism then it preserves the group law, so

Gy X Gy 2% G, x Gy

which is dual to
R[X,l/X,X’,l/XEJﬁ;)— R[X, X'

1 ]
R[X,1/X] <——— RIX]

In one direction X — X + X' — f(X) + f(X’) and in the other X — f(X) —
FIXX). If f(X) =c, X"+ -4+ c_pl/X™ and n > 1 one finds the coefficient
cn X" X'™ =050 ¢; =0 for all 7 # 0. Looking at the map on the unit morphism
shows that f(1) = 0 so ¢f by X + 0 is trivial.

Problem 2.3(b). Such a morphism ¢ is induced by ¢* : R[X,1/X] — R[X],
determined by the image X — f(X), where f is a unit, which implies that
f(X) = ¢y X™ 4+ -+ + ¢y where ¢y € R is a unit and ¢; are nilpotent. Since R
is reduced, ¢; = 0, so the map is constant. By looking at the unit morphism we
find f(0) =1 so f(X) =1 is trivial.

Problem 2.3(c). We map R[X,1/X] — R[X] by X — 1+ ¢eX. Then (1 +¢eX)(1+
eX') =14 e(X + X') preserves the group law and induces a morphism of group
schemes. (Note (1 +€X)(1 —eX) =1, for instance.)

Problem 2.4(a). We must check the commutativity of the three diagrams defining
the group axioms. Associativity follows from the calculation

X=X+ X —2XX'— (X +X"-2XX")+ X' —2X' (X + X" —2XX")
=X+ (X' + X" -2X'X") —2X(X'+ X" —2X'X").
The unit map has X — X + X’ —2X X’ — X' — X, and the inverse has
X X+X —2XX' - X +X —2XX'—2X —2X2=0.
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Problem 2.4(b). By definition, Z/2Zp is defined by the algebra B = R x R on
generators 1 and e with e idempotent, i.e. B =R x R~ R[X]/(X? - X).
Problem 2.4(c). We have G — po given by R[X]/(X? — 1) — R[X]/(X? - X. We
indeed have (1 —2X)? —1 = —4X +4X? = 0, so this gives a morphism of schemes,
and it is a map of group schemes because the composition laws give

X = XX - (1-2X)(1-2X")=1-2(X + X' —2XX').

Problem 2.4(d). If f: Z[X]/(X?—1) = B — Z[X]/(X? - X) = A is our map, then
K = Spec A/f(Ig)A where Ip = kere = ker(Z[X]/(X? — 1) —» R) = (X — 1), so
K = Spec(Z[X]/(X? — X))/(2X) = Spec Z|X]/(X? — X,2X).

Problem 2.5(a). We have a,(S) = {zx € S : 2P =0} and p,(S) ={x € S : 2P =1},
we have for x € a,(S) that (1+x)P =1+ 2P = 1, and conversely if € 1, (S) then
(x—1)P=2aP—-1=0.

Problem 2.5(b). This would imply that there is a ring isomorphism k[X]/(X?—1) =
kI X]/(X — 1)» — Ek[X]/(XP, which can only be X +— X + 1. But this is not a
morphism of groups, because it would have to preserve the group law, which it
does not as

X X4+4X > X+D)+X'+D)#X+D)X'+1)=XX"+ X+ X'+ 1.

Problem 2.6(a). The map preserves the group law because T — T + T — (T? —
)+ T?-T)Y=T+T)Y—-(T+T).

Problem 2.6(b). We have g(Igir)) = (TP — T) so K = Speck[T]/(T? —T) =
Speck[T)/{T(T —1)...(T — (p —1))) when char k = p, which splits and gives the
same relations as the constant group scheme.

Problem 2.7. We have under c that

E’yer‘ T’Ye')’ = Z’y ZO’ r'\/(eo' ® eg717 = ZG’,T TUT(e(T ® €T).
We want this equal to

(ny T'ye'y) 24 (ny 7’767) = Zaﬂ_ rorr(es @ er).

This implies r% =11, S0 r1 is an idempotent which since a is a unit must be r; = 1,
and in general, these elements are represented by a group homomorphism I"' — R*|
which is to say a character.

Problem 2.8(a). This is the statement Homp(R[X,Y]/(X2+Y2—1),5) = F(S).
Problem 2.8(b). Check (z2’ — yy')? + (z¢/ +ya')? = (22 +y?) (2% +v?) = 1. Tt is
natural because if f: S — T, the diagram

F(S) x F(S) 2% B(T) x F(T)

| i

F(S) ——~ F(T)
commutes, as the group law is defined by polynomial equations.
Problem 2.8(c). The comultiplicationisc: A - AQAis X, Y — XX'-YY' XY'+
Y X' the counit ¢ : A — R is X, Y +— 1,0, and the coinverse i : A — A is
X, Y — X, =Y.
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Problem 2.8(d). The map R[X,1/X] — R[X,Y]/(X?+Y2-1) by X — X +iY
induces the map j on schemes, since 1/X — 1/(X+iY) = X —iY. It is also a group
homomorphism because the comultiplication maps X — XX’ — (X +iY)(X'+iY)
and in the other direction X — X +iY — (X X' —YY")+i(X'Y + XY”), and these
expressions are equal. If 2 € R*, then the map is injective because the images of
X and 1/X have X — Y # X + Y, and is surjective because (X +1/X)/2 — X
and (X —1/X)/2i — Y by trigonometry.

Problem 2.9(a). This is the statement Hompg(R[X]/(X? — X),S) = {s : s = s}
since the map is determined by the image of X.

Problem 2.9(b). Check (e + ¢’ — 2ee’)? = €2 + ee’ — 2e%e’ + -+ + 4e%e? = 0 =
e+ ee’ —2ee’ + .-+ 4ee’ = 0. The unit element is 0 and the inverse element is
(e,e) — e+ e —2e? = 0. It is natural again because the group law is a polynomial
expression.

Problem 2.9(c). Comultiplication is ¢ : X — X + X' +2X X’ unitise: X — 0,
and inverse is 7 : X — X.

Problem 2.9(d). This is (Ex. 2.4(b)).

Problem 3.1(a). Check (x + ')’ =0 and (y +y' — W(z,z'))? = W(xP,z'P) = 0.
We have the unit (0,0) and inverse (—z,y) since W (z, —z) = 0.

Problem 3.1(b). a2 is a closed subgroup scheme because it is represented by
k[X]/(Xp2> which defines a closed subscheme of Spec k[X]. We know that alg (R)
is represented by Hompg (a2 /R, Gy, /R) = Hom(R[T,1/T], R[X]/(XPQ), which are

2 .
exactly elements T — p(X) = fzgl a; X" where ag # 0, subject to the group law
condition

Vo a(X X = (X Xt (S0 aix)

which says
p?—1 i/ p?—1
a; (_)XJX”_J = E a;a; X' X"
i—0 =0 i,j=0
We find a2 = ag and a1 = ajap so ap = 1, and similarly ia; = a;_1a; for

1<i<p,soa; =a}/il. At p we have pa, =0 =a,_1a1 = a}/(p—1)! so af = 0.
Continuing, we find (p+i)apyi = apt(i—1)01 = apat /il again for 1 <4 < p, and then
since (2;’) =2p)2p—1)...(p+1)/p! =2 (mod p) we have agp(ip) = 2ay, = aZ,
and in general a;, = a; /4!, and therefore from the above a;,1; = aia% /i!j!. Finally,
p’a, =0=ab/(p—1)! =050 ab =0, and we find T'+— E(a1X)E(a,X?), where

X2 xpr-1

EX)=14X+—+--- .

(X) + —1-2!—1- +(p—1)!

Note that E(a; X) = exp(a;X) since a; is nilpotent, so since exp(a(X + X')) =

exp(aX)exp(aX’) as power series, they indeed give homomorphisms and azv)z (R) =
{(z,y) : 2P = yP = 0}.

To determine the group law, we note that in the homomorphism group it is in-

duced by multiplication (coming from the multiplication law on the tensor product),

so we look at

E(a1X)E(a,X?)E(d; X)E(a,X) = E(b1 X)E(b, X")
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so that the group law is (a1, a,)(ay,a;,) = (b1, by). Multiplying this out, we have

\p
E(aX)E(@\X)=1+ (a1 +a))X +---+ MXP
p!
where the latter term is W (a1, a})/(p —1)! = =W (a1, a}) since a} = a’f = 0. Since

XP* =0 in our ring, the additivity of the XP? part is immediate, so the group law
is indeed as above.

Problem 4.1(a). If we choose a basis M = @, ke;, then Endy, (M) = Homy (M, M) =
[ [, Homy(k, M) =[], M, so this is determined by the matrix Hopf algebra k[X;;]; ;,
with the group law X;; — > XiTXij.

Problem 4.1(b). We now require that the determinant det X;; be invertible, so we
have the Hopf algebra k[X;;, 1/ det X;;].

Problem 4.1(c). The additional requirements can be rephrased in terms of certain
equations defined over R.

Problem 4.2(a). Letting A = Z[X]/(X? —2), we have Q}, , = AdX/(2XdX) ~
Z[V2)/(2V2).

Problem 4.2(b). Letting A = Z[X]/(6, X+ X +1), we have Q4,7 = AdX/(0, (2X +
1)dX) ~ (Z/6Z)[X]/{X? + X +1,2X +1).

Problem 4.2(c). Identifying Q[T] with its image Q[X] in A, we obtain

O p =(AdX & AdY)/((2X =Y +1)dX + (2Y — X)dY,
(—3X%Y +2XY)dX + (4Y° — X? + X?)dY).

Problem 4.3. G is represented by A = k[X,Y]/(X?", X? — aY?), which has rank
p? (its dimension as a k-vector space). We then have only three possibilities. It
cannot be k[T]/(T?") because A has no element whose minimal nilpotence degree
is p3. It cannot be k[T, U}/(T”2, UP) since then X, Y — (U, V), (U, V), and then
@P — ap? = 0; since p kills any monomial containing U, we are left with an equality
of two pth powers of polynomials, which is impossible as a is not a pth power. It
cannot be k[T, U, V]/(T?,UP, VP) since it has no element whose minimal nilpotence
degree is p2.

Problem 4.4(a). w1 (Z[¢]) = Gal(Q(¢)"™™/Q(¢)). So suppose [K : Q(¢)] = n is
unramified; then di/q = [N(Ax/q))ldy) = 3". But then [K : Q] = 2n, and
then by Minkowski’s theorem (since Q(() is totally imaginary),

2 2
gn s (@Y7 (4T
—\ (2n)! ™
If we substitute n = 1, we obtain 3 > 4(4/7)?, a contradiction, and since the
function on the right grows faster than 3", as the quotient of two successive terms

is
2n 2 2n
(2n+2) [2n+2 N (1) e,
(2n+1) 2n 7'(' n
we obtain a contradiction.
Problem 4.4(b). The ring R = Z[v/—2, (] is unramified because the discriminant of

a biquadratic extension is the product of its three quadratic subfields, hence this
ring has discriminant (—8)(—3)(24) = 676 = 242 where 24 = Do)
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The same argument as in (a) now shows that (since Q(+/—2, () is totally imagi-

nary) L
> () ()

which for n > 5 gives a contradiction. Therefore at most Z[v/6] has at most a
degree 4 unramified extension arising as a quadratic extension of R, and hence it
can also be a quadratic unramified extension of Z[/6]. Therefore it must arise from
adjoining /m with m | 6 since otherwise we would have other primes ramifying;
the only choice is adjoining i. But Z[v/6,i] has discriminant (24)(4)(—24) # 242,
so this is not unramified, and we conclude that we are limited to just R, so that m
has order 2.
Problem 4.4(c). It is étale because it is unramified, and therefore by the equivalence
of categories (with obvious action of the Galois group 7) it corresponds to the Hopf
algebra of a (commutative) group scheme.
Problem 4.5(a). [n] : A — A factors through e : A — R iff I = kere C ker[n] iff
[n]I = 0; but [n]I =nl mod I?, so [n]I = 0 iff n kills I/12.
Problem 4.5(b). In chark = p, n is a unit, hence n kills I/I? iff I/I?> = 0, hence
9114/3 = A®rI/I? =0, and G is étale.
Problem 4.6(a). The only factorizations could occur from roots which must be
units of Z[a] by Gauss’ lemma. The unit group here is trivial, and one checks that
f(1), f(=1) # 0, so the polynomial is irreducible.

A change of variables X +— X +a/3 puts the equation in the form X3 —(1/3)X —
(1/27)y/—23, and then we have —4(1/3)3 — 27((1/27)v/-23)% = 1.
Problem 4.6(b). A cubic extension is Galois iff the Galois group of the polynomial
is cyclic of order 3 iff it is contained in the alternating group iff the square root of
its discriminant is already in the field, which in this case is true.

If we let  be a root of f, the Galois action is 6 — —02 + (a — 1)0 + 2.
Problem 4.6(c). If we compute with points, we find the four points 0, 6, 6, =
—0? + (1 —a)f +2, and 03 = 02 — af + (o — 2), where 0 is the identity element.
If this is to be a group of order 4 of exponent 2, then [2]0 = [2]0; = [2]03 = 0 and
adding any two nonzero points gives the third. The group law is

X X+ X +aXX +b(X2X + XX?) +(X3X' + XX73)
+d(X2X"?) +e(X3X"? + X2X"3) + f(X3X?)
and substituting these we obtain linear equations, e.g. simplifying
0 = 20 + ab?® + 266> + 2c0* + dO* + 2e6° + 65
we obtain for the constant coefficient
—2b—2ac—ad+ (10 —4a)e+ (9 — ) f = 0.
Solving this system we obtain

(a,bye,dye, f) = 2o+ 2,40 — 16, -3+ 4, —10a + 2, + 12, 2a0 — 8).

Problem 5.1(a). If p # 2, then oo = ({, — 1)/(¥/e — 1) is integral: since

(Ve—1)P=e—1=0 (mod p)
but not modulo p?, v,(¥/e —1) = 1/p, and it is a standard fact (here we use p # 2)
that v({, — 1) =1/(p — 1). Hence v(a) =1/(p—1)—1/p=1/p(p—1) > 0, so «
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is integral. If p = 2, then (3 = —1, so we have Z[/e]; the discriminant is 4¢, and
e =1 (mod 2), and since the extension is Eisenstein, 2 1 (& : Zs[\/€]), so it is the
full ring of integers.

Problem 5.1(b). The extension is totally ramified and v(a)) = 1/p(p—1) = [F : Qp],
and « is integral, so it is a uniformizer.

Problem 5.1(c). i(0) = v(oca—a). If o € H\{1}, say 0(¢p) = (p and o ({/€) = ¢ ¢/,

then
i(U)—v( 1 —Cp_1>
= \Gve—1 ve-1

=v(Gp—1) +o(—1) —v( e —1) —v(Je—1)
=2/(p—1)—-2/p=2/p(p—1).

If o & H, then since (! —1)/(¢,—1) = w is a unit such that w—1 = ¢,+---+¢ 1 =
Gp(¢i 7t —1)/(¢p — 1) is also a unit, we have

i) =o 2L G-l
S\ Vel
=v(Gp - +ovw—-1)—v(e-1)=1/p—-1/(p—1) =1/p(p - 1).

Problem 5.1(d). This is just the statement of (c).
Problem 5.1(e). G = Gs-1 (uy)- We find
L/K

p(p — 1)i, 0<i<1/p(p—1);
(i) =q1-1/(p—1)+pi, 1/p(p—1)<i<2/p(p—1);
1+1/(p—1), i>2/(p—1).
Hence
u/p(p—1), 0<u<l;
¢ Hu)=q (u—1)/p+1/plp—1), 1<u<l+1/(p—1);
1+1/(p - 1), u>1+1/(p—1)

which implies the result.
Problem 5.1(f). ip/q, = 2/p(p — 1) as this is the maximum value. Therefore

up/g, = Mliryg,) =1-1/(p—1)+p2/pp—-1)) =1+1/(p - 1)

and

v(Prq,) = urg, —irg, =1+1/(p—1)=2/plp—1) =1+ (p—2)/p(p — 1).

Problem 5.2(a). For a quadratic imaginary extension, the class group is in one-
to-one correspondence with reduced quadratic binary forms, [a,b, ¢] such that d =
b? — 4ac = —7, and reduced implies —|a| < b < |a] < |c] or 0 < b < |a] = |c|. We
need only check 0 < a < y/—d/3,ie. a <1; we find only a = b =1, ¢ =2, so the
class group is trivial.

Problem 5.2(b). The group schemes of order 2 are in one-to-one correspondence
with factorizations of 2, for which we have the trivial factorization and 2 = =7,
giving us 2 others.
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Problem 5.3(a). We have A = R[T, X]/(T? + =T, X? — 1), so

[AM]
[A]

[A2]

[Mat]
Mil]

[Mur]
(O]
[R]
[Ser]

[Sha]

[Sil]
[Tat]
[Tat2]
[TO]
[Was]

[Wat]

QY = (AdT ® AdX)/((2T + 7)dT,2X dX) ~ A/ (2T + ) ® A/(2X).
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