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The following are notes taken from a seminar taught by René Schoof at the
University of California, Berkeley, in the Fall semester, 2000.

1. Tate’s theorem

We begin with a motivating theorem for the course:
Theorem (Tate). There is no elliptic curve over Q with good reduction modulo
every prime p.

We will see later the generalization by Fontaine: there are no abelian varieties
over Q with good reduction modulo every prime p. The problem is reduced to
certain properties of the torsion points of abelian varieties, i.e. points of finite flat
group schemes over Z.

The proof is as follows (see [Tat2]):

Proof. An elliptic curve E defined over Q has a Weierstrass equation [Sil, Proposi-
tion III.3.1]

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

and after clearing denominators, we may assume ai ∈ Z. Compute the discriminant
∆E = ∆ 6= 0 (because E is nonsingular). To say that E has good reduction modulo
p is to say there exists a change of coordinates [Sil, Proposition VII.1.3]

X ′ = p2X + r, Y ′ = p3Y + sX + t

for r, s, t ∈ Z so that the resulting curve when reduced modulo p remains nonsin-
gular. We find ∆′ = ∆/p12. Repeat this process for all primes dividing ∆ until we
are left with a unit (E will have bad reduction at any prime dividing the minimal
discriminant, cf. [Sil, Proposition VII.5.1]) and ∆ = ±1. The fact that Z is a PID
is important here, since it allows us to find a minimal global Weierstrass equation
[Sil, Proposition VIII.8.2].

Let [Sil, §III.1]:

b2 = a2
1 + 4a2

b4 = a1a3 + 2a4

b6 = a2
3 + 4a6

c4 = b22 − 24b4

c6 = −b32 + 36b2b4 − 216b6

∆ =
c34 − c26
1728

These come about as follows: we complete the square by letting X ′ = 4X and
Y ′ = 8Y + 4a1X + 4a3, we obtain

Y ′2 = X ′3 + (a2
1 + 4a2)X ′2 + (8a1a3 + 16a4)X ′ + (16a2

3 + 64a6)

= X ′3 + b2X
′2 + 8b4X ′ + 16b6 = f(X ′).
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If we eliminate b2 by X ′′ = 9X ′ + 3b2, Y ′′ = 27Y ′, we obtain

Y ′′2 = X ′′3 − 27(b22 − 24b4)X ′′ + 54(b32 − 36b2b4 + 216b6)

= X ′′3 − 27c4X ′′ − 54c6.

We will write

Y ′2 = f(X ′) = X ′3 + a′2X
′2 + a′4X

′ + a′6.

The roots of f give the 2-torsion points (as [2](x, y) = O iff y = 0), and ∆′ =
212∆ = ±212; the discriminant of f is 26∆ = ±26 (each root is quartered).

Claim. E has a rational point of order 2.

Proof of claim. Adjoin all of the 2-torsion points E[2] to Q. The field L thus
obtained is Galois (since σP is also a 2-torsion point for any σ ∈ Gal(Q/Q), or
because it is the splitting field of f), and

Gal(L/Q) ↪→ GL2(F2) ' S3,

and
L

K = Q(
√

∆)

Q

(L contains
√

∆ because the discriminant is the square of a matrix with elements
of L), hence K = Q(i) or K = Q.

In order to show that at least one 2-torsion point is defined over Q, we need
to show that f is not irreducible, that is, that 3 does not divide the degree of the
extension [L : Q], so that the image of the Galois group Gal(L/Q) is contained in
a (cyclic) subgroup of order two.

Case 1 (K = Q, or ∆ = 1). The extension L is now Galois over Q and hence
cyclic of degree dividing 3. By class field theory (which over Q is just the Kronecker-
Weber Theorem), any abelian extension of Q ramified outside m is contained Q(ζm)
[L, §X.3, Corollary 3]. L is only ramified only at 2 (the discriminant of the defining
cubic is a power of 2, and ∆L | ∆), so Q ⊂ L ⊂ Q(ζ2n); but [L : Q] | [Q(ζ2n) : Q]
has 2-power order, a contradiction.

Alternatively, one can compute the discriminant of L: at unramified primes, the
local discriminant of L is ±1; at 2, we have Q2 ⊂ L2. The minimal polynomial
g(π) = 0 is Eisenstein (a prime degree Galois extension of local fields is either
unramified or totally ramified, since n = 3 = ef). Therefore ∆L is equal to the
local discriminant [Ser, §III.4, Proposition 9], which we can take to be N(g′(π))
for a uniformizer π [Ser, §III.6, Proposition 12]. Since g(T ) ≡ T 3 (mod 2), we
have g′(π) ≡ 3π2 (mod 2), hence vπ(g′(π)) = vπ(π2) = 2, and v2(N(g′(π))) =
v2(N(π)2) = 2 again because g is Eisenstein. This implies that |∆L| ≤ 22.

We now use discriminant bounds: by the Minkowski bound [L, §V.4, Theorem
4], if a ⊂ OL is nonzero, then there is an α ∈ a such that

|N(α)| ≤ n!
nn

(
4
π

)r2 √
|∆L|N(a)
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where n = [L : Q] = 3, r2 the number of complex places of L, which in our case
is 0 (if there were two complex roots, we would have the automorphism complex
conjugation of order 2). Thus

|∆L| ≥
(
nn

n!

)2

=
(

27
3!

)2

≥ 21,

a contradiction.
Case 2 (K = Q(i), ∆ = −1). In this case, we have K = Q(i) ⊂ L, with L/Q(i)

cyclic of degree dividing 3, only ramified at 1 + i, the (ramified) prime over 2. One
can now use class field theory to show that any ray class field of conductor a power
of 2 has 2-power order, taking the cycle c = (1 + i)e (since K is already totally
imaginary) for e sufficiently large, we have by [L, §VI.1, Theorem 1] that the order
of the ray class field modulo c is

hc =
hLφ(c)
(U : Uc)

= 2e−3.

Or we can compute the discriminant of L using a relative discriminant formula:
we have

∆L/Q(i) | 〈1 + i〉2

as before by the Eisenstein condition, so [Ser, §III.4, Proposition 8]

∆L/Q = N(∆L/Q(i))∆3
Q(i) = 2243 = 28 = 256.

Now the Minkowski bound gives with n = 6, e2 = 3,

|∆L| ≥
(

66

6!

(π
4

)3
)2

> 985,

a contradiction. This concludes the proof of the claim. �

Now from the equation

Y ′2 = X ′3 + a′2X
′2 + a′4X

′ + a′6,

since the cubic is monic, the 2-torsion point will necessarily have integral coordi-
nates, so after translating we may assume that a′6 = 0. This implies by our equations
that b′2 = 4a′2, b

′
4 = 2a′4, and b′6 = 0, and hence c′4 = b′22 − 24b′4 = 16(a′22 − 3a′4) and

c′6 = 32(9a′2a
′
4 − 2a′32 ). Since 1728∆′ = c′34 − c′26 , we have

1728(±212) = 212(a′22 − 3a′4)
3 − 210(9a′2a

′
4 − 2a′32 )2

and simplifying this gives
±28 = a′24 (a′22 − 4a′4).

This implies a′4 | 24, and the only values of a′4 = ±2k for which ±28−2k + 2k+2 is a
square are (a′2, a

′
4) = (0,±4), (±6, 8). These correspond to the curves

Y ′2 = X ′3 ± 4X ′

Y ′2 = X ′3 ± 6X ′2 + 8X ′.

A direct calculation shows that each of these curves has j-invariant equal to 1728.
We will show that the second curve cannot occur; the proof of the first is the

similar. If this curve had good reduction, we could use a transformations of the
form Y ′ = 8Y + sX + t, X ′ = 4X + r, and we find

(8Y + sX + t)2 = (4X + r)3 + 6(4X + r)2 + 8(4X + r)
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which is

64Y 2 + 16sXY + 16tY = 64X3 + (48r + 96− s2)X2 + (12r2 + 48r − 2st)X

+ (r3 + 6r2 − t2 + 8).

Since this new equation is to have good reduction at 2 while keeping integral co-
ordinates, we must be able to make the coefficient on Y 2 and X3 a unit, so every
coefficient must be divisible by 64. In particular, this implies that 4 | s (say s = 4s′)
and 4 | t by the XY and Y coefficients, and 4 | (3r+ 6− s′2) by the X2 coefficient.
Modulo 16 we obtain 0 ≡ 12r2 ≡ 0 (mod 16) in the X coordinate, so that r = 2r′,
and 4 | (6r′ + 6 − s′2), so s′ is even and r′ is odd. Now, modulo 64, we obtain by
the X coordinate that

0 ≡ 48± 96 + 0 ≡ 48 (mod 64),

and this is false. �

There is another proof of this theorem:

Second proof [O]. For a curve

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

in the most general form to have good reduction everywhere, we must have that
the discriminant

∆ = ±1 = −b22b8 − 8b34 − 27b26 + 9b2b4b6
is a unit, where b8 = a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4 and the other coefficients
as above (see e.g. [Sil, §III.1]). If a1 were even, we would have b2 = a2

1 + 4a2 ≡ 0
(mod 4) and that b4 = a1a3 + 2a4 ≡ 0 (mod 2). This implies that

±1 = ∆ ≡ −27b26 ≡ 5b26 ≡ 0, 4, 5 (mod 8),

a contradiction. Therefore a1 is odd, which implies that b2 ≡ 1 (mod 4) and
c4 = b22 − 24b4 ≡ 1 (mod 8).

We have that c34 − c26 = 1728∆ = ±1728, which implies that

(c4 ∓ 12)(c24 ± 12c4 + 144) = c26.

Since c4 is odd, gcd(c4 ∓ 12, c24 ± 12c4 + 144) is a power of 3. Since in addition
c24 ± 12c4 + 144 > 0, we have that c4 ∓ 12 > 0 and hence c4 ∓ 12 = 3em2 for some
e ≥ 0 and odd m ∈ Z. This implies that

3e ≡ 3em2 = c4 ∓ 12 ≡ 1∓ 12 ≡ 5 (mod 8),

a contradiction. �

Exercises. The following are exercises for §1.

Problem 1.1. Show that there are no elliptic curves over Q(i) with good reduction
everywhere.

2. Introduction to group schemes

For more background information about group schemes, consult [Wat] for an
introduction to affine group schemes, [Tat] for an emphasis on finite flat group
schemes, and [Sha] and [TO] for other results of group schemes.
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Definition (as a functor). Let R be a Noetherian base ring (we will usually take
either the ring of integers of a number field, a p-adic ring i.e. a complete local
Noetherian ring, or a perfect field). Let C be the category of R-algebras, and C∨

the category of affine R-schemes, the dual category.
Let F be a covariant functor C→ Grps (the category of groups) and F∨ : C∨ →

Grps the corresponding contravariant functor.
Example. If S is an R-algebra, we can let F (S) = S×, for if we have a map
f : S → T , then we have an induced map F (S) = S× → T× = F (T ) by f .
Example. We can also associate to every S a fixed finite group Γ, with the maps
Γ→ Γ just the identity.

Suppose that F is representable [Mac, §III.2], i.e. we have G ∈ C∨ so that
G = Spec(A) with the property that F (SpecS) = MorR(SpecS,G). Dualizing, this
is equivalent to MorR(SpecS,G) ' HomR(A,S). We let G(S) = MorR(SpecS,G)
be the set of S-valued points of G, and in this case, G is what is called a group
scheme. (See [Tat, (1.6)].)
Definition. G = SpecA is a group scheme if there is a contravariant functor F :
C → Grps such that the underlying functor F : C → Sets is representable, i.e.
G(S) = F (SpecS) = MorR(SpecS,G) ' HomR(A,S).

For a concrete explication of the functoriality of group schemes, see [Wat, §1.2].
Example. Let G = SpecA, A = R[T, 1/T ]. Then

F (S) = HomR(R[T, 1/T ], S) ' S×

(since such a map is determined by image of T , which must also be an invertible
element of S).
Example. If S is an R-algebra, then if G = SpecA were to represent the constant
functor to a group Γ in the second example above, then we would have

Γ ' HomR(A,S × S) = HomR(A,S)×HomR(A,S) = Γ× Γ,

so we must have #Γ = 1. Therefore only a trivial group can be represented in this
way.

Definition (as a group object). There is an alternative definition of group
schemes using the Yoneda lemma [Mac, §III.2]:
Lemma (Yoneda lemma). If C is a category, then the functor

F : C→ Func(C,Sets)
A 7→ FA

where FA(S) = MorC(A,S) is fully faithful, so that

MorC(A,B)↔ MorFunc(FB , FA).

This map is indeed a functor because if we have a map φ : A→ B then have induced
map MorC(B,S)→ MorC(A,S) by f 7→ f ◦ φ.

The inverse of the functor is given on fS : MorC(B,S)→ MorC(A,S) by (fS)S 7→
fB(idB).

In other words, if you “know the functor”, then you “know the original object”,
and vice versa. (See [Sha, §2] for an explication of this concept of a group scheme

as a family.) Hence the set of maps FA(S)
fS←− FB(S) corresponds to a map A→ B

(see the discussion in [Wat, §1.3]). In particular, if F is a group functor, then
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F (S) is a group, hence we have a group operation F (S) × F (S) → F (S). If F is
representable, G(S)×G(S)→ G(S), i.e.

MorR(SpecS,G)×MorR(SpecS,G)→ MorR(SpecS,G),

which is to say we have a group operation

HomR(A,S)×HomR(A,S)→ HomR(A,S).

Therefore

HomR(A⊗A,S) = (G×G)(S)→ HomR(A,S) = G(S),

and all of these compatible group laws FA(S)← FA⊗A(S) must come from a single
morphism A→ A⊗A, i.e. one from G← G×G.

Therefore we can also define a group scheme by the following ([Tat, (1.5)] or
[Sha, §2]):
Definition. An R-group scheme G is a group object in the category C of R-schemes,
which is to say that G is an (affine) R-scheme together with a morphism c : G×G→
G, called the composition law, a morphism e : SpecR→ G called the unit or neutral
element, and an inverse map i : G→ G, which satisfy the group axioms.

This definition is a statement in the category C∨. Therefore if we have G =
SpecA, then for the R-algebra A with everything dualized, we have a maps c :
A → A ⊗R A, e : A → R, and i : A → A so that the dual diagrams commute.
In this case, the group operations (maps) are called comultiplication, counit, and
coinverse.
Example. In the case of Gm = SpecR[T, 1/T ] = SpecA, then Gm(S) = S× =
HomR(R[T, 1/T ], S) by the association of φ with φ(T ).

On the level of algebras, comultiplication is

R[T, 1/T ]→ R[U, 1/U ]⊗R[V, 1/V ] = R[U, 1/U, V, 1/V ]
T 7→ UV

under usual multiplication. The neutral element R[T, 1/T ]→ R is T 7→ 1, and the
inverse map is R[T, 1/T ]→ R[T, 1/T ] by T 7→ 1/T .

The group axioms can be phrased in terms of the commutativity of certain
diagrams (see [Wat, §1.4]). For example, associativity corresponds to the diagram

G×G×G
c×idG //

idG ×c

��

G×G

c

��
G×G c // G

with the corresponding dual diagram:

A⊗A⊗A A⊗A
c⊗idA

oo

A⊗A

idA ⊗c

OO

Ac
oo

c

OO
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The neutral element satisfies

G // G×R SpecR

idA ×e

��
G G×Gc

oo

where G→ G×R SpecR is the natural injection, and the inverse map has

G
∆ // G×G

idG ×i // G×G

c

��
SpecR e // G

where ∆ is the diagonal map, dual to:

A A⊗Am
oo A⊗A

idA ⊗i
oo

R Ae
oo

c

OO

A is a finitely generated R-algebra, and any such A equipped with morphisms
c, i, e (called comultiplication, counit, and coinverse) making the above diagrams
commute is called a commutative Hopf algebra [Tat, (2.2)]. Therefore by definition
the category of Hopf algebras is equivalent to the category of affine group schemes
with arrows reversed.

We have A = R[X1, . . . , Xn]/〈fi〉i where fi are a (finite, since R is assumed
Noetherian) set of relations. The maps have a very simple description: the multi-
plication map is represented asX1

...
Xn


X

′
1
...
X ′

n

 =

c1(X1, . . . , Xn, X
′
1, . . . , X

′
n)

...
cn(X1, . . . , Xn, X

′
1, . . . , X

′
n)


and hence the comultiplication map has

c : A→ A⊗A = R[X1, . . . , Xn, X
′
1, . . . , X

′
n]/〈fi, f

′
i〉i

Xi 7→ ci(X1, . . . , Xn, X
′
1, . . . , X

′
n)

for 1 ≤ i ≤ n. Similarly, e(Xi) gives the coordinates of the neutral element in A.

Examples of group schemes. Here are some examples of group schemes:
Example. The multiplicative group Gm is the affine scheme over R defined by the
equation XY = 1 with group operation (X,Y )(X ′, Y ′) = (XX ′, Y Y ′) [Tat, (2.4)].
The associated Hopf algebra

A = R[X,Y ]/〈XY − 1〉 ' R[X, 1/X],

has comultiplication A→ A⊗A by

R[X,Y ]/〈XY − 1〉 → R[U, V, U ′, V ′]/〈UV − 1, U ′V ′ − 1〉
X,Y 7→ UU ′, V V ′

The identity map A → R is X,Y 7→ 1 and the inverse map A → A is X,Y 7→
1/X, 1/Y .
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Indeed, the association Gm(S) = S× is a functorial one. Since

MorR(SpecS,Gm) = HomR(R[T, 1/T ], S) ' S×,

(any map is determined by the image of T , which must be invertible), we need only
verify that the maps giving the group operations are correctly induced. We have
comultiplication S× × S× → S× which is dual to

HomR(R[U, 1/U ], S)×HomR(R[U ′, 1/U ′], S)← HomR(R[T, 1/T ], S).

We need to verify that φ 7→ φ ◦ c arises from the group maps; this follows from

(φ ◦ c)(T ) = φ(UU ′) = φ(U)φ(U ′) = (φ(U), φ(U ′)).

Example. The additive group Ga = SpecA where A = R[X] under the group law
of addition, neutral element 0 and inverse X 7→ −X is an affine group scheme [Tat,
(2.4)]. The map c : A = R[X] → R[U, V ] = A ⊗ A is X 7→ U + V , e : R[X] → R
is X 7→ 0, and inverse i : R[X] 7→ R[x] by X 7→ −X. The functor it represents on
R-algebras is the one that maps S 7→ S+, S treated as an additive group. One can
verify functoriality as above.
Example. For roots of unity [Tat, (2.7)], we will represent the functor S 7→ µn(S),
the nth roots of unity in S under multiplication, by µn = Spec(A), A = R[T ]/〈Tn−
1〉, so that HomR(A,S) ' µn(S).

The group law is multiplication, so the Hopf algebra has composition c : A →
A ⊗ A taking T 7→ UV , e : A → R taking T 7→ 1, and i : A → A taking
T 7→ Tn−1 = T−1.
Example. If charR = p, then αp(S) = {α ∈ S : αp = 0} is a group under addition,
with αp = SpecA, A = R[T ]/〈T p〉 with the addition formulas as above.

Example. (See [Sha, §3, p.45].) The group of matrices
(

1 αp

0 µp

)
, i.e. matrices of the

form {(
1 x
0 y

)
: x, y ∈ R, xp = 0, yp = 1

}
is a group scheme when charR = p > 0. We have(

1 x
0 y

)(
1 x′

0 y′

)
=
(

1 x′ + xy′

0 yy′

)
.

Since (yy′)p = ypy′p = 1 and (x′ + xy′)p = x′p + xpy′p = 0, this is a well-defined
group operation. The corresponding algebra is A = R[X,Y ]/〈Xp, Y p− 1〉, and the
composition law is

A→ A⊗A = R[U, V, U ′, V ′]/〈Up, U ′p, V p − 1, V ′p − 1〉
X,Y 7→ U ′ + UV ′, V V ′

This is an example of a noncommutative group ring (the formulas are not sym-
metric in U and V ). The neutral map is X,Y 7→ 0, 1 and the inverse map is
X,Y 7→ −XY −1, Y −1.

Rank and the augmentation ideal. We will be primarily interested with finite
group schemes, for which we need the following definition.
Definition. G is called finite of rank n (or order n) if G = SpecA and A is a locally
free R-algebra of rank n.

The ideal I = ker e is called the augmentation ideal.



10 GROUP SCHEMES

(See [Tat, (2.3)] and [Wat, §2.1].)
Since we are assuming that R is locally noetherian, G is of finite order over

SpecR iff it is finite and flat over SpecR [TO, §1].
Example. For example, µn has rank n, αp has rank p, and the previous matrix
algebra example has rank p2.
Example. A finite (affine) group scheme of rank 1 has G = SpecA, R→ A

e−→ R so
A ' R, and HomR(A,S) = HomR(R,S) = {e} so G is the trivial group scheme.

We will now determine finite group schemes of rank 2 (see [TO, p.1] and [Tat,
(3.2)]). Let G = SpecA, and suppose for simplicity that A is actually free of rank
2 over R. The splitting

R→ A
e−→ R

gives A ' I ×R as an R-module.
Exercise. From the exact sequence

0→ I → R×R = A
e−→ R→ 0,

show that the ideal I is generated by e((1, 0))(0, 1)− e((0, 1))(1, 0) and that I is free
of rank 1 over R.

Hence A must be R[X] modulo a quadratic relation. Substituting X−e(X) in for
X, we may assume the quadratic polynomial vanishes at zero, and that e(X) = 0.
We are left with

A ' R[X]/〈X2 + aX〉
for some a ∈ R. The group law is a morphism

R[T ]/〈T 2 + aT 〉 → R[X,X ′]/〈X2 + aX,X ′2 + aX ′〉
defined by T 7→ α+ βX + γX ′ + δXX ′, say. The identity map e : X,X ′ 7→ 0 tells
us that α = 0, β = 1 on X ′ = 0 and similarly γ = 1 for X = 0. Replace b = δ, so
that composition is T 7→ X +X ′ + bXX ′. But we must also have that

(X +X ′ + bXX ′)2 + a(X +X ′ + bXX ′) = 0 ∈ A⊗A.
Computing we find

−aX + 2XX ′ − aX ′ − 2abXX ′ − 2abXX ′ + a2b2XX ′ + aX + aX ′ + abXX ′ = 0

so that the coefficient of XX ′ must vanish:

2− 3ab+ a2b2 = (2− ab)(1− ab) = 0.

Associativity is always satisfied, so it gives no new information. However, if the
inverse map X 7→ r + sX for some r, s ∈ R, then

X + (r + sX) + δX(r + sX) = 0 ∈ A;

thus the constant term r = 0 and thus the coefficient of X, 1 + s− abs = 0, which
implies (1 − ab)s = −1, a unit, so from the above we conclude ab = 2. Since
1− ab = −1, so s = 1, so i(X) = X. (Without the inverse map, we do not have a
R-group scheme, but instead a monoid [Tat, (3.2)].)

Finally, one checks that these conditions are also sufficient.
Proposition. The scheme Ga,b = SpecR[X]/〈X2 + aX〉 with group law

X 7→ X +X ′ + bXX ′

and ab = 2 is a group scheme.
One can show:
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Exercise. Ga,b ' Ga′,b′ as group schemes iff a = ua′, b = (1/u)b′ for some u ∈ R×.
Returning to the augmentation ideal, we prove [Tat, (2.3)]:

Lemma. Let G = SpecA be a group scheme over R and I = ker e so that

0→ I → A
e−→ R→ 0

is exact. If f ∈ I then we have

c(f) = 1⊗ f + f ⊗ 1 (mod I ⊗ I).

Proof. By the commutative diagram for e, (e⊗ idA) ◦ c = 1⊗ idA. Therefore if

c(f) = α+ β + γ + δ ∈ A⊗A

with α ∈ R⊗R, β ∈ R⊗ I, γ ∈ I ⊗R, and δ ∈ I ⊗ I, then

((e⊗ idA) ◦ c) (f) = α+ β = (1⊗ id)(f) (mod I ⊗ I)

so that α = 0, β = 1⊗ f . Similarly, applying idA⊗e we find γ = f ⊗ 1. �

This lemma says that if A = R[X1, . . . , Xn]/〈fi〉i with the generators chosen so
that the neutral element is at the origin (and thus Xi ∈ I), thenx1

...
xn


x

′
1
...
x′n

 ≡
x1 + x′1

...
xn + x′n

 (mod I ⊗ I).

Corollary. c(I) ⊂ I ⊗A+A⊗ I.

Subgroup schemes, morphisms and kernels. We define the following:
Definition. A closed subgroup scheme H is H = Spec(A/J) ↪→ G = SpecA, where
H is a group scheme with the multiplication and identity morphisms induced from
that of G.

This definition implies that c : A→ A⊗A induces a well-defined comultiplication
map

c : A/J → A/J ⊗A/J = (A⊗A)/(A⊗ J + J ⊗A),
i.e. c(J) ⊂ J ⊗ A+ A⊗ J . We insist that J ⊂ I (to exclude for example the unit
ideal), and we say J is a Hopf ideal. It follows that this holds for the inverse map
as well.

Note I itself is a Hopf ideal corresponding to the trivial subgroup of G.
Example. µn is a closed subgroup scheme of Gm. Since Gm = SpecR[T, 1/T ],
µn = SpecR[T ]/〈Tn − 1〉, we have for J = 〈Tn − 1〉 that

c(Tn− 1) = (UV )n− 1 = (Un− 1)(V n− 1)+ (Un− 1)+ (V n− 1) ⊂ J ⊗A+A⊗J.

Example. αp is a closed subgroup scheme of Ga.
Definition. A map f : G → H is a (homo)morphism of group schemes if it is a
morphism of schemes such that

G×G
cG //

f×f

��

G

f

��
H ×H

cH // H

commutes.



12 GROUP SCHEMES

By functoriality, we have if G = SpecA and H = SpecB that

A B
f

oo

R

__@@@@@@@

OO

and therefore we find (f ⊗ f) ◦ cB = cA ◦ f , eA ◦ f = eB , and iA ◦ f = f ◦ iB on the
level of Hopf algebras. (See also [Wat, §2.1].)

Definition. The kernel ker(G
f−→ H) = N (as a functor) is

N(S) = kerG(S)
fS−→ H(S).

This functor is representable [Tat, (1.7)], and it has the universal property de-
scribed by the following diagram:

G // H

N

OO

// SpecR

OO

G′

>>~
~

~
~

66mmmmmmmmmmmmmm

GG���������������

which by algebras shows us that ifN = Spec(C) then we have the universal diagram:

A

����
��
��
��
��
��
��

��

Boo

��
C

~~}
}

}
}

Roo

wwnnnnnnnnnnnnnn

A′

This is the universal property of the tensor product, so

C = A⊗B R = A⊗B (B/IB) = A/f(IB)A,

and we conclude that N = SpecA/f(IB)A.
We now should verify that f(IB)A is a Hopf ideal, so that N is a closed sub-

scheme: we have

c(f(IB)A) = (f ⊗ f)(c(IB)A) ⊂ (f ⊗ f) ((IB ⊗B +B ⊗ IB)A)

⊂ f(IB)A⊗A+A⊗ f(IB)A.

Example. The map Gm
n−→ Gm by x 7→ xn is a homomorphism. At the level of

Hopf algebras, we have

R[X, 1/X]

��

R[X, 1/X]
n

oo

��
R[X]/〈Xn − 1〉 Roo

since R[X]/〈Xn − 1〉 ' R[X, 1/X]⊗R R[X]/〈Xn − 1〉.
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The definition of the cokernel is much harder, and we will take it up at another
time.

Diagonalizable group schemes. (See also [Wat, §2.2].) If Γ is a finitely gener-
ated abelian group, we have a group ring

R[Γ] = {
∑

γαγγ : αγ ∈ R}.

This is a Hopf algebra in a natural way [Tat, (2.6)], which is to say HomR(R[Γ], S)
for G = Spec(R[Γ]), obtained from MorR(SpecS,G), is a group in a natural way:
since

HomR(R[Γ], S) ' Hom(Γ, S×),

the group operation is (fg)(γ) = f(γ)g(γ).
One can check that the group morphisms are given by

c : R[Γ]→ R[Γ]⊗R[Γ]
γ 7→ γ ⊗ γ,

e : R[Γ] → R by γ 7→ 1, and i : R[Γ] → R[Γ] by γ 7→ γ−1. This verification is
exactly as above for the functoriality of the multiplicative group scheme: to check
that c induces the natural group law on Hom(Γ, S×), we write

HomR(Γ, S×)×HomR(Γ, S×)→ HomR(Γ, S×)

is

HomR(R[Γ], S)×HomR(R[Γ], S) ' HomR(R[Γ]⊗R[Γ], S)→ HomR(R[Γ], S)

so for a chosen γ, we compute that φ(γ) = (φ ◦ c)(γ ⊗ γ) = φ(γ).
Example. If Γ = Z, R[Γ] ' R[Z] = R[T, 1/T ] and we recover Gm; if Γ = Z/nZ,
R[Γ] = R[T ]/〈Tn − 1〉, and we recover µn.

Since Γ ' Zr ×
∏s

i=1 Z/miZ, we have

R[Γ] ' R[X1, . . . , Xr, Y1, . . . , Ys, 1/X1, . . . , 1/Xr]/〈Y m1
1 − 1, . . . , Y ms

s − 1〉,

and the coordinatized multiplication is just

X1

...
Xr

Y1

...
Ys





X ′
1
...
X ′

r

Y ′1
...
Y ′s


=



X1X
′
1

...
XrX

′
r

Y1Y
′
1

...
YsY

′
s


with neutral element

e =

1
...
1

 .
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Constant group schemes. (See also [Wat, §2.3].) Let Γ be a finite group, and
denote [Tat, (2.10)]

R(Γ) = R× · · · ×R︸ ︷︷ ︸
#Γ

= R[eγ ]γ∈Γ.

The eγ = (0, . . . , 1, . . . , 0) (in the γ slot) form an orthogonal system of idempotents
of R(Γ), since e2γ = eγ and eγeγ′ = 0 if γ 6= γ′, and

∑
γ eγ = 1.

We have for a decomposition of S =
∏

i Si into connected components (i.e.
SpecSi is connected, which is to say the only idempotents in Si are 0 and 1),

HomR(R(Γ), S) = HomR(R(Γ),
∏

i Si) =
∏

i HomR(R(Γ), Si);

since eγ must map to an idempotent element of Si (hence 0 or 1) and must also
satisfy the mutual orthogonality relation, we find that the position where eγ 7→ 1
uniquely determines the map, and thus

HomR(R(Γ), S) '
∏

iΓ.

We define the map

c : R(Γ) → R(Γ) ⊗R(Γ)

eγ 7→
∑

στ=γ

eσ ⊗ eτ

and e : R(Γ) → R by e1 7→ 1, eγ 7→ 0 for γ 6= 1, and i : R(Γ) → R(Γ) by eγ 7→ eγ−1 .
One can verify that these maps are compatible (functorial) as follows. If SpecS

is connected, then HomR(R(Γ), S) ' Γ, so the law Γ × Γ → Γ is supposed to be
induced by

HomR(R(Γ) ⊗R(Γ), S)→ HomR(R(Γ), S)
φ 7→ φ ◦ c;

We must match idempotents, hence any such morphism is of the form fγ : eγ 7→ 1,
eγ′ 7→ 0 for γ′ 6= γ. If we let (fγ , fγ′) = (φ, φ′) on coordinates, then

(φ ◦ c)(γ′′) =
∑

στ=γ′

fγ(eσ)fγ′(eτ ) =

{
1, γ′′ = γγ′;
0, else

by mutual orthogonality, and hence φ ◦ c = fγ′′ = fγγ′ as needed.
In terms of coordinates,

R(Γ) = R[Xγ ]γ 6=1/〈X2
γ −Xγ , XγXγ′〉γ 6=γ′∈Γ,

with e = (1, 0, . . . , 0).

Exercises. The following are exercises for §2.

Problem 2.1. The group functor R 7→ SL2(R) on the category of commutative
rings (Z-algebras) is representable by a group scheme G = SpecA. Describe the
Hopf algebra A: give the ring structure and the comultiplication, coinverse, and
counit morphisms.

Problem 2.2. Let G = SpecA be an R-group scheme with comultiplication mor-
phism c : A→ A⊗A, counit e : A→ R and coinverse i : A→ A.

(a) Show that the diagonal morphism G → G ×G corresponds to the algebra
multiplication map m : A⊗A→ A.
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(b) Show that m ◦ (i⊗ idA)⊗ c = e.
(c) Show that if m ◦ c = e, then G is commutative.

Problem 2.3. Let R be a ring.
(a) Show that there are no nontrivial homomorphisms from Gm to Ga.
(b) If R is reduced, show that there are no nontrivial homomorphisms from Ga

to Gm.
(c) For each ε ∈ R with ε2 = 0, construct a nontrivial homomorphism from Ga

to Gm.

Problem 2.4. Let A = Z[X]/〈X2 −X〉.
(a) Show that G = SpecA, with multiplication law X + X ′ − 2XX ′, neutral

element given by X = 0, and inverse of X given by X, is a group scheme.
(b) Show that G is isomorphic to the constant group scheme Z/2Z.
(c) Show that the morphism G→ µ2 given by X 7→ 1−2X is a homomorphism

of group schemes.
(d) Determine the kernel of the homomorphism of part (c).

Problem 2.5. Let k be a field of characteristic p > 0.
(a) Show that for every k-algebra S the map given by x 7→ 1 + x induces a

bijection αp(S)→ µp(S).
(b) Show that the group schemes µp and αp are not isomorphic over k.

Problem 2.6.
(a) Let k be a field of characteristic p > 0. Show that the k-algebra homomor-

phism k[T ]→ k[T ] given by T 7→ T p−T induces a morphism g : Ga → Ga.
(b) Show that the kernel of g is isomorphic to the constant group scheme Z/pZ.

Problem 2.7. Let R be a ring whose only idempotents are 0 and 1. Let Γ be a finite
commutative group and let A = R(Γ) denote the Hopf algebra of the corresponding
constant group scheme. Determine the elements a ∈ A× for which c(a) = a ⊗ a.
Here c : A→ A⊗A denotes the comultiplication map of A.

Problem 2.8. Let R be a ring and let F be the functor for which F (S) = {(x, y) ∈
S × S : x2 + y2 = 1} for an R-algebra S.

(a) Show that the functor F is represented by the R-algebra R[X,Y ]/〈X2 +
Y 2 − 1〉.

(b) Show that the composition rules F (S)× F (S)→ F (S) given by

(x, y) + (x′, y′) = (xx′ − yy′, xy′ + yx′)

induce natural group structures on the sets F (S).
(c) Determine the group scheme structure of G = Spec(R[X,Y ]/〈X2+Y 2−1〉)

that induces the group laws of part (b).
(d) If there exists an element i ∈ R for which i2 = −1, then the maps G(S)→

S× given by (x, y) 7→ x + iy are induced by a homomorphism of group
schemes j : G → Gm. Prove this. Show that j is an isomorphism iff
2 ∈ R×.

Problem 2.9. Let R be a ring and let F be the functor that associates to each
R-algebra S the set of its idempotent elements.
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(a) Show that the functor F is represented by the R-algebra R[X]/〈X2 −X〉.
(b) Show that the maps F (S)× F (S)→ F (S) given by (e, e′) 7→ e+ e′ − 2ee′

induce natural group structures on the sets F (S).
(c) Show that G = SpecR[X]/〈X2 − X〉 has a group scheme structure that

induces the group laws of part (b).
(d) Prove that G is isomorphic to the constant group scheme Z/2ZR.

3. Duality and Deligne’s theorem

Cartier duality. Let G = SpecA be commutative (the formula for composition
is symmetric). Assume that A is a finite flat algebra over R (e.g. R(Γ) and R[Γ]
when Γ is finite and commutative). Let A∨ = HomR(A,R). This is an R-module
by

(λf)(a) = λf(a) = f(λa)

for λ ∈ R, a ∈ A.
If A is free,

HomR(A⊗A,R) ' HomR(A,R)×HomR(A,R)

since A is flat and R is noetherian, so A is projective. Therefore (A⊗A)∨ ' A∨⊗A∨.
If A is a Hopf algebra, we have the following R-algebra homomorphisms:

m : A⊗A→ A

c : A→ A⊗A
R→ A

e : A→ R

i : A→ A

where m is the algebra multiplication map, and R→ A is the structure map. Notice
the nice symmetry in this situation. Dualizing, we obtain maps

m∨ : A∨ → A∨ ⊗A∨

c∨ : A∨ ⊗A∨ → A∨

A∨ → R

e∨ : R→ A∨

i∨ : A∨ → A∨

Theorem (Cartier). With these homomorphisms, A∨ becomes an R-Hopf algebra
with A∨ finite and flat over R. G∨ = SpecA∨ is called the dual group scheme.

Moreover, for any R-algebra S,

G∨(S) = HomSch
S (G/S,Gm/S) = HomHopf

S (S[T, 1/T ], A⊗ S),

an equality of morphisms of group schemes and Hopf algebra homomorphisms.

Proof. (See also [Tat, (3.8)], [Wat, §2.4], [Sha, §4].) We need to reverse arrows in
diagrams and check for compatibility. Almost all of these follow immediately; but
to check that i∨ is an algebra homomorphism, we need the commutativity of the
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diagram

A∨ ⊗A∨ c∨ //

i∨⊗i∨

��

A∨

i∨

��
A∨ ⊗A∨ c∨ // A∨

so we dualize and obtain
A⊗A Ac

oo

A⊗A

i⊗i

OO

Ac
oo

i

OO

and invoke the antiequivalence of categories

G×G c //

i×i

��

G

i

��
G×G c // G

which is commutative iff (gh)−1 = g−1h−1, i.e. we need that the group scheme is
commutative.

We also, for example, need to check that c∨ makes A∨ into a (commutative)
R-algebra, which also needs underlying commutativity:

A∨ ⊗A∨

G

��

c∨ // A∨

A∨ ⊗A∨ c∨ // A∨

gives rise to
A⊗A Ac

oo

A⊗A

G

OO

Ac
oo

and finally

G×G

G

��

c // G

G×G c // G

where the map G interchanges the two coordinates. This last diagram commutes iff
gh = hg.

Now we must check the final statement regarding functoriality of the S-valued
points, that G∨(S) = HomR(A∨, S). We need to check that

HomAlg
R (HomMod

R (A,R), S) ' HomHopf
S (S[T, 1/T ], A⊗ S)

where this is interpreted as R-algebra homomorphisms of R-module homomor-
phisms isomorphic to Hopf algebra homomorphisms. By the universal property
of the tensor product,

HomS(HomS(A⊗ S, S), S) ' HomR(HomR(A,R), S),
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we may assume R = S.
We want to show that

HomR(HomR(A,R), R) ' HomR(R[T, 1/T ], A) = {a ∈ A× : c(a) = a⊗ a} ⊂ A×,
where the equality on the left gives compatibility with the composition law. The
left-hand side can be viewed as the set of elements a ∈ A such that φ 7→ φ(a) is an
R-algebra homomorphism (for a finite module, the dual of the dual is canonically
isomorphic with the module itself). We want therefore that (φψ)(a) = φ(a)ψ(a)
for all φ, ψ ∈ A∨; but

(φψ)(a) = ((φ⊗ ψ) ◦ c)(a) = φ(a)ψ(a) = (φ⊗ ψ)(a⊗ a)
iff c(a) = a⊗ a.

The unit element of the R-algebra Hom(A,R) e (arising from the structure mor-
phism) must map to the unit element of R, so e 7→ 1, so e(a) 7→ 1. The inverse
axiom gives m ◦ (idA⊗i) ◦ c = e so we have m(a⊗ i(a)) = ai(a) = 1, so a is a unit,
so actually G∨(R) ⊂ A×, which completes the proof. �

Here are some examples of duality:
Example. The dual of µn, if we write R for S, is given by

HomR(µn,Gm) ' HomR(R[T, 1/T ], R[X]/〈Xn − 1〉)

by T 7→ p(X) with p(U)p(V ) = p(UV ). If we let p(X) =
∑n−1

i=0 aiX
i for ai ∈ R,

this says that
n−1∑
i=0

ai(UV )i =

(
n−1∑
i=0

aiU
i

)(
n−1∑
i=0

aiV
i

)
in R[U, V ]/〈Un − 1, V n − 1〉. So looking at the coefficients of crossterms we find
aiaj = 0 when i 6= j, and on diagonal terms we have ai = a2

i , and since φ(1) =
φ(1)φ(1), we have φ(1) = 1, and therefore

∑
i ai = 1. Therefore the ai are orthog-

onal idempotents.
Hence the ai are a point in the constant scheme (Z/nZ)R = SpecR(Z/nZ), and

therefore this scheme is dual to µn.
If R = S is connected, then

HomR(R[T, 1/T ], R[X]/〈Xn − 1〉) = {φ(X) : φ(UV ) = φ(U)φ(V )}
= {φi = Xi : 0 ≤ i ≤ n− 1},

and indeed φi(X)φj(X) = Xi+j = φi+j(X) matches the group law.
Example. We have (G1 × G2)∨ ' G∨1 × G∨2 . So the diagonalizable group scheme
Spec(R[Γ]) for Γ finite and commutative is dual to the constant scheme Γ =
Spec(R(Γ)).
Example. For αp, charR = p, where αp(S) = {s ∈ S : sp = 0} under addition, the
dual is

HomR(αp,Gm) = HomR(R[T, 1/T ], R[X]/〈Xp〉)
= {φ(X) ∈ R[X]/〈Xp〉 : φ(U + V ) = φ(U)φ(V )}.

This implies that if φ(X) =
∑p−1

i=0 aiX
i then

p−1∑
i=0

ai(U + V )i =

(
p−1∑
i=0

aiU
i

)(
p−1∑
i=0

aiV
i

)
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so a0 = 1, a1 is a free parameter, and if the the characteristic p is sufficiently large,
we have by the UV term that 2a2 = a2

1, so a2 = a2
1/2!, and by the U2V term that

3a3 = a1a2 so a3 = a3
1/3!, and continuing in this way ak = ak

1/k! for k ≤ p − 1.
By the coefficient Up−1V we find ap

1 = 0, so φ(U) = exp(aU) with ap = 0, which
corresponds to a point in αp(R). Hence

exp(aU) exp(a′U) = exp((a+ a′)U)

and αp is self-dual.
Example. For the (free) group schemes of order 2, namely

Ga,b = SpecR[X]/〈X2 + aX〉

under X 7→ X +X ′ + bXX ′, ab = 2, the dual is

HomR(R[T, 1/T ], R[X]/〈X2 + aX〉)
= {φ(X) ∈ R[X]/〈X2 + aX〉 : φ(X +X ′ + bXX ′) = φ(X)φ(X ′)}.

since φ(0) = 1, φ = 1− εX for some ε ∈ R, and

1− ε(X +X ′ + bXX ′) = (1− εX)(1− εX ′)

hence −εb = ε2, and ε2 + εb = 0. In other words, ε ∈ R[X]/〈X2 + bX〉, and then

(1− εX)(1− ε′X) = 1− εX − ε′X + εε′(−aX) = 1− (ε+ ε′ + aεε′)X,

so that G∨a,b ' Gb,a.

Deligne’s theorem. The goal of the following sections is to prove (see [TO, §1]):
Theorem (Deligne). If G is a finite flat commutative group scheme over R, so
that G = SpecA, A flat of finite rank m, then [m] annihilates G, that is, repeating
the group law m times gives a form vanishing identically on the scheme (the neutral
element).

Example. For G = µn, a point in µn = SpecR[X]/〈Xn − 1〉 has X n−→ Xn = 1, the
neutral element.

[m] : G → G is the repetition of the group law on an element m times, and is
dual to [m] : A← A. To say that it kills G is to say it factors

G
[m] //

��

G

SpecR

e

;;xxxxxxxxx

or
A A

[m]
oo

e
��~~

~~
~~

~

R

OO

but in this case I = ker e ⊂ ker[m], so it is enough to show [m](I) = 0.
We may assume that R is local (because of the flatness condition, if it is zero

locally, it is zero globally), so that A is free over R. Recall that

G(R) ⊂ A∨, G(S) ⊂ A∨ ⊗ S ' (A⊗ S)∨,
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so by dualizing, we have G∨(R) ⊂ A, where

G∨(R) = HomAlg
R (HomMod

R (A,R), R) = {a ∈ A : c(a) = a⊗ a}

Since we may assume S is finite and free over R, we have:
Lemma. We have a map

G(R) // G(S) N //___ G(R)

Proof. We must construct this latter map. Define N : S → R as follows: for any
s ∈ S, N(s) is the determinant of the multiplication by s map S → S, an element
of R. By the properties of determinant, N(ss′) = N(s)N(s′). For any R-algebra
we have a norm

S ⊗A N−→ R⊗A
viewing S ⊗A as a free R⊗A-algebra.

We have
G(S)

���
�
�

// A∨ ⊗ S

N

��
G(R) // A∨

where the claim is that the norm N maps G(S) to G(R).

Claim. If f : B → C is a homomorphism of R-algebras, then

B ⊗ S

N

��

f⊗idS // C ⊗ S

N

��
B

f // C

is commutative.

Proof of claim. Let ei be a basis for S over R, so that 1⊗ei are a B-basis for B⊗S
and a C-basis for C ⊗ S. If α ∈ B ⊗ S,

α(1⊗ ei) =
∑

jµij(1⊗ ej)

for µij ∈ B so N(α) = det(µij).
Hence

f(α)(1⊗ ei) =
∑

jf(µij)(1⊗ ej)

and N(f(α)) = det(fµij) = f(N(α)). �

We apply this to A∨ idA ⊗1−−−−→ A∨ ⊗ A∨ by substitution into the first coordinate,

then N(f ⊗ 1) = N(f)⊗ 1. If we apply this to A∨ c∨−→ A∨⊗A∨, we find N(c∨f) =
c∨(N(f)).

If f ∈ G(S), then f is a unit and c∨(f) = f ⊗ f . Hence N(f) is also a unit, and
we verify

c∨(N(f)) = N(c∨(f)) = N(f ⊗ f) = N(1⊗ f)N(f ⊗ 1)

= (N(f)⊗ 1)(1⊗N(f)) = N(f)⊗N(f).

This proves the lemma. �
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Proof of theorem. It is enough to show that G(R) is killed by [m]. Let u ∈ G(R) ⊂
A∨ be a section. We have c(u) = u⊗ u, so [m]u = um, and we want to show that
um = 1.

For u ∈ G(R) = HomR(A,R), we have the composition map G(R) → G(A) N−→
G(R). From the map G(R)→ G(S), we may lift u, and we obtain a map G(S)→
G(S) for every S, which is translation by u in the group. By the Yoneda lemma,
these come from a map on the corresponding algebras, namely

A Aoo

c
||xx

xx
xx

xx
x

A⊗A

idA ⊗u

OO

because it is obtained from

G(A)

N

��

HomR(A,A) // A∨ ⊗A

N

��
G(R) HomR(A,R) // A∨

where the top map is the isomorphism f ⊗ a 7→ (b 7→ af(b)). Therefore this
translation τ : A→ A is the composition a 7→ ((idA⊗u) ◦ c)(a).

Now if we extend A∨ linearly to A∨ ⊗A, we have

τ(f ⊗ β) = f ⊗ τ(β)

and for a =
∑

i ri ⊗ ei for ei an R-basis for A, we have

τ(a) =
∑

iri ⊗ τ(ei)

which implies N(a) = N(τ(a)) and hence N(idA) = N(τ(idA)).
For idA ∈ G(A), we have

τ(idA) = u idA ∈ G(A),

since ((idA⊗u) ◦ c)(a) = τ(idA)(a).
Finally, since N(u) = um, we have

N(idA) = N(u idA) = N(u)N(idA) = umN(idA)

so since N(idA) is invertible, u is killed by m. �

This theorem is still unknown in full generality when G is not commutative, but
we can check it in certain cases:

Example. For G the set of matrices
(

1 x
0 y

)
with xp = 0, yp = 1, we have

A = R[X,Y ]/〈Xp, Y p − 1〉

of rank p2. We indeed find(
1 x
0 y

)p2

=

(
1 x(1 + y + · · ·+ yp2−1)
0 yp2

)
=
(

1 0
0 1

)
since yp = 1 and R has characteristic p.
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Exercises. The following are exercises for §3.

Problem 3.1. Let k be a field of characteristic p > 0 and let W (X,Y ) denote the
polynomial ((X + Y )p −Xp − Y p)/p ∈ Z[X,Y ].

(a) Show that the k-scheme Spec(k[X,Y ]/〈Xp, Y p〉) with group law given by
(x, y) + (x′, y′) = (x+ x′, y + y′ −W (x, x′)) is a group scheme.

(b) Compute the Cartier dual of αp2 ; show it is isomorphic to the group scheme
of part (a). Here αp2 denotes the closed subgroup scheme of Ga given by
αp2(R) = {x ∈ R : xp2

= 0} for any k-algebra R.

4. Étale schemes

Differentials. For background on differentials, consult [Wat, §11.1], [Mat, §26], or
[Tat, (2.11)].

If R is our base ring, A an R-algebra, and M an A-module, then

DerR(A,M) = {D : A→M : R-linear, D(ab) = aD(b) + bD(a)}.

As a consequence, D(r) = 0 for all r ∈ R. We have

DerR(A,M) ' HomA(Ω1
A/R,M)

for a universal object Ω1
A/R, called the Kähler differentials [Mat, §26, Proposition,

p.182], given by

Ω1
A/R =

⊕
a∈AAda/〈d(a+ b)− da− db, d(ab)− a db− b da, dr〉.

In the case that A = R[X1, . . . , Xn]/〈fi〉i is a finitely generated R-algebra, then

Ω1
A/R =

⊕n
i=1AdXi/〈

∑n
j=1(∂fi/∂Xj) dXj〉.

We find [Wat, §11.2]

Ω1
(A⊗S)/S ' Ω1

A/R ⊗ S,

and that

Ω1
(A×B)/S ' Ω1

A/S × Ω1
B/S .

Example. If we let Z[i] ' Z[X]/〈X2 + 1〉, we have

Ω1
Z[i]/Z = Z[i] dX/〈2X dX〉 ' Z[i]/〈2i〉.

From the map A→ Ω1
A/R by a 7→ da, we have

A
δ //

d
��

M

Ω1
A/R

==z
z

z
z

So that HomA(Ω1
A/R,M) ' DerR(A,M) by the universal property of Ω1

A/R.
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Étale group schemes (over a field). We will construct a larger set of group
schemes containing the constant group schemes. We first suppose R is a field k.
Definition. A finite k-algebra A is étale if A is a finite product A =

∏
i ki for k ⊂ ki

a finite separable field extension.

Proposition. If A is any finite k-algebra (so that it is an Artin k-algebra), then
A '

∏
iAi, where each Ai is a local k-algebra with maximal ideal mi nilpotent.

For the proof, see [AM, Theorem 8.7] or [Wat, §6.2]. For the commutative
algebra behind separable extensions, see [Mat, §27].

Proposition. If k is a field, A a finite k-algebra, then the following are equivalent:

(i) A is étale;
(ii) A⊗ ksep ' ksep × · · · × ksep;
(iii) A⊗ k ' k × · · · × k;
(iv) A⊗ k is reduced (i.e. has no nilpotents);
(v) Ω1

A/k = 0;
(vi) Ω1

(A⊗k)/k
= 0.

This implies that a subalgebra of an étale algebra is étale by (iv), and by (ii)
we find that a tensor product of étale algebras and a quotient algebra of an étale
algebra are étale.

Proof. (See [Wat, §6.2] or [Mil, Proposition I.3.1].)
(i) ⇒ (ii) is clear by tensoring the relation. (ii) ⇒ (iii) directly. (iii) ⇒ (iv)

because k × · · · × k has no nilpotents. (iv) ⇒ (iii) because it is a product of local
algebras and hence we must have all mi = 0.

(iii)⇒ (i): If A⊗k ' k×· · ·×k, then A has no nilpotents, so by the proposition
above, A =

∏
iAi and each Ai is a field. Thus

Homk(A, k) =
⋃

i Homk(Ai, k)

By Galois theory, the order of the right-hand side is ≤ the sum of the degrees of
Ai, which by the left-hand side is ≤ rk(A), with equality iff all Ai are separable.
But

Homk(A, k) = Homk(A⊗ k, k)

has rank equal to that of A since A⊗ k is a product of k, we conclude that the Ai

are separable and thus A is étale.
(iii) ⇒ (vi) because the differentials of a product is the product of the differen-

tials, which then is trivial, and clearly (v) ⇔ (vi).
(vi) ⇒ (iii): We may assume k = k is algebraically closed. We have Ω1

A/k = 0 so
Ω1

Ai/k = 0, where A =
∏

iAi, each Ai a local k-algebra. For mi the maximal ideal
of Ai, then for Ai = k[x1, . . . , xn]/〈fi〉i,

Ω1
Ai/k =

⊕
iAdxi/〈

∑n
j=1(∂fi/∂xj)dxj〉

and reducing modulo mi (by tensoring with the residue field), we obtain

0 =
⊕

ik dxi/〈
∑n

j=1(∂fi/∂xj)(0) dxj〉 ' mi/m
2
i .

Therefore we find mi/m
2
i = 0, so mi = 0 by Nakayama’s lemma, and Ai is a field

and hence k. �
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Let π = Gal(ksep/k). We have a functor

{Finite étale algebras} → {Finite π-sets}

(i.e. those with a continuous π-action) defined the dual

{Finite affine étale k-schemes} → {Finite π-sets}
X = SpecA 7→ X(ksep) = Mork(Spec ksep, X) = Homk(A, ksep)

with σ ∈ π acting on f : A→ ksep by

(σf)(a) = σ(f(a)).

We also have an inverse functor Y 7→ Mapπ(Y, ksep), and if we tensor with ksep

we obtain étale algebras over k. These functors induce equivalences of categories
[Wat, §§6.3–6.4], [Sha, §3]. (For more information about Galois coverings of fields
and the fundamental group, see [Mil, §5] or [Tat, (3.6)] and for proofs, see [Mur,
Chapter IV].)

The same functors induce an equivalence of categories [Wat, §6.4]

{Finite étale affine commutative k-group schemes} ↔ {Finite π-modules}
G 7→ G(ksep) = G(k)

The π-module structure commutes with the group structure, since this is in fact
a functor, and so the product is an element of the left-hand side.
Example. In this equivalence, we have constant group schemes correspond to exactly
those with trivial π-action. Γ(k) = Hom(k(Γ), k) by fγ : eγ 7→ 1, eγ′ 7→ 0 for γ′ 6= γ.
Explicitly, we see

(σfγ)(eγ′) = σ(fγ(eγ′)) = fγ(eγ′)

since this is 0, 1 ∈ k and so is fixed by the Galois action.
Example. Let k = R and take µ3(S) = {s ∈ S : s3 = 1}, where

µ3 = SpecA, A = R[X]/〈X3 − 1〉 ' R× C.

We have
µ3(C) = HomR(A,C) = HomR(R× C,C) = {f1, f2, f3}

where f1 : R → C,C → 0, f2 : R → 0,C → C, f3 : R → 0,C → C. Check that
σf1 = f1, σf2 = f3, σf3 = f2, where σ(z) = z is complex conjugation generating
the Galois group.

Characteristic zero. We will now prove:
Theorem (Cartier). If k is a field of characteristic 0, then every finite group
scheme is étale.

We will need the following result:
Proposition. If R is a noetherian ring, A an Hopf algebra over R, and G =
SpecA, then

Ω1
A/R ' A⊗R (I/I2)

where I = ker(A e−→ R).
Corollary. If R = k is a field, then I/I2 is free, so the differentials are free over
A.



GROUP SCHEMES 25

Proof. (See also [Wat, §11.3, Theorem].) We have the following commutative dia-
grams:

G×G // G×G

G

idG ×e

OO

G

∆

OO

where the top map is (g, h) 7→ (g, gh). This is dual to

A⊗A

idA ⊗e

��

A⊗Aoo

m

��
A A

where the top map is a⊗ b 7→ c(b)(a⊗ 1).
Therefore we have an isomorphism of groups kerm ' ker(idA⊗e). Since a⊗1 7→

a ⊗ 1 on the top map, the A-module structure is preserved, acting on the first
coordinate.

But ker(idA⊗e) = A⊗ I, and letting kerm = J , we have

(A⊗ I)/(A⊗ I)2 = A⊗ I/I2 ' J/J2 ' Ω1
A/R

asA-modules. To see this last map, we note that in the case thatA = R[X1, . . . , Xn],
we have the map A⊗A m−→ A which is

R[X1, . . . , Xn, Y1, . . . , Yn]/〈fi(X), fi(Y )〉 m−→ R[T1, . . . , Tn]/〈fi(T )〉
Xi, Yi 7→ Ti

It is clear that Yi − Xi are elements of the kernel, but we can always convert an
element in the kernel to a polynomial in Xi so actually kerm = J = 〈Yi − Xi〉i.
Let εi = Yi −Xi. Then

A⊗A = k[X1, . . . , Xn, ε1, . . . , εn]/〈fi(X), fi(Xi + εi)〉i

so that
J/J2 = 〈ε1, . . . , εn〉/〈εiεj ,

∑
j

(∂fi/∂Xj)εj〉 ' Ω1
A/R.

(This also works even when A is not finitely generated.)
Therefore A⊗R I/I2 ' Ω1

A/R. �

Corollary. If m ∈ Z kills G, then it also kills Ω1
A/R.

Proof. If m ∈ Z kills G then the multiplication map [m] factors through SpecR; by
duality, it suffices to show that it factors through Ω1

R/R = 0, for then it would also
kill Ω1

A/R. But we showed that if a ∈ I ⊂ A, then c(a) = 1⊗a+a⊗ 1 (mod I⊗ I),
so [n](a) = na (mod I2), and therefore if n kills G then [n](a) = 0. �

We are now able to prove the result of this section:

Theorem (Cartier). If G is a finite (flat) group scheme over a field k of character-
istic 0, then G is étale, which is to say that if G = SpecA, then A⊗kk ' k×· · ·×k.
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Proof. (See [Wat, §11.4, Theorem], [Tat, Lemma 3.7.1], [Sha, §3, Theorem].) Let I
be the augmentation ideal of A and x1, . . . , xn a basis for I/I2. Then

lim←−A/I
n = A/

⋂
nI

n = A/J ;

since A =
∏

iAi with Ai local and mi nilpotent, taking large powers each component
will either vanish or remain the unit ideal, so J is a direct factor of A as an R-
algebra. Thus

A/J ' k[x1, . . . , xn]/〈fi〉i
and A ' A/J ×A/J ′ since it is a direct factor for some J ′. Since

Ω1
A/k ' A⊗k I/I

2

is a free A-module, we have it as
⊕n

i=1Adxi as an A-module, and

Ω1
A/k ' Ω1

(A/J)/k × Ω1
(A/J ′)/k

so that Ω1
(A/J)/k '

⊕n
i=1A/J dxi is free over A/J , since the ideals are coprime.

But this is also isomorphic to⊕n
i=1(A/J) dxi/〈

∑
j(∂fi/∂xj) dxj〉i

so if f ∈ J then ∂f/∂xi ∈ J for all i. But up to certain factorials, every coefficient
is already in J (by taking a high partial derivatives), so since the characteristic of
k is 0, we already have every coefficient in J and thus all coefficients are 0. Thus
A/J ' k[x1, . . . , xn], but this is a finite-dimensional algebra, so n = 0, so I/I2 = 0,
so Ω1

A/k = 0, and so A is étale. �

This immediately implies Lagrange’s theorem, since an étale group scheme is also
just a module which is a group, so it follows from the classical Lagrange’s theorem.

Étale group schemes (over a ring). We now extend the results of the previous
section from fields to more general rings.
Definition. If R is a connected (noetherian) base ring, and G a finite R-group
scheme, then G = SpecA is étale if it is flat (locally free) and A⊗k is étale for any
residue field R→ k → 0.
A over R is étale iff Ω1

A/R = 0 and A is flat.
Remark. If K ⊂ L is a finite extension of a number fields, then OL is an étale
OK-algebra iff L/K is unramified.

Pick a geometric point of SpecR, Spec(ksep)→ SpecR from R→ k ↪→ ksep (the
first map surjective). We have seen that there exists a functor F from the category
of finite étale affine R-schemes to sets, which for X = SpecA takes

X 7→ X(ksep) = MorR(Spec ksep, X) = HomR(A, ksep).

We have π = Aut(F ), i.e. π consists of automorphisms of functors πS : F (S) →
F (S) for any R-algebra S. π is a profinite group; think of it as the absolute Galois
group of k if R = k is a field (see especially [Mil, Examples 5.2]).

If we restrict the functor to finite sets, then it factors through finite π-sets, and
it is a theorem is that this functor (from finite étale affine R-schemes to finite π-
sets) becomes an equivalence of categories [Mil, Theorem 5.3]. This immediately
implies by functoriality that there is an equivalence of categories F from finite étale
commutative affine R-schemes to finite π-modules (we just equip each with a group
structure).
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Example. If R = k is a field, then π = Gal(ksep/k).
If R is a complete local Noetherian ring, we can look at algebras over the residue

field k = R/m by Hensel’s lemma, hence π = Gal(ksep/k).
Example. Let R = OS be the ring of S-integers of a number field F , where S is a
finite set of primes of OS , i.e. elements which are integral at every prime p 6∈ S).
Then π = Gal(L/F ) where L is the maximal algebraic extension of F unramified
at the primes outside S.

For example, if we take S = ∅, π(Z) = 1 by Minkowski (there are no unramified
extensions of Q). Also, π(Z[

√
−5]) = Z/2Z, where the unramified extension is

Z[
√
−5] ⊂ Z[i, (

√
−5 + i)/2]. Finally, π(Z[(1 +

√
−283)/2]) ' A4.

There are no known examples of π if S is not the empty set. If S = ∅, then
π/[π, π] is finite (it is the ideal class group), but π need not be finite (a problem
related to infinite class field towers).
Example. Take O = Z[

√
−5], so that π is order 2. There should be an étale group

scheme over O of order 3 with nontrivial action by π. We hope that G = SpecA,
A = O[X]/〈f(X)〉, which may not be the case in general, but here we are lucky.
By translation to get the origin at zero, we guess that A = O[X]/〈X3 +aX2 +cX〉.
Since A is étale, c is a unit (either computing the differentials or because the
determinant must be invertible, as it must be unramified). Writing down quadratics
with discriminant −1, we find a =

√
−5, c = −1. (As an O-algebra, since there is

only one unramified extension of O, we must have A isomorphic to O[(i+
√
−5)/2].)

Thus
A = O[X]/〈X3 +

√
−5X2 −X〉,

with the three points (tensoring with the quotient field) 0, (−
√
−5 ± i)/2. The

multiplication law is

X 7→ X +X ′ + aXX ′ + b(X2X ′ +XX ′2) + c(X2X ′2)

for certain (different) a, b, c ∈ O. Since we can compute directly by adding the
points together in the cyclic group, we have to solve a linear system. It turns out
to have solutions in O, and in fact

X 7→ X +X ′ + 3
√
−5XX ′ + 6(XX ′2 +X ′2X)− 2

√
−5X2X ′2.

Characteristic p. What can be salvaged from the previous proof when char k 6= 0?
We go to the other extreme, and look at the following objects:
Definition. A local group scheme G = SpecA is a group scheme for which the base
ring R is a local ring, A is a local algebra over R (i.e. the map R → A is a local
homomorphism).

We will restrict to the case where R = k is a field with char k = p > 0 (and later,
using Hensel’s lemma, we will get information about complete local rings).
Proposition. Let G = SpecA be a finite local group scheme of height 1 (if A =
k[X1, . . . , Xn]/J then J ⊃ 〈Xp

1 , . . . , X
p
n〉). Then

A ' k[X1, . . . , Xn]/〈Xp
1 , . . . , X

p
n〉.

Proof. (See [Tat, Lemma 3.7.3].) Let I ⊂ A be the augmentation ideal. I must be
the maximal ideal of A and therefore is nilpotent. If x1, . . . , xn is a k-basis of I/I2

then by Nakayama, A ' k[x1, . . . , xn]/J . Hence

A⊗k I/I
2 ' Ω1

A/k '
⊕n

i=1Adxi
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is free over A of rank n, which is just⊕n
i=1Adxi/〈

∑
j(∂fi/∂xj)xj〉

so this ideal of partials must be equal to zero; if f ∈ J then ∂f/∂xj ∈ J , so
again we have a factorial multiplied by each coefficient must vanish. In particular,
every coefficient of a monomial f = xi1

1 . . . xin
n ∈ J with all ik < p must vanish,

so J ⊂ 〈xp
1, . . . , x

p
n〉. Since we have assumed containment in the other direction,

equality must hold. �

Our goal now is to prove:
Theorem. If k is a perfect field of characteristic p > 0, G = SpecA a finite local
group scheme, then

A ' k[X1, . . . , Xn]/〈Xpe1

1 , . . . , Xpen

n 〉.
Since dimk A = pe1+···+en , we have:

Corollary. If G is a local finite group scheme over k, then #G is a power of p.
Corollary. If G is a finite local flat group scheme over R which is a complete local
Noetherian ring with perfect residue field, then (after lifting variables by Hensel’s
lemma) G = SpecA, and A is a complete intersection algebra.
Corollary. If R is a complete local noetherian ring, G = SpecA a finite flat local
group scheme over R, with R/m perfect of characteristic p, then

A ' R[[X1, . . . , Xn]]/〈f1, . . . , fn〉

where fi ∈ Xpei

i + mR[X1, . . . , Xn] where the polynomial in the maximal ideal is
degree < pei .

Proof. If G = SpecA for A a finite flat R-algebra, then by the theorem, Gk =
Spec(A⊗R k) ' k[X1, . . . , Xn]/〈Xpe1

1 , . . . , Xpen

n 〉. Lift Xi to A and again call them
Xi; by Nakayama, the same Xi will generate A as an R-algebra. Thus

A ' R[[X1, . . . , Xn]]/J

so that
0→ J → R[[X1, . . . , Xn]]→ A→ 0

(as R-modules) is R-split because A is flat and therefore free, and

0→ J ⊗R k → R[[X1, . . . , Xn]]→ A⊗R k → 0

is also k-split, and J ⊗ k = 〈Xpe1

1 , . . . , Xpen

n 〉, so we lift Xpei

i to J and call them
fi, such that fi ∈ Xpei

i + mR[X1, . . . , Xn]; we can do this because the monomials
Xa1

1 . . . Xan
n (0 ≤ ai ≤ pei − 1) are an R-basis for the free R-module A, so the fi

generate J . �

To prove the theorem, we will use induction with respect to the dimension of A
over k. First:
Lemma. If B ⊂ A are finite k-Hopf algebras, with B local, then A is free over B.

Proof. Letting G = SpecA, H = SpecB, we have

A

��

Boo

e

��
A⊗B R Roo
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so that N = ker(G→ H) = Spec(A⊗B R) = Spec(A/IBA) where IB is nilpotent.
The functor which sends a k-algebra S 7→ G(S) × N(S) is represented by the

algebra A⊗k A/IBA. The functor which sends

S 7→ G(S)×H(S) G(S) = {(g, h) ∈ G(S)×G(S) : img(g) = img(h) ∈ H(S)}

is represented by A ⊗B A. These functors are isomorphic by mapping (g, n) 7→
(g, gn), which are isomorphisms of algebras and as A-modules where A acts on the
first coordinate. Therefore A⊗kA/IBA ' A⊗BA as k-algebras and as A-modules.

We know that A/IBA is free over A and A ⊗B A is also free over A. Let
C = A⊗B R = A/IBA. Take ei a k-basis for C, and lift it to A and call it ei again.

Claim. g :
∑

iBei ⊂ A is in fact an isomorphism of B-algebras.

Proof. Since B/IB = k, we know
∑

i kei ' C is an isomorphism, so g is surjective
as IB is nilpotent (B is local).

We have the diagram ⊕
iBei

//

��

A //

��

0

0 // K // ⊕
iAei

// A⊗B A // 0

where K is the kernel. But the bottom exact sequence splits as A⊗B A is free over
A. Since A⊗B A is free of rank n, and the same is true of

⊕
iAei, the kernel itself

is zero. Since
⊕

iBei ↪→
⊕

iAei is an injection and
⊕

iAei ↪→ A⊗B A, the map is
an isomorphism. �

This concludes the proof of the lemma. �

Proof of theorem. (See [Wat, §14.4, Theorem].) We have G = SpecA where A is a
finite local k-Hopf algebra, char k = p. We know A ' k[T1, . . . , Tr]/〈fi〉i. Look at
Ap, the subalgebra generated by T p

1 , . . . , T
p
r ; this is in fact a sub-Hopf algebra.

By induction, Ap ' k[X1, . . . , Xn]/〈Xpe1

1 , . . . , Xpen

n 〉, for Xi ∈ Ap. Choose yp
i =

Xi for i = 1, . . . , n. Pick

{a ∈ A : ap = 0}/I2 ∩ {a ∈ A : ap = 0} ↪→ IA/I
2
A

and a k-basis z1, . . . , zm for the quotient from {a ∈ A : ap = 0}. Then

C = k[Y1, . . . , Yn, Z1, . . . , Zm]/〈Y pe1+1

1 , . . . , Y pen+1

n , Zp
1 , . . . , Z

p
m〉

has an inclusion Ap ↪→ C by Xi 7→ Y p
i . C is actually free over Ap, but Ap ↪→ A,

with A free over Ap, and the map Yi 7→ yi, Zi 7→ zi gives a map g : C → A → 0.
We will show that g is an isomorphism modulo IAp , which is also its maximal ideal.
Since g is a surjection, and they have the same rank over A, g itself will be an
isomorphism.

We have that IAp = 〈T p
1 , . . . , T

p
r 〉 = 〈X1, . . . , Xn〉, and modulo IAp , g becomes

k[y1, . . . , yn, z1, . . . , zm]/〈y1, . . . , yp
n, z

p
1 , . . . , z

p
m〉 ' k[T1, . . . , Tr]/〈T p

1 , . . . , T
p
r 〉.

It suffices to show that these two algebras have the same number of variables
(since this determines the isomorphism class), g induces an isomorphism mC/m

2
C →

mA/m
2
A on the tangent spaces, since the dimension of these spaces gives the num-

ber of variables. This is equivalent to showing that yi, zj form a k-basis for
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IA/I
2
A = mA/m

2
A (it is surjective by the above, so it suffices to show they are

independent).
First we prove that they generate the ideal. If x ∈ I, then xp ∈ IAp =

〈X1, . . . , Xn〉, where the Xi are actually a basis for the ideal modulo squares. Thus
xp = φ(X1, . . . , Xn) ∈ k[X1, . . . , Xn], but xp = φ(yp

1 , . . . , y
p
n) so that φ̃ is taken

modulo I2
A so it is linear. Therefore

(
x− φ̃(y1, . . . , yn)

)p

= 0 for k perfect must be

in {a ∈ A : ap = 0} ∩ IA, so x− φ̃(y1, . . . , yn) =
∑

i λizi (mod I2
A).

Now we must show that the yi, zj are independent. Suppose
∑

i αiyi+
∑

j βjzj =
0 ∈ IA/I2

A for αi, βj ∈ k. Then αp
i y

p
i = 0 in IAp/I2

Ap , where the xi are a basis, so
αp

i = 0, so the αi = 0, and therefore
∑

j βjzj = 0 so since the zj are a basis bj = 0.
The reason it is enough to show that C/mAp ' A/mAp is as follows: Let-

ting C/mAp = k[Y1, . . . , Yn, Z1, . . . , Zm]/〈Y p
1 , . . . , Y

p
n , Z

p
1 , . . . , Z

p
m〉 and A/mAp =

k[T1, . . . , Tr]/〈T p
1 , . . . , T

p
r 〉 even though A = k[T1, . . . , Tr]/〈fi〉i, since the Hopf al-

gebra structure is the kernel of ker(SpecA → SpecAp), which has height 1 and is
killed by Frobenius and therefore the result follows by induction. �

Example. If k is not perfect, this is false: choose a ∈ k \ kp, and for a k-algebra
S we take G(S) = {(x, y) : xp2

= 0, xp = ayp} is rank p3, a closed subscheme of
Ga ×Ga, but is not represented in the form given by the theorem.

Connected and étale components. For the details of this section, see [Wat,
§6.4–6.7] or [Tat, (3.7)]. Let G = SpecA be a (possibly noncommutative) group
scheme, A finite flat over k. Then A '

∏
iAi where the Ai are local k-algebras,

so G = SpecA =
⊔

i SpecAi. The unit section e : A =
∏

iAi → k has all but one
ei 7→ 0 ∈ k, so it factors e : A→ A0 → k.
Definition. For e : A → A0 → k, G0 = SpecA0 is the connected component of the
identity.

Similarly, let Aét be the maximal separable (equivalently étale) subalgebra of A.
This makes sense because if B,B′ ⊂ A are étale subalgebra, so is B ⊗k B

′ as well
as the compositum BB′ [Wat, §6.5].
Theorem. With the above,

(a) G0 is a closed subgroup scheme of G.
(b) Aét is a sub-Hopf algebra, and hence Gét = SpecAét is a group scheme.
(c) The sequence

0→ G0 → G→ Gét

is exact, which is to say G0 is the kernel of the map on algebras induced by
the inclusion.

(d) Any map H → G with H a connected group scheme factors through G0;
any map G→ H with H an étale group scheme factors through Gét.

(e) If k is perfect, then A ' A0 ⊗k Aét as k-algebras.

Proof of (a). (See [Wat, §6.6].) We need to show that the composition map factors:

G0 ×G0 //

%%KKKKKKKKKK G×G c // G

G0

<<yyyyyyyyy
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On algebras, then, we want:

A0 ⊗A0 A⊗Aoo Ac
oo

||yy
yy

yy
yy

y

A0

eeKKKKKKKKKK

A0 is a local ring with residue field k, because there is a section e : A → k; the
tensor product is also local because it has residue field k ⊗k k = k, so this factors:

A0 ⊗A0

��

A⊗Aoo Ac
oo

||yy
yy

yy
yy

y

k Ai
oo

The composition A→ k must be the unit section and hence factors through A0 by
definition; hence i = 0 as desired. (One can also in this way also show that the
inverse map takes G0 → G0.) �

Proof of (b). We first need:

Claim. Let A =
∏

iAi, with Ai local with residue field ki, k ⊂ ki
sep ⊂ ki finite

(ki
sep denotes the separable closure of k in ki). Then the product

∏
i ki

sep is a
k-subalgebra of A and Aét =

∏
i ki

sep.

Proof. Such a k-algebra is certainly étale. Conversely, if x ∈ Aét and k 6∈
∏

i ki
sep,

then there exists an xi (multiplying by idempotents), a component of x, for which
xi ∈ Ai is étale, but xi 6∈ ki

sep. There is a power of p such that xpa

i ∈ ki
sep. If

we look at the reduction map xi ∈ Ai → Ai/mi = ki, x
pa

i 7→ t ∈ ki
sep ∈ Ai, so

xpa

i − t ∈ mi so (xpa

i − t)pb

= 0 and therefore xpa+b

i ∈ ki
sep since the maximal ideal

is nilpotent, a contradiction.
(The same is not true for an inseparable extension (we may not be able to lift k to

A): if A is a local k-algebra, k not perfect, then if a ∈ k\kp, and A = k[X]/〈Xp−a〉,
we find that A/m ' k[X]/〈Xp − a〉 has no section to k.) �

We want to show Aét is a sub-Hopf algebra, i.e. we need to show the commuta-
tivity of:

A
c // A⊗k A

Aét

OO

c // Aét ⊗k Aét

OO

First we show Aét ⊗k k = (A ⊗k k)ét [Wat, §6.5, Theorem]. The inclusion ⊂ is
clear, since Aét ⊗k k is étale. For the converse, we count points over k: if we let
A =

∏
iAi, Ai local, then

# Spec(Aét ⊗k k) = # Homk̄(Aét ⊗k k, k) = # Homk(Aét, k)

= # Homk(
∏

i ki
sep, k) =

∑
i[ki

sep : k] =
∑

i[ki : k]sep.

The number of points on the right-hand side is

# Spec(A⊗k k)ét = #Homk̄((A⊗k k)ét, k)

= #Homk̄(A⊗k k, k) =
∑

i # Homk(ki, k) =
∑

i[ki : k]sep.
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So equality holds.
Next, (A⊗kB)ét = Aét⊗kBét; the inclusion ⊃ is clear, and to prove the inclusion

⊂, tensor with k, and use the previous formula to conclude they have the same rank.
Now we have maps

A
c // A⊗k A

Aét

OO

c // (A⊗k A)ét

OO

so the map factors as desired. �

Proof of (c). (See [Wat, §6.7], [Sha, §3, Proposition].) If k is perfect, then we
want to show G0 ' ker(G → Gét). The map G → Gét is given by the inclusion
Aét =

∏
i ki

sep ↪→ A; the kernel is represented by A/(
∏

i 6=0 ki
sep)A since this arises

from the unit section:
Aét =

∏
i ki

sep e //

��

k

k0

99ssssssssssss

But this is

A/(
∏

i 6=0 ki
sep)A = (

∏
iAi)/(

∏
i 6=0 ki

sepAi) =
∏

iAi/
∏

i 6=0Ai ' A0.

Therefore G0 = ker(G→ Gét). �

Proof of (d). (See [Wat, §6.7].) We want to show the following: If G and H are
finite k-group schemes, with G = SpecA connected, A local, H = SpecB, B étale,
then any f : G → H factors through Gét; this is because the induced map of the
separable algebra B to A has image in Aét, so the map on schemes factors through
Gét. Conversely, if we have a map f : H → G with H connected, then the structure
map H → Spec k lifts via e : Spec k → G0, and since H is connected its image is
also connected, hence contained in the connected scheme G0, hence the map factors
H → G0. �

Proof of (e). (See [Wat, §6.8].) We want to show A ' A0 ⊗k Aét as k-algebras.
From (c) we know G0 ×G ' G×Gét G by (h, g)→ (g, gh); on algebras, this is a

map A⊗k A
0 ← A⊗Aét A by a⊗ b 7→ c(b)a.

If A =
∏

iAi, Ai local with maximal ideal mi, the nilradical of A is
∏

i mi. If
k is perfect, A/

∏
i mi '

∏
i ki =

∏
i ki

sep = Aét, so A modulo the nilradical has a
natural Hopf algebra structure. So if we take our original map A⊗kA

0 ← A⊗Aét A
modulo the nilradical, we obtain an isomorphism Aét ⊗k A0 ' A/

∏
i mi ⊗k A0 '

A/
∏

i mi⊗Aét A ' A which is a 7→ 1⊗a 7→ c(a) and is indeed an isomorphism. �

Exercises. The following are exercises for §4.

Problem 4.1. Let k be a field.
(a) For any finite-dimensional k-vector space M , determine the group scheme

that represents the functor that maps a k-algebra S to the additive group
EndS(M ⊗ S).

(b) Answer the same question for the functor that maps a k-algebra S to the
multiplicative group AutS/k(M ⊗ S).



GROUP SCHEMES 33

(c) Assume now that R is a finite k-algebra (resp. Hopf algebra). Show that
the functor that maps a k-algebra S to the multiplicative group of algebra
(resp. Hopf algebra) automorphisms AutS/R(R ⊗ S) is represented by a
closed subgroup scheme of the group scheme of part (b).

(d) Let R be a separable k-algebra. Show that AutS/R(R) is étale.

Problem 4.2. Compute the Kähler differentials Ω1
A/R for the following rings R

and R-algebras A:
(a) R = Z and A = Z[

√
2].

(b) R = Z and A = (Z/6Z)[X]/〈X2 +X + 1〉.
(c) R = Q[T ] and A = Q[X,Y ]/〈X2 +Y 2−XY +X,Y 4−X3Y +X2Y 〉 where

A is an R-algebra via T · f(X,Y ) = Xf(X,Y ) for f(X,Y ) ∈ A.

Problem 4.3. Let k be a non-perfect field and let a ∈ ksetminuskp. Let G be
the closed subgroup scheme of Ga ×Ga defined by G(S) = {(x, y) ∈ S × S : xp2

=
0, xp = ayp} for a k-algebra S. Show that the Hopf algebra of G is not isomorphic
to a k-algebra of the form k[X1, . . . , Xn]/〈Xpe1

1 , . . . , Xpen

n 〉.

Problem 4.4. Let ζ = (1 +
√
−3)/2 denote a cube root of unity.

(a) Show that the fundamental group π1(Z[ζ]) is trivial. [Hint: Use Minkowski’s
theorem.]

(b) Show that π1(Z[
√

6]) has order 2. Show that the ring Z[
√
−2, ζ] is a qua-

dratic unramified extension of Z[
√

6].
(c) Show that the étale Z[

√
6]-algebra Z[

√
6] × Z[

√
−2, ζ] has the structure of

a Hopf-algebra.

Problem 4.5. Let G = SpecA be an R-group scheme. Suppose that n annihilates
the group scheme G. In other words, the morphism [n] : A → A factors through
the counit morphism e : A→ R.

(a) Prove that n kills the group I/I2.
(b) Suppose that R = k is a field of characteristic p and assume that G is

commutative. Show that G is étale whenever n is coprime to p. (This is
also true when G is not commutative.)

Problem 4.6. Let α = (3 +
√
−23)/2 and let R denote the ring Z[α]. By α we

denote the conjugate (3−
√
−23)/2.

(a) Show that the polynomial f(X) = X3−αX2−αX+1 ∈ R[X] is irreducible
and has discriminant 1.

(b) Let β denote a zero of f(X). Show that Q(
√
−23) ⊂ Q(

√
−23, β) is Galois

of degree 3.
(c) The R-algebra R ×R[β] ' R[X]/〈Xf(X)〉 can be given the structure of a

Hopf algebra of an étale group scheme of order 4 and exponent 2. Determine
the group law explicitly in terms of the coordinate X. [Hint: Work over
Q(
√
−23) and solve a linear system in six unknowns.]

5. Fontaine’s theorem

The goal of the final section of these notes is to establishing the following the-
orem: If G is a finite flat group scheme over the ring of integers of a number field
OK , then adjoining the points of G to K, we obtain an extension with very little
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ramification. It will imply that there are no abelian varieties over Z and other small
number fields.

Ramification theory. For more information, consult [Ser, Chapter IV].
Consider a finite extension Qp ⊂ K ⊂ L where G = Gal(L/K), π ∈ OK a

uniformizer, with valuation v(π) = 1. The ring of integers is OL = OK [α]: take α
to be a uniformizer in L, and add ζ, a lift of a generator of the multiplicative group
of the residue field (OL/πL)× [Ser, III, §6, Proposition 12].

Extend the valuation v to L in a unique way, with v(πL) = 1/eL/K , where eL/K

is the ramification index. The inertia group

I = {σ ∈ G : σ(x) ≡ x (‘mod πL) for all x ∈ OL} ⊂ G

is a normal subgroup, and #I = eL/K [Ser, IV, §1, Proposition 1]. We also have
I = {σ ∈ G : v(σ(α)− α) > 0}.

This numbering matches that given in the article by Fontaine [F], and is off by
1 from the one used by Serre [Ser].
Definition. We define the higher ramification groups (with lower numbering) as
follows: for i ∈ R,

G(i) = {σ ∈ G : v(σ(x)− x) ≥ i for all x ∈ OL}
= {σ ∈ G : v(σ(α)− α) ≥ i}.

Definition. We let i(σ) = v(σ(α) − α) = minx∈OL
v(σ(x) − x) (if σ = idL, then

i(σ) = +∞), and iL/K = maxσ 6=idL
i(σ).

We know iL/K , i(σ) ∈ (1/eL/K)Z.
Example. If i ≤ 0, then G(i) = G. If i > 0, then G(i) ⊂ I. G(i) = I iff 0 < i ≤
1/eL/K .
Definition. We define the function

φL/K(i) =
∑

σ∈G min(i, i(σ)) : R≥0 → R≥0.

φL/K is piecewise linear, monotone increasing, and continuous [Ser, IV, §3,
Proposition 12]. If i� 0, then G(i) = {1}.
Definition. We define the higher ramification groups (with upper numbering) as
follows: Let G(φL/K(i)) = G(i), so G(u) = G(φ−1

L/K
(u)) for u ≥ 0.

For the lower numbering, we have G(i) ⊂ G(i′) if i ≥ i′, G(i) = {1} if i� 0, and
G(0) = G.
Definition. Let uL/K = φL/K(iL/K).

uL/K is the largest u for which G(u) 6= {1}, since iL/K is the largest i for which
G(i) 6= {1} [Ser, IV, §1, Proposition 3]. We have

uL/K = φL/K(iL/K) =
∑
σ∈G

min(iL/K , i(σ))

= iL/K +
∑

σ 6=1∈G

i(σ) = iL/K +
∑

σ 6=1∈G

v(σα− α) + iL/K

= iL/K + v
(∏

σ 6=1∈G(σα− α)
)
.
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Let f(T ) ∈ OK [T ] be the minimal polynomial of α, so that f(T ) =
∏

σ∈G(T −
σα). Then

f ′(α) = v
(∏

σ 6=1∈G(σα− α)
)

+ iL/K = v(DL/K) + iL/K ,

where DL/K is the different, and NL/K(DL/K) = ∆L/K is the discriminant of L/K.
We conclude that v(DL/K) = uL/K− iL/K and v(∆L/K) = [L : K](uL/K− iL/K)

[F, Proposition 1.3] (see also [Ser, IV, §1, Proposition 4]). This implies that if the
higher ramification groups G(u) = {1} for u > u0, then v(∆L/K) < [L : K]u0.
Therefore K ⊂ L is unramified iff uL/K = 0, and in this case φL/K(i) = i. K ⊂ L
is tamely ramified (p - eL/K) iff uL/K = 1, and K ⊂ L is wildly ramified iff
uL/K > 1.
Example. (See [Ser, IV, §4].) Let K = Qp and L = Qp(ζpn), pn > 2. Then G =
Gal(L/K) ' (Z/pnZ)×, and α = ζpn so that OL = Zp[ζpn ] lies over OK = Zp. If we
normalize v(p) = 1, then for σ ∈ G we have i(σ) = v(σζpn−ζpn) = v((σζpn)/ζpn−1).

We compute i(σ) = pj/(p − 1)pn−1 for all σ 6= 1 such that σ ≡ 1 (mod pj) but
σ 6≡ 1 (mod pj+1) for each 0 ≤ j ≤ n− 1. Hence iL/K = 1/(p− 1).

We find that

G(i) = G = {σ ∈ G : σ ≡ 1 (mod p)}, for 0 < i ≤ 1
e

=
1

(p− 1)pn−1
=

1
#G

.

If i is such that 1/(p− 1)pn−1 < i ≤ p/(p− 1)pn−1 then

G(i) = {σ ∈ G : σ ≡ 1 (mod p2)}.

Continuing, we find

G(i) = {σ ∈ G : σ ≡ 1 (mod pn−1)}

for pn−2/#G < i ≤ pn−1/#G, and G(i) = 1 for i > pn−1/#G = 1/(p− 1).
We can also compute φ(i): for 0 < i ≤ 1/#G, φ(i) = i/#G. For 1/#G < i ≤

p/#G,

φ(i) =
∑
σ∈G

min(i(σ), i)

=
∑

σ 6≡1 (p)

i(σ) +
∑

σ≡1 (p)

i

= (#G−#G1)
1

#G
+ #G1i = 1− 1

p− 1
+

#G
p
i

where G1 = {σ ∈ G : σ ≡ 1 (mod p)}. Continuing, we find for pn−2/#G < i ≤
pn−1/#G,

φ(i) = n− 1− 1
p− 1

+
#G

pn−2(p− 1)
i

and the largest φ(iL/K) = φ(1/(p− 1)) = n− 1− 1/(p− 1) + p/(p− 1) = n.
So in this case uL/K = n, and

v(DQp(ζpn )/Qp
) = uL/K − iL/K = n− 1/(p− 1),

and therefore ∆Qp(ζpn )/Qp
= p(n−1/(p−1))φ(pn).
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Fontaine’s theorem: Statement and examples. We are now ready to state
[F, Théroème A]:
Theorem (Fontaine). Suppose that a finite flat group scheme Γ over OK ⊃ Zp is
killed by pn. Let the absolute ramification index of OK be eK (i.e. v(p) = eK),
and let L be the field obtained by adjoining the points of Γ to K, a finite Galois
extension of K, with G = Gal(L/K).

Then G(u) = {1} for u > eK(n+ 1/(p− 1)).
The points of Γ are obtained as follows: if Γ = SpecA, for A a finite flat OK

algebra, then A ⊗OK
K is a finite dimensional étale algebra and therefore can be

written in the form
∏

i Li for Li ⊃ K, with Li ↪→ K. Take L to be the compositum
of the Li ⊂ K.
Corollary. uL/K ≤ eK(n+ 1/(p− 1)) (by definition of uL/K).
Corollary. v(DL/K) = uL/K − iL/K < eK(n+ 1/(p− 1).

Example. Let K = Qp and Γ = µpn = Spec Zp[X]/〈Xpn − 1〉 = SpecA, A ⊗K '∏n
i=0 Qp(ζpi) so that L = Qp(ζpn). Then uL/K = n and iL/K = 1/(p − 1). The

Fontaine bound is uL/K ≤ n+ 1/(p− 1), which is quite good for p large.
Example (Katz-Mazur). Let R be a ring (e.g. Zp) and ε ∈ R×. Let S be an R-
algebra, n ≥ 1, and define Gε(S) = {(x, i) : x ∈ S× : xn = εi, 0 ≤ i < n}. The
composition

(x, i)(y, i) =

{
(xy, i+ j), i+ j < n

(xy/ε, i+ j − n), i+ j ≥ n

has neutral element (1, 0) and inverse (εx−1, n−i) if i 6= 0 and (x−1, 0) if i = 0. This
is associative, and is functorial, and therefore Gε is a group functor, represented by
a group scheme Gε = Spec

∏n−1
i=0 R[X]/〈Xn − εi〉.

We have a map
n−1∏
i=0

R[X]/〈Xn − εi〉 → R[X]/〈Xn − 1〉,

which gives a map of group schemes µn → Gε. We also have an injection
∏n−1

i=0 R ↪→∏n−1
i=0 R[X]/〈Xn − εi〉, which induces a map Gε → Z/nZ. In a suitable category

(which will be explained later), the sequence

0→ µn → Gε → Z/nZ→ 0

is exact, and therefore G0
ε = µn is the connected component and Gε

ét = Z/nZ is
the étale component.
n kills Gε because (x, i) · · · (x, i) = (1, 0). If we take R = Zp, K = Qp, n = p,

then L = Qp(ζp, p
√
ε). The extension L/K is abelian with H ' Z/pZ, but G =

Gal(L/Qp) is no longer Galois. It is not necessary but we take ε ≡ 1 (mod p),
ε 6≡ 1 (mod p2).

One computes that uL/K = 1 + 1/(p − 1). Fontaine predicts that uL/K ≤
1(1 + 1/(p− 1)), which is then sharp.

A converse to Krasner’s lemma. We now proceed with the proof. We will show
first that there is a sort of converse to Hensel’s lemma.

Let Qp ⊂ K ⊂ L, with G = Gal(L/K), X = Spec OL, v(πK) = 1. For any finite
extension K ⊂ E ⊂ K and any t ∈ R≥0, let mt

E = {x ∈ OE : v(x) ≥ t} [F, §1].
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Proposition. Let 0 < t < 1. Then K ⊂ L is unramified iff for all E that

X(OE) = MorOK
(Spec OE , X) = HomOK

(OL,OE)→ X(OE/m
t)

is surjective.

Proof. For the implication (⇒), take any E. A point of X(OE/m
t) is an algebra

homomorphism f : OL → OE/m
t. Since OL = OK [α] = OK [X]/〈f(X)〉, there

exists β ∈ OE such that f(β) ≡ 0 (mod mt). Since t > 0, the polynomial has
no double roots and thus by Hensel’s lemma, there exists a β̃ ∈ OE such that
f(β̃) = 0, so we have a map OL → OE by α 7→ β̃, with β̃ ≡ β (mod m), so the
map is surjective.

For the implication (⇐), take E = K ′ to be the unramified extension of K that
has residue field kL, so K → K ′ = LI → L. We have a surjection OL → kL '
kE = OE/m

t
E = OE/mE = OE/πKOE . So by assumption, this lifts OL → OE , so

we have an inclusion L ⊂ E, but E is unramified, so L = E is unramified. �

Lemma. Let OL = OK [α], K ⊂ L with G = Gal(L/K). Suppose β ∈ K, and let
u = v

∏
σ∈G(σα− β), i = supσ∈G v(σα− β). Then u = φL/K(i).

Note that u and i depend only on β up to conjugacy (because of the unicity of
the extension of v).

Proof. (See [F, Proposition 1.4].) i is the largest of v(σα − β). Without loss of
generality, we may assume that v(α − β) is the largest by considering conjugates.
Then

v(β − σα) ≥ min(v(β − α), v(α− σα)),

and if the inequality is strict then they have equal valuation, so this is v(β − α) ≤
v(β − σα), so we have equality.

We have

φL/K(i) =
∑
σ∈G

min(i(σ), i) =
∑
σ∈G

min(v(σα− α), v(α− β)) =
∑
σ∈G

v(β − σα) = u.

�

We will also need:

Lemma (Krasner’s lemma). If α, β ∈ K, and v(β − α) > v(σα − α) for all σ ∈
Aut(K), σα 6= α, then K(α) ⊂ K(β).

Proof. ([L, II, §2, Proposition 3].) Take τ ∈ Aut(K) fixing β. Then v(τβ − τα) =
v(β − α) > v(σα− α) for all σ ∈ Aut(K) such that σα 6= α. Then

v(τα− α) ≥ min(v(τα− β), v(α− β)) > v(σα− α)

so τ fixes α. �

Proposition (Fontaine). If K ⊂ L, OL = OK [α], v(πK) = 1, and mt
E = {x ∈

OE : v(x) ≥ t}, OE ⊂ E ⊂ K. Let X = Spec OL, and t > 0.
If t > uL/K , then for all finite extensions K ⊂ E such that X(OE/m

t) 6= ∅ we
have X(OE) 6= ∅. If this latter condition holds, then t > uL/K − 1/eL/K .
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Proof of first implication. (See [F, Proposition 1.5].) For the first implication, we
have t > uL/K . A point is an OK-algebra homomorphism OL = OK [X]/〈f(X)〉 →
OE/m

t
E , with α 7→ β with f(β) ≡ 0 (mod mt

E), i.e. v(f(β)) ≥ t > uL/K . But this
is

v
(∏

σ∈G(β − σα)
)
> uL/K = sup

σ∈G
v(β − σ(α)) > iL/K = sup

σ 6=1∈G
(σ(α)− α) .

Therefore there is τ ∈ G such that v(β−τα) > supσ∈G(σα−α) = supσ(στα−τα).
So by Kranser’s lemma, K(τα) = L ⊂ K(β) ⊂ E, so we have an inclusion OL →
OE , so X(OE) 6= ∅.

For the second implication, first if K ⊂ L is unramified, uL/K = 0, so the
theorem is true. If it is ramified, we want to show that if t ≤ uL/K − 1/eL/K , then
there exists an OE for which X(OE/π

t
KOE) 6= ∅, but X(OE) = ∅. Without loss of

generality, we may assume t = uL/K − 1/eL/K .
If K ⊂ L is tamely ramified, then uL/K = 1: To be tame is to say that v(σ(α)−

α) > 1/eL/K implies σ = id, which implies that i(σ) = 1/eL/K for all σ 6= id, which
implies that iL/K = 1/eL/K , hence

uL/K = φ(iL/K) =
∑

σ

min(iL/K , i(σ)) = eL/K(1/eL/K) = 1.

In this case, t = 1− 1/eL/K > 0. Suppose we have K ⊂ K ′ ⊂ L where the inertia
group I = Gal(L/K ′). Let E be the totally ramified extension of degree d < e over
K ′. Then X(OE) = {φ : OL → OE} = ∅ since they have different ramification
indices. There does exist, however, f : OL → OE/〈πt

KOE〉 where

φt
K = φK − 1/eL/K ∈ {x ∈ OE : v(x) ≥ 1− 1/eL/K} = 〈πK〉

(as 1 − 1/d < 1 − 1/eL/K .) We have f : OL = OK [α] → OE/πK where α is
a uniformizer, where we may α to a uniformizer β ∈ OE . Then the minimal
polynomial of α evaluated at β has v(

∏
σ(σ(α)− β)) = eL/K(1/eL/K) = 1.

If K ⊂ L is wild, then p | eL/K . Although t = uL/K − 1/eL/K , we claim that
t > 1. As proof, uL/K ≥ 1 + p/eL/K so t ≥ 1 + (p − 1)/eL/K , as this is the
slope and the function is increasing. Since t ∈ (1/eL/K)Z, eL/Kt ∈ Z, so write
eL/Kt = reL/K + s where 0 ≤ s < eL/K ; then if K ⊂ K ′ ⊂ L = K ′(α) where
again K ⊂ K ′ is unramified, let f ∈ OK′ [X] be the minimal polynomial of α. Take
F = K ′(β), where β is a zero of f(X)− πr

Kα
s.

The claim is that this polynomial is Eisenstein: it has degree eL/K > s so it is
still monic, r ≥ 1 so πK still divides all other coefficients, and if s = 0, r ≥ 2 so
π2

K - f0 still. So v(β) = 1/eL/K , and there exists OL → OE/π
t
KOE by α 7→ β.

Check: f(β) = πr
Kβ

s, v(f(β)) = v(πr
Kβ

s) = r+ s/eL/K = t, so it is well-defined. If
X(OE) 6= ∅, then OL → OE implies L ⊂ E so L = E, which implies α, β are both
in E = L, and therefore v(σα− β) ∈ (1/eL/K)Z for all r, but on the other hand,∏

σ

(σ(α)− β) = f(β) = πr
Kβ

s = πer+s
E ε

so v(πσ(α)− β) = r + s/eL/K = t = uL/K − 1/eL/K .
By the lemma, sup(v(σα− β)) = φ−1(uL/K − 1/eL/K), and we know φ(iL/K) =

uL/K , so by slopes φ(iL/K − 1/deL/K) = uL/K − 1/eL/K , therefore sup(v(σ(α) −
β)) = iL/K − 1/deL/K , but 1/deL/K ∈ (1/eL/K)Z implies d = 1, a contradiction.
Therefore X(OE) = ∅. �
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Definition. A divided power ideal I ⊂ R a Zp-algebra if x ∈ I implies xn/n! ∈ I for
all n ≥ 1.

Then I [n] = 〈xa1
1 . . . xat

t /(a1! . . . at!) : a1 + · · · + at ≥ n〉 is also divided power,
and I = I [1] ⊃ I [2] ⊃ . . . . If

⋂
n I

[n] = 0, then I is topologically nilpotent.
Example. If OE is a ring of p-adic integers, then {α : v(α) ≥ t} is divided power iff
t ≥ eK/(p− 1), and topologically nilpotent iff t > eK/(p− 1).
〈p〉 ⊂ Zp is a divided power ideal since p | x implies p | xn/n!. For p > 2 it is

topologically nilpotent, but for p = 2 it is not: v(22k

/2k!) = 2k−(2k−1+· · ·+1) = 1.
We have [F, Proposition 1.7]:

Proposition. Let A be a finite flat O = OK-algebra, Y = SpecA. Assume that
A ' OK [[x1, . . . , xm]]/〈f1, . . . , fm〉 and Ω1

A/OK
is a free A/aA-module for some

0 6= a ∈ OK . Then:
(a) For every finite flat OK-algebra S and for all I ⊂ S topologically nilpotent

divided power ideal, then

Y (S) ' img(Y (S/aI)→ Y (S/I)).

(b) L = K(Y (K)), then uL/K ≤ v(a) + eK/(p− 1).
This implies [F, Corollary 1.8]:

Corollary. If Γ = SpecA is a finite flat commutative group scheme over OK

killed by [pn], and G = Gal(L/K), L = K(Γ(K)), then G(u) is trivial for u >
eK/Qp

(n+ 1/(p− 1)).

Proof. Ω1
A/OK

' A ⊗O I/I2 as A-modules (from our theory of group schemes). If
[pn] kills Γ, then pn kills I/I2 (it acts linearly on the tangent space). Therefore
Ω1

A/OK
is an A/pnA-module.

If n = 1, i.e. [p] kills Γ, and eK/Qp
= 1, K unramified over Qp, then O/pO is a

finite field, so I/I2 is free over O/pO, so Ω1
A/OK

is free over A/pA.
Therefore we may assume that Ω1

A/OK
is free over some A/aA (for the more

general result, see [BM]). Write A =
∏

iAi, Ai local. Then

A =
∏

i

Oi[[X1, . . . , Xm]]/〈f (i)
1 , . . . , f (i)

m 〉,

where the Oi are unramified DVR extensions of OK . We may replace O by Oi

(the upper numbering stays the same). From (b), we know that uLi/K ≤ v(a) +
eK/(p− 1) ≤ nv(p) + eK/(p− 1) = eK(n+ 1/(p− 1)), where Li adjoins the points
of SpecAi to K, and L is the compositum. Then uL/K ≤ eK(n + 1/(p − 1)), and
G(L/K)(u)/Hi ' (G(L/K)/Hi))(u) (we need to show that the numbering behaves
well with respect to quotients). �

Proof of (a) ⇒ (b). We will show that for any t > v(a) + eK/(p− 1), we have the
property in the the converse to Krasner’s lemma (for every K ⊂ E ⊂ K finite, if
X(OE/π

t
KOE) 6= ∅ then X(OE) 6= ∅). Then t > uL/K − 1/eL/K , which implies

that uL/K ≤ v(a) + eK/(p− 1) + 1/eL/K .
To show that t > v(a) + eK/(p − 1), we let K ⊂ E ⊂ K be finite. Suppose we

have a point modulo πt
K : OL → OE/π

t
kOE . We want to show that there exists

OL → OE . Let L be the field generated by the points of Y . Then Y (OL) has all
points, so for every E, #Y (OE) ≤ #Y (OL), with equality iff L ⊂ E iff we have a
map OL → OE .
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Now πt
KOE = aI, I = {A ∈ OE : v(α) ≥ t − v(a) > eK/(p − 1)}. I is a

topologically nilpotent divided power ideal. The kernel

I ′ = ker(OL → OE/π
t
KOE → IOE)

is also a topologically nilpotent divided power ideal. So now take S = OE , I = I
and S = OL, I = I ′. Then by (a),

Y (OE) ' img (Y (OE/aI)→ Y (OE/I))

and
Y (OL) ' img (Y (OL/aI

′)→ Y (OL/I
′)) .

we have a diagonal map and therefore we have an injection on the right, and hence
all are isomorphic. Hence #Y (OL) ≤ #Y (OE). �

Remark. It would be enough to prove that if A ' O[[X1, . . . , Xm]]/〈f1, . . . , fm〉
finite flat, and suppose 0 6= a ∈ O kills Ω1

A/O, then if there exists B → A→ 0, with
B also complete intersection finite flat, then Ω1

B/O is free over B/aB. (This would
be a significant shortcut, but it is not yet known.)

Proof of (a). Write J = 〈f1, . . . , fm〉 ⊂ O[[x1, . . . , xm]], xi a basis of m/(m2 +
πKm), and Ω1

A/O free over A/aA, 0 6= a ∈ O. This means ∂fi/∂xj = apij with
pij ∈ A. The matrix (pij) is invertible, because it has inverse obtained from a dxi =∑

j qij dfj .
Suppose we start with a point of Y modulo aI, and we must lift it uniquely

modulo I. Consider I [n]; we have
⋂

n I
[n] = 0. We will lift in steps. Assume

we have a point modulo aI [n]. We will now lift the image modulo I [n] to a point
modulo aI [n+1]. Lift to u1, . . . , um ∈ S such that fi(u1, . . . , um) ∈ aI [n]. We want
to find εi ∈ I [n], unique modulo I [n+1] such that f(u1 + ε1, . . . , um + εm) ∈ aI [n+1].

Write a Taylor expansion: for fi ∈ J ,

fi(u1 + ε1, . . . , um + εm) =

fi(u1, . . . , um) +
m∑

j=1

∂fi

∂xj
(u1, . . . , um)εj +

∑
|r|≥2

∂rfi

∂xr
(u1, . . . , um)

εr

r!

which converges because the ideal is a topologically nilpotent divided power ideal.
Let aλi = fi(u1, . . . , um) for some λi ∈ I [n]. We have ∂fi/∂xj = apij + φ where

pij ∈ O[[x1, . . . , xm]], φ ∈ J . Then (∂fi/∂xj)(u1, . . . , um)εj = (apij(u1, . . . , um) +
φ(u1, . . . , um))εj , and since the φ(u1, . . . , um) ∈ aI [n]I [n] ⊂ aI [n+1], we have

φ ∈ apij(u1, . . . , um) modulo aI [n+1].

For the last piece, for f ∈ J , then ∂f/∂xi ∈ aO[[x1, . . . , xm]]+J and the same is
true of all higher derivatives. Substituting u, (∂rf/∂xr)(u1, . . . , um) ∈ aS+aI [n] ⊂
aS. The monomials are in (I [n])[2] ⊂ I [n+1] (see the lemma following), so the whole
thing is in aI [n+1].

We are left to solve

0 = aλi +
∑

japij(u1, . . . , um)εj (mod aI [n+1]),

which is the same as

0 = λi +
∑

jpij(u1, . . . , um)εj (mod I [n+1]),
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which has a unique solution (modulo I [n+1]) because the matrix defining the pij

is invertible (due to the freeness of the Kahler differentials), and is in I [n] since
λi ∈ I [n]. �

Lemma. (I [n])[2] ⊂ I [n+1].

Proof. Let xy be such that x, y ∈ I [n], x2/2 has x ∈ I [n]; we want to show that
x ∈ I [n] implies x2/2 ∈ I [n+1]. We may assume that p = 2, and that

x =
xa1

1 . . . xat
t

a1! . . . at!
implies

x2

2
∈ I [n+1].

We may replace xi by the one with the smallest valuation. x = αa1+···+at/a1! . . . at!;
the hardest case is x = αn/n! ∈ I [n] implies (1/2)(αn/n!)2 ∈ I [n+1], but this is
α2n(2n)!(1/2)

(
2n
n

)
∈ I [2n] ⊂ I [n+1]. �

Fontaine’s theorem: An overview.
Theorem (Fontaine). There exists no abelian variety over Q having good reduction
at all primes; equivalently, there are no abelian varieties over Z.

The method of proof will also give the result for “small” fields K, e.g. Q(ζn)
for n ≤ 7. We will examine the torsion A[p] and show it cannot exist for certain
primes, say, p = 2; the p-torsion is a finite flat group scheme of rank p2g, hence
affine and can be investigated by the methods we have learned so far.

Here is an outline of the proof: Let G be any finite flat group scheme over OK

annihilated by p. Let K ⊂ L = K(G(K)). We will show the following:
(1) L/K is unramified outside p.
(2) L/K is “moderately” ramified over p (Fontaine).
(3) δL = |∆L/Q|1/[L:Q] < δKp

1+1/(p−1).
(4) By the Odlyzko discriminant bounds, [L : Q] is bounded.
(5) By class field theory, Gal(L/K) is a p-group.
(6) Any finite, flat, commutative, simple (having no closed subgroup scheme)

group scheme over OK of p-power order has order p.
(7) Filter A[p] such that all quotients are simple. (We can get away even though

we have not defined quotients because they correspond to Galois modules.)
Suppose we know these quotients for p and OK .

(8) Conclude that A[p] or A∨[p] has “too many points” when reduced modulo
a prime of OK (by the Weil bounds.)

Proof of (6). Let G be a p-power order and simple. G[p] ↪→ G, so this must be an
isomorphism, and thereforeG is annihilated by P . So if we can prove that Gal(L/K)
is a p-group (assuming (5)), then G/K = G×Spec OK

SpecK corresponds to a finite
group of order #G together with an action of Gal(K/K) by automorphisms. This
action factors via Gal(L/K), which is a p-group. Since the number of fixed points
is congruent to 0 modulo p, there exists a nontrivial subgroup of order p fixed
by Gal(K/K), hence a subgroup scheme Gp ↪→ G/K; from the exercises, this
corresponds to a subgroup over OK which by simplicity implies Gp = G and thus
G has order p. �

Example. If p = 2, K = Q, we know that any G/Z of order 2 is either µ2 or Z/2Z;
and if K = Q(ζ7), G/Z[ζ7] of order 2 must either be µ2, Z/2Z, Gπ, Gπ where
ππ = 2 (see the exercises); these are just Ga,b for factorizations ab = 2.
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Let G = SpecA be a finite flat commutative group scheme over OK annihilated
by p, and let L = K(G(Q)).

Proposition (1). K ⊂ L is unramified outside p.

Proof. Let A ⊃ I be the augmentation ideal. We know that [p](I) = 0. Looking at
the comultiplication map modulo I2, [p]I = pI (mod I2); therefore p annihilates
I/I2, so it annihilates ΩA/OK

= A⊗OK
I/I2. Let q be a prime of OK not lying over

p. Then for k(q) = OK/qOK , A⊗OK
k(q) is étale over k(q) (since the differentials

are killed by p, a unit in the field, and therefore vanish). A⊗OK
Oq is finite and étale

as well over Oq (the differentials again vanish). The two categories of finite étale
algebras over k(q) and Oq are the same (we reduce or lift via Hensel), so A⊗OK

Oq

is the product of extension rings Oq′ ⊃ Oq, so local extension is unramified at q as
claimed. �

The statement of (2) follows from Fontaine’s result: For Lq/Kp, we have

v(D(Lq/Kp)) < eKp(1 + 1/(p− 1)),

where eKp is the absolute ramification index of p, and v(πp) = 1 for πp a uniformiser.

Proposition (3). δL < δKp
1+1/(p−1).

Proof. ∆L/Q = (NK/Q∆L/K)∆[L:K]
K/Q by familiar formulae, so

δL = δK(NK/Q∆L/K)1/[L:Q].

We know that L is unramified outside p so this norm is only divisible by primes
lying over p.

For any prime p of K lying over p, since L/K is Galois it factors pOL =
(q1 . . . qr)e where we let f = f(qi/p) so that n = ref . Then DLqi

/Kp
= qm

i ,
and therefore m < e(eKp)(1 + 1/(p− 1)). We conclude that

(DL/K)p = (q1 . . . qr)m = (pOL)m/e

where m/e < eKp(1 + 1/(p− 1)). Taking the norm from L/K we obtain

(∆L/K)p = pfrm = p[L:K]m/e = sp

so ordp(∆L/K) < [L : K]eKp(1 + 1/(p− 1)).
Now let pOK =

∏
i pei

i , with fi = f(pi/p) and sp = si. Then

ordp(NK/Q(∆L/K)) =
∑

i

sifi <
∑

i

[L : K]ei(1 + 1/(p− 1))fi

= [L : K](1 + 1/(p− 1))
∑

i

eifi = [L : Q](1 + 1/(p− 1))

as claimed. �

For (4), we use lower bounds on discriminants for totally imaginary fields (see the
table below) [Mar, Table IV]. If [L : Q] = n = r1 + 2r2, then there exist constants
a1, a2 ∈ R>0 depending only on (r1, r2) such that

∆L = |∆L/Q|1/n ≥ ar1/n
1 a

2r2/n
2 .
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N Lower bound N Lower bound N Lower bound
2 1.7221 72 15.3591 360 19.5903
4 3.2545 76 15.5549 380 19.6813
6 4.5570 80 15.7371 400 19.7652
8 5.6593 84 15.9071 480 20.0443
10 6.6003 88 16.0663 500 20.1029
12 7.4128 92 16.2158 600 20.3483
14 8.1224 96 16.3563 700 20.5363
16 8.7484 100 16.4889 720 20.5688
18 9.3056 110 16.7898 800 20.6858
...

...
...

...
...

...
64 14.9193 320 19.3823 3000 21.6585
68 15.1479 340 19.4911 4000 21.7825

If δL is reasonably small, we obtain an upper bound for [L : Q].
Theorem. If G is a finite, flat, simple, commutative group scheme of 2-power
order over Z, then G ' Z/2Z or G ' µ2.

Proof. G is killed by 2 by the above arguments. Replace G by G̃ = G × G−1,
where Gε is the Katz-Mazur group scheme annihilated by n = 2, ε ∈ R×; recall
Gε(S) = {(x, i) : x ∈ S, 0 ≤ i < n− 1, xn = εi}, with

1→ µn → Gε → Z/nZ→ 1.

Let L = Q(G̃(Q) ⊃ Q(i) ⊃ Q. L is unramified outside 2 and δL < δQ21+1/(2−1) =
4 which implies that [L : Q] ≤ 4 by the Odlyzko bound. Hence L = Q(i) or L is
a quadratic extension of Q(i). So Gal(L/Q) is a 2-group, and by our standard
arguments, L ⊃ Q(G(Q) = L′ ⊃ Q, and the order of G is 2. So over Q, it must be
Ga,b which over Z gives us the two above. �

Example: Z[ζ7]. We now give an example outside of Z.
Theorem. The only simple 2-power order group schemes over R = Z[ζ7] are µ2,
Z/2Z, Gπ, Gπ, where Gπ = SpecR[X]/〈X2 + πX〉 with group law X 7→ X +X ′ +
πXX ′, and π = (1 +

√
−7)/2.

To do this, we prove:
Theorem. If G is a finite, flat commutative group scheme over Z[ζ7], then G has
order 2.

Proof. Take G̃ to be the product of G with all of the Galois conjugates of G over
Q together with all Gε for n = 2, ε ∈ Z[ζ7]×/Z[ζ7]×2. Let L = K(G̃(Q)) containing
K = Q(ζ7) ⊂ Q(ζ7, i,

√
ε1,
√
ε2) (of degree 48) if we let Z[ζ7]× = 〈−ζ7〉 × 〈ε1〉 × 〈ε〉.

Then δL < δK(21+1/(2−1)) = 75/6 · 4 ≈ 20.245, so from the table, [L : Q] ≤ 600, so

degL/Q(ζ7, i,
√
ε1,
√
ε2) ≤ b600/48c = 12.

Q(ζ7) = K ⊂ L is unramified outside 2. We want to show that Gal(L/K) is a
2-group. We have

Q ⊂6 Q(ζ7) ⊂ Q(ζ28) ⊂4 Q(ζ28,
√
ε1,
√
ε2) ⊂≤12 L

The extension Q(ζ28) is the maximal abelian subextension, since if F ⊂ L is such,
then Q(ζ28) ⊂ F ⊂ Q(ζ56), which has δ = 4 · 75/6, a contradiction (the inequality
is strict). So E = Q(ζ28) ⊂ L gives the commutator subgroup π′.
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We will show: π′ is a 2-group. #π′ ≤ 48 is solvable, so we have π′ ⊃ π′′ ⊃ · · · ⊃
{1}.

Step 1. π′/π′′ is a 2-group. If not, there exists E = Q(ζ28) ⊂ F ⊂ L where F
is abelian of odd degree unramified outside 2. Let F̃ ⊃ E be the maximal abelian
unramified outside primes p1, p2 lying over 2 and at most tamely ramified at p. By
class field theory, Gal(F̃ /E) is the ray class group Clp modulo p, and we have an
exact sequence

1→ (O/p1p2)×/ img O× → Clp → Cl→ 0.

But Q(ζ28) has Cl(Z[ζ28]) = 1 (one shows it has a trivial Hilbert class field via the
Odlyzko bounds, since the two have the same Hilbert class field and the degree is
bounded). So we obtain

(O/p1p2)×/ img O× ' F×8 × F×8 / img Z[ζ28]× = 1.

It suffices to show that all simple group schemes have order 2.

Claim. If every extension L of Q(ζ7) such that we get L by adjoining the points of
a group scheme killed by 2 to Q(ζ7) has: δL < δQ(ζ7)2

1+1/(2−1) = 4 ·75/6, Q(ζ7) ⊂ L
is unramified outside 2, Q ⊂ L is Galois,

√
ε ∈ L for all ε ∈ Z[ζ7]×, and [L : Q(ζ7)]

is a power of 2, then all simple 2-group schemes have order 2.

To verify the conditions of the claim, we have

Q ⊂ Q(ζ7) ⊂ Q(ζ7, i,
√
ε1,
√
ε2) ⊂ L

where Z[ζ7]× = 〈±ζ7〉 × εZ1 × εZ2 . The Galois group Gal(L/Q) is solvable, since
L/Q(ζ7, i,

√
ε1,
√
ε2) has degree ≤ 12. We have π/π′ covering the Galois group

Q ⊂ Q(ζ7, i).
The claim is that π′ is a 2-group. We will show that π′/π′′ is a 2-group, etc.

Class field theory tells us there is a maximal abelian unramified extension H of a
number field F with Gal(H/F ) ' Cl(OF ), and one FS that is unramified outside
a finite set S of places, and

0→ (
∏
p∈S

(O×
p )/(img O×

F )→ Gal(FS/F )→ Gal(F∅/F ) = Cl(OF )→ 0.

In our situation, we take S to be the primes dividing 2, including ∞. If we
reduce

0→
∏

1 (p)/(img O×
F )→

∏
p∈SO×

p /(img O×
F )→

∏
p∈Sk

×
p /(img O×

F )→ 0.

The first is a pro p-group, and the latter has order prime to p isomorphic to the
Galois group of the maximal extension uramified outside S which is tamely ramified
at p ∈ S.

Every abelian extension of F unramified outside p is a p-group iff hF = # Cl(F )
is a power of p and O×

F →
∏

p k
×
p → 0. For F = Q(ζ28), # Cl(OF ) = 1, and the

Galois group F×8 × F×8 generated by 〈ζ28, 1− ζ28〉, and thus π′/π′′ is a 2-group.

Claim. If π is a finite group, π′/π′′ is a 2-group, and #π′′ < 9. Then π′ is a 2-group.

Proof of claim. π′ is solvable, so it suffices to show that π′′/π′′′ is a 2-group (and
then repeat). Let π′′′ ⊂ H ⊂ π′′ where π′′′ ⊂ H is the 2-part, and H ⊂ π′′ is odd.
We have

1→ π′′/H → π′/H → π′/π′′ → 1.
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The group π′′/H is odd order, and π/π′′ is 2-power, so the groups have relatively
prime orders, so the sequence is split (it is a semi-direct product).
π′/π′′ acts trivially on π′′/H because π → Aut(π′′/H), where π′′/H is odd < 9

and hence cyclic and thus abelian, so π′ is contained in the kernel. Therefore π/H
is a direct product, and thus abelian, but π′/π′′ is maximal abelian, so π′′ = H,
and π′′/π′′′ is indeed a 2-group. �

The lemma is sharp: take the semi-direct product of (F3 × F3) with SL2(F3).
So #π′/π′′ ≥ 4. If ≥ 8, #π′′ ≤ 6, we are done by the lemma. If = 4, show (by

Odlyzko) that Cl(Q(ζ28,
√
ε1,
√
ε2) = 1 by the Odlyzko bounds, so there is no tame

extension and π′′/π′′′ is a 2-group. If = 1, we are done by solvability, and # ≥ 2,
#π′′′ ≤ 6, so we apply the lemma to π′.

So to finish, we know #π′/π′′ ≥ 4. Therefore if #π′/π′′ = 8 and #π′′ ≤ 6, and
the lemma applies. If #π/π′ = 4, then work to show that hQ(ζ28,

√
ε1,
√

ε2) ≤ 2 by
the Odlyzko bounds, so there does not exist a tame extension unramified outside
2, hence π′′/π′′′ is a 2-group. �

Reduction to the étale case.
Lemma. If R is a Dedekind domain, and G is a finite flat group scheme over R,
then we can consider G over the quotient field K. The goal is to show that there
is a one-to-one correspondence between closed flat subgroup scheme between G over
R and G over K.

Proof. If R is a Dedekind domain, A is a flat R-module iff torsion-free. Always have
flat implies torsion-free over a domain, because if 0 6= λ ∈ R, R λ−→ R is injective,
so tensoring with A we have A λ−→ A injective. Conversely, it suffices to show that
(I ⊂ R) ⊗ A is still injective. If we localize, Rp is a PID, so I ⊂ Rp is principal,
I = 〈a〉 ' R, and thus R a−→ R, tensoring over R with A we have A a−→ A is injective
since it is torsion-free, and thus Ap is flat for all p, and thus A is flat.

If G = SpecA, where A is a finite flat R-algebra, a closed flat subgroup scheme
H of G is SpecA/J where J is an ideal that is a Hopf ideal (c(J) ⊂ A⊗J +J ⊗A)
and A/J is flat. Now G/K = Spec(A⊗K); we have a map of ideals in A to ideals
in A⊗K by J 7→ J ⊗K. If J ⊂ A⊗K is an ideal, then if we tensor the injection
R ↪→ K)⊗R A we have an inclusion A ↪→ A⊗R K, so we can take J ∩A, which is
an ideal of A. Indeed, A/(J ∩A) is flat, because we have

0

��

0

��

0

��
0 // A ∩ J //

��

A //

��

A/(A ∩ J)

��

// 0

0 // J // A⊗K // (A⊗K)/J // 0

is Cartesian, so by a well-known diagram chase, A/(A ∩ J) is torsion free, hence
flat.

Therefore we claim that we have a one-to-one correspondence between Hopf
ideals J ⊂ A such that A/J is flat, and Hopf ideals of A ⊗ K by J 7→ J ⊗ K
and J ′ 7→ J ′ ∩ A. If J ⊂ A, then (J ⊗ K) ∩ A = J ; clearly we have ⊃, and if
x ∈ A, there exists a λ ∈ R such that λx = 0, and looking at x ∈ A/J which
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is flat, and hence torsion free, we find x ∈ J . Similarly, (J ′ ∩ A) ⊗ K = J ′.
Finally, we need to check that Hopf ideals correspond to Hopf ideals. If we have
c(J) ⊂ A⊗ J + J ⊗A, this remains true after tensoring with K. Conversely, if we
have J ′ ⊂ A ⊗K a Hopf ideal, and c(J ′) ⊂ (A ⊗R K) ⊗K J ′ + J ′ ⊗K (A ⊗R K),
and we want to show for J = J ′ ∩ A, that c(J) ⊂ A ⊗ J + J ⊗ A. We know that
c(J) ⊂ ((A⊗ J + J ⊗A)⊗K)∩ (A⊗A) ⊂ A⊗ J + J ⊗A, since if we do the same
thing as above, since A⊗A/(A⊗ J + J ⊗A) ' A/J ⊗A/J is flat. �

We can apply this as in the following example:
Example. Let R = Z[(1 +

√
−7)/2] = Z[π]. We have the 2-group schemes Z/2Z,

µ2, and Gπ and Gπ, since 2 = ππ, where Gπ = SpecR[X]/〈X2 − πX〉, with group
law X 7→ X +X ′ − πXX ′.

Consider Gπ×Gπ, of order 4, given by A = R[X,Y ]/〈X2−πX, Y 2−πY . What
are the closed flat subgroup schemes of order 2? If we tensor with K = Q(

√
−7),

it has the 4 points {(0, 0), (π, 0), (0, π), (π, π)}. The action of Galois Gal(K/K) is
trivial, and thus there are three subgroup schemes generated by each of the three
nontrivial points (it is a group of type 2-2).

For example, J ⊂ A⊗K for 〈(π, 0)〉 is J = 〈Y 〉 since y = 0 on (0, 0) and (π, 0).
So we have H = Spec(A/〈Y 〉) ' SpecR[X]/〈X2 − πX〉 ' Gπ. Similarly, 〈(0, π)
gives Spec(A/〈X〉) ' Gπ. Finally, for 〈(π, π)〉, we take J ⊂ A⊗K is 〈Y − (π/π)X.
So

J ∩A = {f(X) = bX + cY + dXY ∈ A : f(π, π) = 0}
= {bX + cY + dXY : πb+ πc+ 2d = 0}
= 〈πX −XY, πY −XY 〉.

This may not at first appear to be flat, but the map A = R[X,Y ]/〈X2− πX, Y 2−
πY 〉 → R[T ]/〈T 2 − T 〉 by X 7→ πT , Y 7→ Y T , since (πT )2 = π2T = π(πT ).
It is surjective because gcd(π, π) = 1, and the kernel consists of polynomials a +
bX + cY + dXY for which a+ bπT + cπT + dππT 2 = 0, which requires a = 0 and
bπ + cπ + 2d = 0, which is exactly I. Hence the third group scheme is Z/2Z.

An equivalence of categories. For the material in this section, see [J, Lemma
2.4.4, Remark 2.4.10] or [A, Theorem 2.6]. Let R be noetherian, p ∈ R, and
R̂ = lim−→n

R/〈pn〉, with maps

R̂[1/p]

R[1/p]

BB�������
R̂

XX222222

R

]]<<<<<<<

EE������

Let C be the category of triples (M1,M2, φ) where M1 is a finitely generated R̂-
module, M2 is a finitely generated R[1/p]-module, and

φ : M1 ⊗R̂ R̂[1/p] 'M2 ⊗R[1/p] R̂[1/p].
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Theorem. The functor

M 7→ (M ⊗R R̂,M ⊗R R[1/p], id⊗R̂[1/p])

induces an equivalence of categories between the category of finitely generated R-
modules and C.

Corollary. The functor

G 7→ (G×Spec R Spec R̂,G×Spec R R[1/p], id)

is an equivalence of categories between the category of finite flat group schemes over
R and triples (G1, G2, φ) where G1, G2 are finite flat group schemes over R̂ and
R[1/p], respectively.

Proof. We need only to check that if G×Spec R Spec R̂ and G×Spec RR[1/p] are flat
that G is flat. The reason is that R 7→ R[1/p]×R̂ is faithfully flat. It is flat because
completion and localization are flat, and faithful because Spec(R[1/p])∪ Spec R̂→
SpecR, since if p 6∈ p then p is a prime of SpecR[1/p], and if p ∈ p then we have a
map R̂ → R/p and the kernel gives a prime of R̂. So if G = SpecA where A is an
R-algebra, where R⊗R R̂, A⊗R R[1/p] are flat, then A⊗R (R̂×R[1/p]) is flat and
R̂×R[1/p] is faithful, so A is flat. �

Main application: If R = OK is a ring of integers, p ∈ Z a prime number,
then if G/OK is a p-power order group scheme, then by the theorem, we may look
at (G × Spec R̂,G × SpecR[1/p], id), where R̂ =

∏
p|p Op where the Op are finite

extensions of the p-adics, and G is étale outside p and therefore localizing at p we
know that G×R[1/p] is étale, and hence a π-module, where π is the fundamental
group, namely Gal(K̃/K), where K̃ is the maximal extension of K inside some K
which is unramified outside p.

Example. Here is an example of an “exotic” group scheme over Z[(1 +
√
−11)/2].

It will be described by G ↔ (G1/R̂,G2/R[1/p], φ). G is of order 4, p = 2, R̂ =
Z2[(1 +

√
−11)/2] ' Z[ζ3]. For G2, we take Q(

√
−11) which allows a cyclic cubic

extension F which is only ramified at 2, the ray class field of conductor 2 with
Galois group F×4 , where F = Q(

√
−11, α) where α3 + α2 − α + 1 = 0; we let G2

be Z/2Z× Z/2Z with nontrivial action by π = (1 +
√
−11)/2, namely by matrices(

0 1
1 1

)
. For G1, take the elliptic curve Y 2 + Y = X3 over Z2[ζ3] = R̂, which only

has bad reduction over 3. E[2] is finite and flat of order 4; we need to show there
is an isomorphism Spec R̂[1/p] × G1 → G2 × Spec R̂[1/p]. But R̂[1/p] = Q2(ζ3) is
a local field, so we need only check that the Galois action of the local Galois group
of points of G1 and G2 coincide.

The 2-torsion points of E are given by the roots of X3 +1/4, i.e. X = ζ3(
3
√

2/2).
We have to show that Q2(ζ3)(α) = Q2(

√
−11)(α) = Q2(ζ3,

3
√

2); from local class
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field theory, we have

Q2(ζ3)(α) = Q2(
√
−11)(α)

K

rrrrrrrrrrr
Q2(ζ3,

3
√

2)

PPPPPPPPPPPP

Q2(ζ3)

+,3

LLLLLLLLLLLL

−,3
nnnnnnnnnnnn

But the extensions correspond to these eigenspaces, so we indeed have equality. In
terms of equations, G = SpecR[X]/〈X4 +(1+

√
−11)X3 +(−3+

√
−11)X2−2X〉.

This group scheme also actually comes from the 2-torsion points on a Neron
model of an elliptic curve of conductor 121 with CM by −11 over Z[(1+

√
−11)/2].

(It is also an example of Raynaud.)
Now we begin with the proof of the equivalence of categories.

Lemma. If M is a finitely generated R-module, the square

M //

��

M ⊗R R̂

��
M ⊗R R[1/p] // M ⊗ R̂[1/p]

is Cartesian, i.e. it is a fibre product in the category of modules.

Proof. It suffices to show this for p-torsion free M : Let T = {m ∈ M : pim =
0 for some i ≥ 0}. Let T ⊗R R̂ = lim−→T/piT ' T by the notherian hypothesis. We
have

0 //

��

T //

��

M //

��

M/T //

��

0

0 // T ⊗ R̂ // M ⊗ R̂ // (M/T )⊗ R̂ // 0

From the commutative cube obtained by the faces of these cartesian squares, we
obtain

A

&&MMMMMMM

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

��:
::

::
::

::
::

::
::

::
:

M //

��

M ⊗ R̂

��
M ⊗R[1/p]

��

// M ⊗ R̂[1/p]

��
(M/I)⊗R[1/p] // (M/T )⊗ R̂[1/p]

since if we tensor 0 → T → M → M/T → 0 with R[1/p] we have an injection
M ⊗R[1/p] ↪→ (M/T )⊗R[1/p].
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So let M be p-torsion free. Then M ⊗R R̂ is pR̂-torsion free, since M
p−→M ⊗ R̂

is injective. Since M is p-torsion free, M ⊂ M ⊗ R[1/p] by m 7→ m⊗ 1. We want
to show

M //

��

M ⊗R [1/p]

��

M ⊗ R̂ // M ⊗ R̂[1/p]

If y ∈ M ⊗ R̂ and x 7→ y for x ∈ M ⊗ R[1/p], we want x ∈ M . Consider inside
M ⊗ R[1/p], M ⊂ 〈M,x〉. Then 〈M,x〉 ⊗ R̂ = M ⊗ R̂ and 〈M,x〉 ⊗ R[1/p] =
M ⊗ R[1/p], so 〈M,x〉 ⊗ (R̂ × R[1/p]) = M ⊗ (R̂ × R[1/p]), where the latter is
faithfully flat, so M = 〈M,x〉 (by the cokernel property of faithful flatness), and
thus x ∈M . �

Theorem. If R is a noetherian ring, p ∈ R, the functor

F : M 7→ (M ⊗R R̂,M ⊗R R[1/p], id⊗R̂[1/p])

from the category C of finitely generated R-modules to triples of modules finitely
generated over R̂ and R[1/p] with an isomorphism φ, is an equivalence of categories.
Lemma. If M is a finitely generated R-module then the square

M //

��

M ⊗R[1/p]

��

M ⊗ R̂ // M ⊗ R̂[1/p]

is cartesian.
Corollary. F is fully faithful, i.e.

HomR(M,N) ' HomC(F (M), F (N)).

Proof. If f : M → N becomes 0 then

f ⊗ (R̂×R[1/p]) = 0

since the product is faithfully flat implies f = 0. This shows injectivity; for surjec-
tivity, if we have

(M ⊗ R̂,M ⊗R[1/p], id)→ (N ⊗ R̂,N ⊗R[1/p], id)

then we have maps
M →M ⊗ R̂→ N ⊗ R̂

and
M →M ⊗R[1/p]→ N ⊗ R̂[1/p]

so by the cartesian property, we have a unique map M → N . �

Proposition. F is essentially surjective.

Proof. For (M1,M2, φ), we want to construct M . We have

φ : M1 ⊗R̂ R̂[1/p]→M2 ⊗R[1/p] R̂[1/p]
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Choose mi to generate M1 such that the image generates M2. Then we have⊕
j Rfj

��

⊕
Rfj

��
0 // (N1, N2, φ)

��

// (
⊕

i R̂ei,
⊕

iR[1/p]ei, id) //

��

(M1,M2, φ) // (T, 0, 0) // 0

0 // (S, 0, 0) //

��

M = (M,M, id)

��
0 0

where T is p-torsion. Therefore we have

0→M/S = M ′ → (M1,M2, φ)→ (T, 0, 0)→ 0

and in the first coordinate

0→M ′ ⊗ R̂→M1 → T → 0

which gives
Ext1R(T,M ′) ' Ext1

R̂
(T,M ′ ⊗ R̂).

�

Cokernels and sheaves. For the material in this section, see [A2], [Mil], or [R].
If f : G→ H is a morphism of group schemes over R, (ker f)(S) = ker(G(S)→

H(S)), so that if G = SpecA, H = SpecB, then ker f = Spec(A ⊗B R) =
Spec(A/IBA).

What is the cokernel? We would like that µd → µn → µn/d from

R[X]/〈Xd − 1〉 ← R[X]/〈Xn − 1〉 ← R[X]/〈Xn/d − 1〉

where the right-hand map is X 7→ Xd, and we would like µn(S)→ µn/d(S) by z 7→
zd surjective, but this is not always so. Therefore we cannot take (coker f)(S) =
coker(G(S) → H(S)). We would, however, have surjectivity if we viewed the map
over the algebraic closure (a faithfully flat extension).

Let F be a functor from R-algebras to a category A.
Definition. F is a sheaf if for all objects S and faithfully flat extensions S → T ,
the sequence

0→ F (S)→ F (T ) →−→ F (T ⊗S T )

is exact.
Example. If T =

∏
i S[1/fi], such that 〈fi〉i = S, then T is a faithfully flat ring

extension. SpecS ←
⊔

i Ui where Ui = SpecS[1/fi]. (It may be alright to take an
infinite index set, but we will restrict to the finite case.) Then the exactness of the
sequence corresponds to equality on the intersections Ui ∩ Uj , which is exactly the
usual sheaf condition.
Theorem. Representable functors F from R-algebras to A are sheaves.

If A is an abelian category, then the category of sheaves from R-algebras to A
form an abelian category as well, which allows us to construct cokernels.
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Proof. We will show that if S → T is faithfully flat, then in fact

0 // S // T //// T ⊗S T

is exact, where the second map is t 7→ t⊗1, 1⊗ t. It suffices to show exactness after
tensoring with T (since T is faithfully flat). We obtain

0 // T // T ⊗S T
//// T ⊗S T ⊗S T

t 7→ 1 ⊗ t and a ⊗ b 7→ a ⊗ 1 ⊗ b, 1 ⊗ a ⊗ b, and now we have a reverse map h
(not quite a section) by x ⊗ y ⊗ z 7→ x ⊗ yz. If

∑
i ai ⊗ bi has the same image,

then
∑

i ai ⊗ 1⊗ bi =
∑

i 1⊗ ai ⊗ bi, and applying the map h we find
∑

i ai ⊗ bi =∑
i 1⊗ aibi ∈ img(T → T ⊗S T ).
If F is represented by A, then apply HomR(A,−), and it is still exact. �

Therefore group schemes can be considered representable sheaves fromR-algebras
to group schemes.
Definition. In the category of sheaves, if f : G → H is a morphism of sheaves,
let P be the functor P (S) = H(S)/f(G(S)), which is only a presheaf. There is a
construction “sheafify” which transforms a presheaf into a sheaf, by first taking

P+(S) = lim−→S→T
ker(P (T ) //// P (T ⊗S T ))

where S → T runs over all faithfully flat extensions, and then taking P++ = aP is
a sheaf.

Then coker f = aP .
It has the universal property in the category of sheaves. If f : G → H is

surjective, which is to say that if S is an R-algebra, and x ∈ H(S), then there is a
T such that there exists a y ∈ G(T ) which maps to x ∈ H(T ).
Example. The map Gm

n−→ Gm for n ≥ 1 which raises each unit to its nth power,
then for any ε ∈ S, we take T = S[X]/〈Xn−ε〉 which is free and therefore faithfully
flat, and then X 7→ ε for trivial reasons, so the cokernel is trivial.

For the same reason, µn → µn/d is also surjective.
Theorem (Grothendieck). If N → G is a morphism of group schemes, G =
SpecA, and N = SpecA/J is a closed, commutative finite flat subgroup scheme
in G, then the quotient sheaf G/N = SpecB is representable where

B = {a ∈ A : c(a) ≡ 1⊗ a (mod J ⊗A)}.

Moreover, A is faithfully flat over B (and thus if A itself is flat, B is also flat).
(See [R].)
If A = R[X1, . . . , Xm]/〈f1, . . . , fr〉, then

B = {φ(X1, . . . , Xm) ∈ A : φ

X1

...
Xm


Y1

...
Ym

 = φ

X1

...
Xm

}
for all Yi for which g(Yi) = 0 for all g ∈ J .
Example. The map µn/d → µn arises from R[X]/〈Xn/d−1〉 ← R[X]/〈Xn−1〉 = A
by raising to the dth power, the cokernel is

{φ ∈ R[X]/〈Xn − 1〉 : φ(X) = φ(XY ) ∈ R[X,Y ]/〈Xn − 1, Y n/d − 1〉}
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which implies φ is a polynomial inXn/d, so the cokernel is R[Xn/d] ⊂ A, isomorphic
to R[T ]/〈T d − 1〉, and therefore we have an exact sequence

0→ µn/d → µn → µd → 0

Example. If R = Z[(1 +
√
−7)/2] = Z[π], 2 = ππ. There are four group schemes

over order 2, Z/2Z, Gπ = SpecR[X]/〈X2 − πX〉, Gπ, and µ2. We have

0→ Z/2Z→ Gπ ×Gπ

induced from R[T ]/〈T 2 − T 〉 ← R[X,Y ]/〈X2 − πX, Y 2 − πY 〉 by X,Y 7→ πT, πT .
(It is the map 1 7→ (π, π).)

The cokernel consists of polynomials {φ(X,Y ) : φ((X,Y ) + (π, π)) = φ(X,Y )},
where the group law now gives

φ(X + π − πXπ, Y + π − πY π) = φ(X,Y )

and therefore φ = −πX − πY + 2XY . We check that φ2 = −2φ and therefore
B ' R[T ]/〈T 2 − 2T 〉, c(φ) = φ⊗ 1 + 1⊗ φ− φ⊗ φ.

The exact sequence

0→ Z/2Z→ Gπ ×Gπ → µ2 → 0

is not split (look at étale and connected parts), even though everywhere the Galois
action is trivial.

If we have 0→ N → G→ G/N → 0, arising from B ↪→ A→ A/J , then

A⊗B A ' A⊗R A/J.

If we localize and compute ranks, ((rkG)/(rkG/N))(rkG)/(rkG/N)) rkG/N =
(rkG)(rkN) and therefore rkG = (rkN)(rkG/N), i.e. #N ·#G/N = #G.

We also have a Mayer-Vielois exact sequence. If R is noetherian, p ∈ R, and G,H
finite flat commutative group schemes over R; we are interested in Ext1R(G,H) =
{0→ H → A→ G→ 0}/ ∼ in the category of sheaves, but one can show that any
such A is representable if H and G are. We have

R[1/p]

$$HH
HH

HH
HH

H

R

==zzzzzzzzz

!!DDDDDDDDD R̂[1/p]

R̂

::vvvvvvvvvv

We know G and H are p-power order.
Theorem. There exists an exact sequence

0→ HomR(G,H)→ HomR(G,H)×HomR[1/p](G,H)→ HomR̂[1/p](G,H)
δ−→ Ext1R(G,H)→ Ext1

R̂
(G,H)× Ext1R[1/p](G,H)→ Ext1

R̂[1/p]
(G,H)

where δ is defined by α ∈ HomR̂[1/p](G,H) is

δα = ((G×H)R̂, (G×H)R[1/p], idH idG +α).

The exactness follows from the equivalence of categories above.
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Remark. This was constructed by hand; a good question would be to understand
what the Ext2 groups are.

If we work over a field, and G is finite and flat, then we have an exact sequence

0→ G0 → G→ Gét → 0.

Moreover, we have exact functors G 7→ G0, G→ Gét.
If Gi are commutative, and 0 → G1 → G2 → G3 → 0, then we also have an

exact sequence
0← G∨1 ← G∨2 ← G∨3 ← 0.

Nonexistence of abelian varieties. To prove that there are no abelian varieties
over Q with good reduction everywhere, we will use:

Theorem. Every finite flat 2-power order commutative group scheme G over Z
sits in an exact sequence

0→M → G→ C → 0

where C is a constant group scheme, and hence C '
⊕

Z/2kZ, and M is diagonal-
izable and hence its Cartier dual is constant, so M '

⊕
µ2k .

Proof that the theorem implies Fontaine’s theorem. If A is an abelian variety of
good reduction, then A[2n] is a finite flat group scheme over Z of order 22ng where
g = dimA. Then we have an exact sequence

0→M → A[2n]→ C → 0

by the theorem. Consider C ↪→ A/M , and reduce modulo a prime q. Since C
is étale, it remains étale and constant under the reduction map, and therefore
C(Fq) ⊂ A/M(Fq). By the Riemann hypothesis,

#C(Fq) ≤ (
√
q + 1)2g.

So as n→∞, C is bounded. If we dualize, we obtain

0→ C∨ → A[2n]∨ →M∨ → 0;

there is a natural identification of A[2n]∨ ' A∨[2n], where now C∨ is diagonalizable
and M∨ is constant. The same argument implies that #M∨ = #M ≤ (

√
q+1)2g).

This is a contradiction, since then #A[2n] is bounded, hence g = 0. �

The first theorem will follow from the following concerning extensions of Z/2Z,
µ2.

Theorem.

(a) Any extension of a group scheme composed of Z/2Z is constant
(b) Any extension of a group scheme composed of µ2 is diagonalizable.
(c) The sequence 0→ Z/2Z→ G→ µ2 → 0 splits.

Proof. If G is an extension of Z/2Z, G is étale, since

0→ (Z/2Z)0 = 0→ G0 → (Z/2Z)0 = 0→ 0.

Since Gal(Q/Q) acting on G is unramified at all p, and h(Z) = 1, the action is
trivial. This proves (a), and (b) follows by taking Cartier duals.
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For (c), we use the Mayer-Vietais sequence. Let R = Z, p = 2, R̂ = Z2,
R[1/p] = Z[1/2], and R̂[1/p] = Q2. Then we have

0→ HomZ(µ2,Z/2Z)→ HomZ2(µ2,Z/2Z)×HomZ[1/2](µ2,Z/2Z)

→ HomQ2(µ2,Z/2Z)→ Ext1Z(µ2,Z/2Z)

→ Ext1Z2
(µ2,Z/2Z)× Ext1Z[1/2](µ2,Z/2Z)→ Ext1Q2

(µ2,Z/2Z).

Since 0→ Z/2Z→ G→ µ2 → 0 is split over Z2, taking connected components we
have

0→ (Z/2Z)0 = 0→ G0 → µ0
2 = µ2 → 0

and therefore we get a section. Since it is split over Z2, it is killed by 2 and by

flatness, it is also killed by 2 over Z. As a Galois representation, it looks like
(

1 χ
0 1

)
where χ is unramified outside 2. But since the sequence splits, it is also unramified
at 2, but since h(Z) = 1, the character must be trivial, so the Galois module is
trivial. Therefore

Ext1Z2
(µ2,Z/2Z)× Ext1Z[1/2] = 0.

Now HomZ2(µ2,Z/2Z) = 0 since any morphism must factor through the unit
section (as one group is étale, one is connected), and the same argument shows
HomZ(µ2,Z/2Z) = 0. Therefore HomQ2(µ2,Z/2Z) = HomZ[1/2](µ2,Z/2Z) = 2,
and we obtain

0→ 0→ 0× 2→ 2→ Ext1Z(µ2,Z/2Z)→ 0

so this extension group is trivial. �

Proof that it implies the above. If G is 2-power order over G(Q); we have seen that
a simple 2-group scheme of 2-power order is either Z/2Z or µ2. We can therefore
filter G with quotients isomorphic to one of these two simple groups. Using the
splitting, we can modify the filtration so we can switch if Z/2Z is on the left of a
µ2. Pushing all of the quotients Z/2Z to the right, we obtain a filtration composed
first of µ2 and then of Z/2Z, for which the first by (b) is diagonalizable and the
second by (a) is constant. �

If we now look at cyclotomic fields, Q(ζf ), f the conductor, f 6≡ 2 (mod 4). It
is known that Jac(X1(f))/ Jac(X0(f)) acquires good reduction over Q(ζf ). This
construction gives nonzero abelian varieties with good reduction everywhere when
the genus of X1(f) 6= 0, i.e. f 6∈ {1, 3, 4, 5, 7, 8, 9, 12}, and such that the genus of
X1(f) is not the genus of X0(f), i.e. f 6∈ {11, 15}.
Theorem. For all f in this list, except possibly 11, 15, there do not exist abelian
varieties with good reduction everywhere over Q(ζf ). Under the GRH, the same is
true for f = 11, 15.

We treat the case f = 7. Look at finite flat group schemes over R = Z[ζ7].
Choose p = 2. The only such simple group schemes of 2-power order over R are
Z/2Z, µ2, Gπ, and Gπ, where Gπ = SpecR[X]/〈X2−πX〉, where π = (1+

√
−7)/2

with group law X 7→ X +X ′ − πXX ′.
Theorem. For all finite flat group schemes G over Z[ζ7] over 2-power order, there
exists a filtration

0 ⊂ G1 ⊂ G2 ⊂ G
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such that G1 is diagonalizable, G/G2 is constant, and G2/G1 is a direct product of
factors from Gπ and Gπ.

If we apply this to G = A[2n], where A is an abelian variety with good reduction
everywhere, then #G1 ≤ (

√
q + 1)2g as above, and #G/G2 ≤ (

√
q + 1)2g. Since

A[2n] ' (Z/2nZ)2g, and G2/G1 is of exponent 2, #G2/G1 ≤ 22g, we again have
that #A[2n] is bounded, a contradiction.
Theorem. If G is a finite flat group scheme over Z[ζ7].

(a) Any extension of a group scheme composed of Z/2Z is constant.
(b) Any extension of a group scheme composed of µ2 is diagonalizable.
(c) Ext1(µ2,Z/2Z) has order 2, generated by

0→ Z/2Z→ Gπ ×Gπ → µ2 → 0.

(d) Ext1(Gπ,Z/2Z) = Ext1(Gπ,Z/2Z) = 0. By Cartier duality, we have
Ext1(µ2, Gπ) = Ext1(µ2, Gπ) = 0.

(e) Ext1(Gπ, Gπ) = Ext1(Gπ, Gπ) = 0.
This implies the filtration theorem, because we can filter with simple quotients

as above, switching the order except when Z/2Z is next to µ2, for which we replace
it with Gπ ×Gπ.

Proof. If G is an extension of Z/2Z, then G is étale, so the Galois action is unram-
ified, but h(Q(ζ7)) = 1 (the group is a pro-2-group), so the action is trivial, so G is
constant. This gives (a), and (b) implies (a) by duality.

For (c), we have now R = Z[ζ7], p = 2, R̂ = O ×O, where O is an unramified
extension of Z2 is of degree 3, R̂[1/2] = K ×K, and R[1/2] = Z[ζ7, 1/2]. Then

0→ HomR(µ2,Z/2Z)→ HomR̂(µ2,Z/2Z)×HomR[1/2](µ2,Z/2Z)

→ HomR̂[1/2](µ2,Z/2Z)→ Ext1R(µ2,Z/2Z)

→ Ext1
R̂
(µ2,Z/2Z)× Ext1R[1/2](µ2,Z/2Z)→ Ext1

R̂[1/2]
(µ2,Z/2Z)

If we have
0→ Z/2Z→ G→ µ2 → 0

again by looking at Galois representations, we have the product extension group
trivial. As before, we obtain

0→ 0→ 0× 2→ 2× 2→ G→ 0

and therefore Ext1R(µ2,Z/2Z) has order 2.
For (d), we look at extensions

0→ Z/2Z→ G→ Gπ → 0.

Locally, Gπ ' µ2 at π and Gπ ' Z/2Z at π. At π (i.e. over Oπ), we have

0→ Z/2Z→ G→ µ2 → 0

which is split, and at π we have

0→ Z/2Z→ G→ Z/2Z→ 0

so G is étale at π. So it is killed by 2 over R, we again have a Galois representation
with a character which is unramified everywhere, so χ is trivial. So it is locally
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trivial, and therefore because it is étale at π and determined by this Galois action,
it is also split at π. This time,

HomR̂(Gπ,Z/2Z) = HomRπ
(µ2,Z/2Z)×HomRπ̂

(Z/2Z,Z/2Z) = 0× 2

so we have

0→ 0→ (0× 2)× 2→ 2× 2→ # Ext1R(µ2,Z/2Z)→ 0× 0

and thus this group is trivial.
The latter follow from the claim:

Claim. If R is a PID, charR 6= 2, R×/R×2 finite, R has quotient field K, and
0 → µ2 → G → Z/2Z → 0, then the points of G are defined over K(

√
ε) for some

ε ∈ R×, and G is determined by its Galois module.

Proof of claim. We know (for instance) the Katz-Mazur group schemes

0→ µ2 → Gε → Z/2Z→ 0

killed by 2, where now χ corresponds to
√
ε, ε ∈ R×/R×2. We also have

0 // µ2 // Gm
2 // Gm

// 0

0 // µ2 //

OO

G //

OO

Z/2Z //

OO

0

On the level of Hopf algebras, they arise from

R[T, 1/T ]

��

R[T 2, 1/T 2]oo

��
R[T ]/〈T 2 − 1〉 R[X,T ]/〈X2 −X,T 2 − 1 + 2X〉oo R[X]/〈X2 − 1〉oo

where the vertical map is T 2 7→ 1− 2X. The group law in the pullback is obtained
from

(x, t)(x′, t′) = (x+ x′ − 2xx′, tt′).

Over a field, the points are the zero element (0, 1), and

(1, i)(1, i) = (0,−1), (0,−1), (0,−1) = (0, 1).

Therefore # Ext1(Z/2Z, µ2) ≥ 2#R×/R×2, and each of these are distinguished
by their Galois modules, and if we show equality then we are done.

From 0→ µ2 → Gm → Gm → 0, the functor HomR(Z,−) gives

R× → R× → Ext1R(Z, µ2) ' R×/R×2 → Ext1R(Z,Gm) = H1(SpecR,Gm) = 0

where the latter vanishes because it is the Picard group and R is a PID. Doing the
same to

0→ Z→ Z→ Z/2Z→ 0

we obtain
0→ µ2(R)→ Ext1R(Z/2Z, µ2)→ R×/R×2 → 0

which gives the correct rank. �
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To prove (e), then, we want to show that any sequence

0→ Gπ → G→ Gπ → 0

over R = Z[ζ7] splits. Locally at π, this looks like

0→ µ2 → G→ Z/2Z→ 0

and at π it is
0→ Z/2Z→ G→ µ2 → 0

which splits, and therefore G is killed by 2 over Oπ, and by flatness G is killed by

2 over R. The Galois representation
(

1 χ
0 1

)
has χ unramified at p 6| 2, and spli at

π, and at π it arises from cutting out
√
ε, so the conductor of χ divides π2.

But the ray class field of Q(ζ7) of conductor π2 is trivial, as Oπ is unramified of
degree 3 over Z2, so

{x ≡ 1 (mod π)}/{x ≡ 1 (mod π2)} ' F8

where we map in the global units Z[ζ7], and we want to show that it is surjective. We
have −1 ≡ 1 (mod π) but −1 6≡ 1 (mod π2) and cyclotomic units (ζa − 1)/(ζ − 1)
where a ∈ (Z/7Z)× which give us 1, ζ/(1−ζ), ζ2/(1−ζ2) which are a basis over F2,
so the map is surjective, and χ is trivial. Therefore the global Galois acts trivial,
so the local Galois acts trivial, so by the claim it is determined by this action, and
locally at π it is also split. The rest follows from the long exact sequence. �

Exercises. The following are exercises for §5.

Problem 5.1. Let p be a prime, let ε ∈ Z×p be ε ≡ 1 (mod p) but ε 6≡ 1
(mod p2). Let F = Qp(ζp, p

√
ε). We have G = Gal(F/Qp) and its subgroup

H = Gal(F/Qp(ζp)). Let v denote the p-adic valuation on F normalized by
v(p) = 1.

(a) Show that OF = Zp[ζp, p
√
ε] iff p = 2.

(b) Show that α = (ζp − 1)/( p
√
ε − 1) is a uniformizer for OF ; show that

OF = Zp[α].
(c) Show that i(σ) = 1/p(p − 1) when σ 6∈ H while i(σ) = 2/p(p − 1) when

σ ∈ H \ {1}.
(d) Determine the lowering numbering of the higher ramification groups: show

that G(i) = G when i ≤ 1/p(p− 1), that G(i) = H when 1/p(p− 1) < i ≤
2/p(p− 1) and that G(i) = {1} when i > 2/p(p− 1).

(e) Determine the upper numbering of the higher ramification groups. Show
that G(u) = G for 0 ≤ u ≤ 1, that G(u) = H for 1 < u ≤ 1 + 1/(p− 1) and
that G(u) = {1} when u > 1 + 1/(p− 1).

(f) Determine iF/Qp
and uF/Qp

. Compute v(DF/Qp
).

Problem 5.2. Let R = Z[(1 +
√
−7)/2].

(a) Show that R has class number 1.
(b) Show that, up to isomorphism, there are precisely four finite flat group

schemes of order 2 over R, viz. Z/2Z, µ2, and two others G1 and G2, say.

Problem 5.3. Let R = Z2[i] and let π ∈ R denote the uniformizing element i− 1.
Let G denote the R-group scheme with Hopf algebra R[T ]/〈T 2 + πT 〉 and group
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law T 7→ T + T ′ + iπTT ′. Let A denote the Hopf algebra of the group scheme
G× µ2.

(a) Determine the Kähler differentials Ω1
A/R.

(b) Show that there is no element a ∈ A for which Ω1
A/R is free over A/aA.

Problem 5.4. Let G be a finite flat commutative group scheme of 2-power order
over Z[ζ3].

(a) If G has exponent 2, show that the extension generated by its points has
degree at most 5 over Q(ζ3).

(b) If G is simple, show that it has order 2.
(c) If G is simple, show it is isomorphic to Z/2Z or to µ2.

Problem 5.5. Show that the only simple finite flat commutative group schemes
over Z[ζ5] of 2-power order are Z/2Z and µ2.

Problem 5.6. Show that all simple finite flat commutative group schemes over Z
of 3-power order have order 3. [Hint: If G is simple, consider the extension L of Q
generated by the points of G× µ3 and show that [L : Q(ζ3)] | 3.]

6. Comments on the Exercises

Problem 1.1. We are still in characteristic 0, so we look at Y ′2 = X ′3 + a′2X
′2 +

a′4X
′ + a′6 = f(X ′) with ∆′ = 26∆, ∆ = 1,−1, i,−i, and a′i ∈ Z[i] (we still have a

global minimal model because Q(i) has trivial class group).
To show that there exist 2-torsion defined over Z[i], we first treat ∆ = ±1 so√

∆ ∈ Q(i), and thus the field L obtained by adjoining the 2-torsion is a cubic
cyclic extension of K = Q(i) ramified only at 1 + i, so it is contained in a ray class
field of conductor c = 〈1 + i〉e for some e; but for e sufficiently large,

hc =
hKφ(c)
(U : Uc)

= 2e−3

hence [L : K] is a power of 2, a contradiction. Second, if ∆ = ±i, then K =
Q(
√
i) = Q(ζ8). Here 〈2〉 = 〈1−ζ8〉4, and again L/K is cyclic of order 3 unramified

outside 1−ζ8. Q(ζ8) has class number 1 (∆L/Q = ±28 and 4!/44(4/π)2
√

28 < 3 but
2 is already principal). The same argument (without computing the unit group)
shows that [L : K] has order dividing 2, a contradiction.

We again are reduced to the situation ±28 = a′24 (a′22 − 4a′4). Z[i] is a UFD, so
a′4 | 24, so we check a′4 = u2k for 0 ≤ k ≤ 4, u = ±1,±i. Testing each one for
when ±28−2k + 4u2k is a square (using the fact that only 2 ramifies) gives only the
possibilities (a′2, a

′
4) = (0,±4), (±6, 8) as before and now also (a′2, a

′
4) = (±6i,−8).

Since this last case only differs by a unit, the same arguments as before show that
these cannot occur.
Problem 2.1. We find that HomR(R[X,Y, Z,W ]/〈XW − Y Z − 1〉, S) = SL2(S) so
A = R[X,Y, Z,W ]/〈XW − Y Z − 1〉. Since(

x y
z w

)(
x′ y′

z′ w′

)
=
(
xx′ + yz′ xy′ + yw′

x′z + wz′ y′z + ww′

)
we have the comultiplication c : A → A ⊗ A by X 7→ XX ′ + Y Z ′, . . . ,W 7→
Y ′Z +WW ′. The identity matrix gives e : A → R by X,Y, Z,W 7→ 1, 0, 0, 1, and
the inverse i : A→ A is X,Y, Z,W 7→W,−Y,−Z,X.
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Problem 2.2(a). We have

HomR(A⊗A,A) HomR(A,R)×HomR(A,R) = G×Goo

HomR(A,A) = G

∆

33hhhhhhhhhhhhhhhhhhh

OO

The diagonal map ∆ maps φ 7→ (φ, φ); the top map takes (φ, ψ) 7→ φ ⊗ ψ which
maps (φ⊗ ψ)(a⊗ b) = φ(a)ψ(b), so the map m is the map on the left which takes
φ 7→ φ ◦m = φ⊗ φ, which since (φ⊗ φ)(a⊗ b) = φ(a)φ(b) = φ(ab), m : A⊗A→ A
is a⊗ b 7→ ab.
Problem 2.2(b). This is the dual statement to the property of the inverse morphism,
which says c ◦ (i× idG) ◦∆ = e.
Problem 2.2(c). In terms of groups, this says that c ◦ ∆ = e, so on groups this
means g2 = e for all g, which implies G is commutative gh(hg)2 = · · · = hg.
Problem 2.3(a). Such a map φ : Gm = SpecR[X, 1/X] → Ga = SpecR[X] would
arise from a map φ] : R[X]→ R[X, 1/X], determined by X 7→ f(X) ∈ R[X, 1/X].
If φ is a group morphism then it preserves the group law, so

Gm ×Gm
φ×φ //

c

��

Ga ×Ga

c

��
Gm

φ // Ga

which is dual to
R[X, 1/X,X ′, 1/X ′] R[X,X ′]

(φ,φ)
oo

R[X, 1/X]

c

OO

R[X]
φ

oo

c

OO

In one direction X 7→ X +X ′ 7→ f(X) + f(X ′) and in the other X 7→ f(X) 7→
f(XX ′). If f(X) = cnX

n + · · · + c−m1/Xm and n ≥ 1 one finds the coefficient
cnX

nX ′n = 0 so ci = 0 for all i 6= 0. Looking at the map on the unit morphism
shows that f(1) = 0 so φ] by X 7→ 0 is trivial.
Problem 2.3(b). Such a morphism φ is induced by φ] : R[X, 1/X] → R[X],
determined by the image X 7→ f(X), where f is a unit, which implies that
f(X) = cnX

n + · · · + c0 where c0 ∈ R is a unit and ci are nilpotent. Since R
is reduced, ci = 0, so the map is constant. By looking at the unit morphism we
find f(0) = 1 so f(X) = 1 is trivial.
Problem 2.3(c). We map R[X, 1/X] → R[X] by X 7→ 1 + εX. Then (1 + εX)(1 +
εX ′) = 1 + ε(X + X ′) preserves the group law and induces a morphism of group
schemes. (Note (1 + εX)(1− εX) = 1, for instance.)
Problem 2.4(a). We must check the commutativity of the three diagrams defining
the group axioms. Associativity follows from the calculation

X 7→ X +X ′ − 2XX ′ 7→ (X +X ′′ − 2XX ′′) +X ′ − 2X ′(X +X ′′ − 2XX ′′)

= X + (X ′ +X ′′ − 2X ′X ′′)− 2X(X ′ +X ′′ − 2X ′X ′′).

The unit map has X 7→ X +X ′ − 2XX ′ 7→ X ′ 7→ X, and the inverse has

X 7→ X +X ′ − 2XX ′ 7→ X +X ′ − 2XX ′ 7→ 2X − 2X2 = 0.
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Problem 2.4(b). By definition, Z/2ZR is defined by the algebra B = R × R on
generators 1 and e with e idempotent, i.e. B = R×R ' R[X]/〈X2 −X〉.
Problem 2.4(c). We have G→ µ2 given by R[X]/〈X2 − 1〉 → R[X]/〈X2 −X. We
indeed have (1− 2X)2− 1 = −4X +4X2 = 0, so this gives a morphism of schemes,
and it is a map of group schemes because the composition laws give

X 7→ XX ′ 7→ (1− 2X)(1− 2X ′) = 1− 2(X +X ′ − 2XX ′).

Problem 2.4(d). If f : Z[X]/〈X2− 1〉 = B → Z[X]/〈X2−X〉 = A is our map, then
K = SpecA/f(IB)A where IB = ker e = ker(Z[X]/〈X2 − 1〉 → R) = 〈X − 1〉, so
K = Spec(Z[X]/〈X2 −X〉)/〈2X〉 = Spec Z[X]/〈X2 −X, 2X〉.
Problem 2.5(a). We have αp(S) = {x ∈ S : xp = 0} and µp(S) = {x ∈ S : xp = 1},
we have for x ∈ αp(S) that (1 +x)p = 1 +xp = 1, and conversely if x ∈ µp(S) then
(x− 1)p = xp − 1 = 0.
Problem 2.5(b). This would imply that there is a ring isomorphism k[X]/〈Xp−1〉 =
k[X]/〈X − 1〉p → k[X]/〈Xp, which can only be X 7→ X + 1. But this is not a
morphism of groups, because it would have to preserve the group law, which it
does not as

X 7→ X +X ′ 7→ (X + 1) + (X ′ + 1) 6= (X + 1)(X ′ + 1) = XX ′ +X +X ′ + 1.

Problem 2.6(a). The map preserves the group law because T 7→ T + T ′ 7→ (T p −
T ) + (T ′p − T ′) = (T + T ′)p − (T + T ′).
Problem 2.6(b). We have g(IR[T ]) = 〈T p − T 〉 so K = Spec k[T ]/〈T p − T 〉 =
Spec k[T ]/〈T (T − 1) . . . (T − (p − 1))〉 when char k = p, which splits and gives the
same relations as the constant group scheme.
Problem 2.7. We have under c that∑

γ∈Γ rγeγ 7→
∑

γ

∑
σ rγ(eσ ⊗ eσ−1γ =

∑
σ,τ rστ (eσ ⊗ eτ ).

We want this equal to(∑
γ rγeγ

)
⊗
(∑

γ rγeγ

)
=
∑

σ,τ rσrτ (eσ ⊗ eτ ).

This implies r21 = r1, so r1 is an idempotent which since a is a unit must be r1 = 1,
and in general, these elements are represented by a group homomorphism Γ→ R×,
which is to say a character.
Problem 2.8(a). This is the statement HomR(R[X,Y ]/〈X2 + Y 2 − 1〉, S) = F (S).
Problem 2.8(b). Check (xx′ − yy′)2 + (xy′ + yx′)2 = (x2 + y2)(x′2 + y′2) = 1. It is
natural because if f : S → T , the diagram

F (S)× F (S)

��

f×f // F (T )× F (T )

��
F (S)

f // F (T )

commutes, as the group law is defined by polynomial equations.
Problem 2.8(c). The comultiplication is c : A→ A⊗A isX,Y 7→ XX ′−Y Y ′, XY ′+
Y X ′, the counit e : A → R is X,Y 7→ 1, 0, and the coinverse i : A → A is
X,Y 7→ X,−Y .
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Problem 2.8(d). The map R[X, 1/X] → R[X,Y ]/〈X2 + Y 2 − 1〉 by X 7→ X + iY
induces the map j on schemes, since 1/X 7→ 1/(X+iY ) = X−iY . It is also a group
homomorphism because the comultiplication maps X 7→ XX ′ 7→ (X+iY )(X ′+iY )
and in the other direction X 7→ X+ iY 7→ (XX ′−Y Y ′)+ i(X ′Y +XY ′), and these
expressions are equal. If 2 ∈ R×, then the map is injective because the images of
X and 1/X have X − iY 6= X + iY , and is surjective because (X + 1/X)/2 7→ X
and (X − 1/X)/2i 7→ Y by trigonometry.
Problem 2.9(a). This is the statement HomR(R[X]/〈X2 − X〉, S) = {s : s2 = s}
since the map is determined by the image of X.
Problem 2.9(b). Check (e + e′ − 2ee′)2 = e2 + ee′ − 2e2e′ + · · · + 4e2e′2 = 0 =
e + ee′ − 2ee′ + · · · + 4ee′ = 0. The unit element is 0 and the inverse element is
(e, e) 7→ e+ e− 2e2 = 0. It is natural again because the group law is a polynomial
expression.
Problem 2.9(c). Comultiplication is c : X 7→ X + X ′ + 2XX ′, unit is e : X → 0,
and inverse is i : X 7→ X.
Problem 2.9(d). This is (Ex. 2.4(b)).
Problem 3.1(a). Check (x + x′)p = 0 and (y + y′ −W (x, x′))p = W (xp, x′p) = 0.
We have the unit (0, 0) and inverse (−x, y) since W (x,−x) = 0.
Problem 3.1(b). αp2 is a closed subgroup scheme because it is represented by
k[X]/〈Xp2〉 which defines a closed subscheme of Spec k[X]. We know that α∨p2(R)

is represented by HomR(αp2/R,Gm/R) = Hom(R[T, 1/T ], R[X]/〈Xp2
), which are

exactly elements T 7→ p(X) =
∑p2−1

i=0 aiX
i where a0 6= 0, subject to the group law

condition ∑p2−1
i=0 ai(X +X ′)i =

(∑p2−1
i=0 aiX

i
)(∑p2−1

i=0 aiX
′i
)

which says

p2−1∑
i=0

ai

i∑
j=0

(
i

j

)
XjX ′i−j =

p2−1∑
i,j=0

aiajX
iX ′j .

We find a2
0 = a0 and a1 = a1a0 so a0 = 1, and similarly iai = ai−1a1 for

1 ≤ i < p, so ai = ai
1/i!. At p we have pap = 0 = ap−1a1 = ap

1/(p − 1)! so ap
1 = 0.

Continuing, we find (p+i)ap+i = ap+(i−1)a1 = apa
i
1/i! again for 1 ≤ i < p, and then

since
(
2p
p

)
= (2p)(2p − 1) . . . (p + 1)/p! ≡ 2 (mod p) we have a2p

(
2p
p

)
= 2a2p = a2

p,
and in general aip = ai

p/i!, and therefore from the above ajp+i = ai
1a

j
p/i!j!. Finally,

p2ap = 0 = ap
p/(p− 1)! = 0 so ap

p = 0, and we find T 7→ E(a1X)E(apX
p), where

E(X) = 1 +X +
X2

2!
+ · · ·+ Xp−1

(p− 1)!
.

Note that E(a1X) = exp(a1X) since a1 is nilpotent, so since exp(a(X + X ′)) =
exp(aX) exp(aX ′) as power series, they indeed give homomorphisms and α∨p2(R) =
{(x, y) : xp = yp = 0}.

To determine the group law, we note that in the homomorphism group it is in-
duced by multiplication (coming from the multiplication law on the tensor product),
so we look at

E(a1X)E(apX
p)E(a′1X)E(a′pX) = E(b1X)E(bpXp)
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so that the group law is (a1, ap)(a′1, a
′
p) = (b1, bp). Multiplying this out, we have

E(a1X)E(a′1X) = 1 + (a1 + a′1)X + · · ·+ (a1 + a′1)
p

p!
Xp

where the latter term is W (a1, a
′
1)/(p− 1)! = −W (a1, a

′
1) since ap

1 = a′p1 = 0. Since
Xp2

= 0 in our ring, the additivity of the Xp part is immediate, so the group law
is indeed as above.
Problem 4.1(a). If we choose a basisM =

⊕
i kei, then Endk(M) = Homk(M,M) =∏

i Homk(k,M) =
∏

iM , so this is determined by the matrix Hopf algebra k[Xij ]i,j ,
with the group law Xij 7→

∑
r XirX

′
rj .

Problem 4.1(b). We now require that the determinant detXij be invertible, so we
have the Hopf algebra k[Xij , 1/detXij ].
Problem 4.1(c). The additional requirements can be rephrased in terms of certain
equations defined over R.
Problem 4.2(a). Letting A = Z[X]/〈X2 − 2〉, we have Ω1

A/Z = AdX/〈2XdX〉 '
Z[
√

2]/〈2
√

2〉.
Problem 4.2(b). Letting A = Z[X]/〈6, X2+X+1〉, we have ΩA/Z = AdX/〈0, (2X+
1) dX〉 ' (Z/6Z)[X]/〈X2 +X + 1, 2X + 1〉.
Problem 4.2(c). Identifying Q[T ] with its image Q[X] in A, we obtain

Ω1
A/R =(AdX ⊕AdY )/〈(2X − Y + 1) dX + (2Y −X) dY,

(−3X2Y + 2XY ) dX + (4Y 3 −X3 +X2) dY 〉.

Problem 4.3. G is represented by A = k[X,Y ]/〈Xp2
, Xp − aY p〉, which has rank

p3 (its dimension as a k-vector space). We then have only three possibilities. It
cannot be k[T ]/〈T p3〉 because A has no element whose minimal nilpotence degree
is p3. It cannot be k[T,U ]/〈T p2

, Up〉 since then X,Y 7→ φ(U, V ), ψ(U, V ), and then
φp−aψp = 0; since p kills any monomial containing U , we are left with an equality
of two pth powers of polynomials, which is impossible as a is not a pth power. It
cannot be k[T,U, V ]/〈T p, Up, V p〉 since it has no element whose minimal nilpotence
degree is p2.
Problem 4.4(a). π1(Z[ζ]) = Gal(Q(ζ)unr/Q(ζ)). So suppose [K : Q(ζ)] = n is
unramified; then dK/Q = |N(∆K/Q(ζ))|dn

Q(ζ) = 3n. But then [K : Q] = 2n, and
then by Minkowski’s theorem (since Q(ζ) is totally imaginary),

3n ≥
(

(2n)2n

(2n)!

)2( 4
π

)2n

.

If we substitute n = 1, we obtain 3 ≥ 4(4/π)2, a contradiction, and since the
function on the right grows faster than 3n, as the quotient of two successive terms
is

(2n+ 2)
(2n+ 1)

(
2n+ 2

2n

)2n( 4
π

)2

≥
(

1 +
1
n

)2n

≥ 22),

we obtain a contradiction.
Problem 4.4(b). The ring R = Z[

√
−2, ζ] is unramified because the discriminant of

a biquadratic extension is the product of its three quadratic subfields, hence this
ring has discriminant (−8)(−3)(24) = 676 = 242 where 24 = ∆Q(

√
6).



GROUP SCHEMES 63

The same argument as in (a) now shows that (since Q(
√
−2, ζ) is totally imagi-

nary)

24n ≥
(

(2n)2n

(2n)!

)2( 4
π

)2n

,

which for n ≥ 5 gives a contradiction. Therefore at most Z[
√

6] has at most a
degree 4 unramified extension arising as a quadratic extension of R, and hence it
can also be a quadratic unramified extension of Z[

√
6]. Therefore it must arise from

adjoining
√
m with m | 6 since otherwise we would have other primes ramifying;

the only choice is adjoining i. But Z[
√

6, i] has discriminant (24)(4)(−24) 6= 242,
so this is not unramified, and we conclude that we are limited to just R, so that π1

has order 2.
Problem 4.4(c). It is étale because it is unramified, and therefore by the equivalence
of categories (with obvious action of the Galois group π) it corresponds to the Hopf
algebra of a (commutative) group scheme.
Problem 4.5(a). [n] : A → A factors through e : A → R iff I = ker e ⊂ ker[n] iff
[n]I = 0; but [n]I ≡ nI mod I2, so [n]I = 0 iff n kills I/I2.
Problem 4.5(b). In char k = p, n is a unit, hence n kills I/I2 iff I/I2 = 0, hence
Ω1

A/R = A⊗R I/I2 = 0, and G is étale.
Problem 4.6(a). The only factorizations could occur from roots which must be
units of Z[α] by Gauss’ lemma. The unit group here is trivial, and one checks that
f(1), f(−1) 6= 0, so the polynomial is irreducible.

A change of variables X 7→ X+α/3 puts the equation in the form X3−(1/3)X−
(1/27)

√
−23, and then we have −4(1/3)3 − 27((1/27)

√
−23)2 = 1.

Problem 4.6(b). A cubic extension is Galois iff the Galois group of the polynomial
is cyclic of order 3 iff it is contained in the alternating group iff the square root of
its discriminant is already in the field, which in this case is true.

If we let θ be a root of f , the Galois action is θ 7→ −θ2 + (α− 1)θ + 2.
Problem 4.6(c). If we compute with points, we find the four points 0, θ, θ2 =
−θ2 + (1 − α)θ + 2, and θ3 = θ2 − αθ + (α − 2), where 0 is the identity element.
If this is to be a group of order 4 of exponent 2, then [2]θ = [2]θ2 = [2]θ3 = 0 and
adding any two nonzero points gives the third. The group law is

X 7→ X +X ′ + aXX ′ + b(X2X ′ +XX ′2) + c(X3X ′ +XX ′3)

+ d(X2X ′2) + e(X3X ′2 +X2X ′3) + f(X3X ′3)

and substituting these we obtain linear equations, e.g. simplifying

0 = 2θ + aθ2 + 2bθ3 + 2cθ4 + dθ4 + 2eθ5 + fθ6

we obtain for the constant coefficient

−2b− 2αc− αd+ (10− 4α)e+ (9− α)f = 0.

Solving this system we obtain

(a, b, c, d, e, f) = (2α+ 2, 4α− 16,−3α+ 4,−10α+ 2, α+ 12, 2α− 8).

Problem 5.1(a). If p 6= 2, then α = (ζp − 1)/( p
√
ε− 1) is integral: since

( p
√
ε− 1)p ≡ ε− 1 ≡ 0 (mod p)

but not modulo p2, vp( p
√
ε− 1) = 1/p, and it is a standard fact (here we use p 6= 2)

that v(ζp − 1) = 1/(p − 1). Hence v(α) = 1/(p − 1) − 1/p = 1/p(p − 1) > 0, so α
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is integral. If p = 2, then ζ2 = −1, so we have Z[
√
ε]; the discriminant is 4ε, and

ε ≡ 1 (mod 2), and since the extension is Eisenstein, 2 - (O : Z2[
√
ε]), so it is the

full ring of integers.
Problem 5.1(b). The extension is totally ramified and v(α) = 1/p(p−1) = [F : Qp],
and α is integral, so it is a uniformizer.
Problem 5.1(c). i(σ) = v(σα−α). If σ ∈ H\{1}, say σ(ζp) = ζp and σ( p

√
ε) = ζi

p
p
√
ε,

then

i(σ) = v

(
ζp − 1

ζi
p

p
√
ε− 1

− ζp − 1
p
√
ε− 1

)
= v(ζp − 1) + v(ζi

p − 1)− v(ζi
p

p
√
ε− 1)− v( p

√
ε− 1)

= 2/(p− 1)− 2/p = 2/p(p− 1).

If σ 6∈ H, then since (ζi
p−1)/(ζp−1) = ω is a unit such that ω−1 = ζp+· · ·+ζi−1

p =
ζp(ζi−1

p − 1)/(ζp − 1) is also a unit, we have

i(σ) = v

(
ζi
p − 1

ζj
p

p
√
ε− 1

− ζp − 1
p
√
ε− 1

)
= v(ζp − 1) + v(ω − 1)− v( p

√
ε− 1) = 1/p− 1/(p− 1) = 1/p(p− 1).

Problem 5.1(d). This is just the statement of (c).
Problem 5.1(e). G(u) = G(φ−1

L/K
(u)). We find

φ(i) =


p(p− 1)i, 0 ≤ i ≤ 1/p(p− 1);
1− 1/(p− 1) + pi, 1/p(p− 1) < i ≤ 2/p(p− 1);
1 + 1/(p− 1), i > 2/(p− 1).

Hence

φ−1(u) =


u/p(p− 1), 0 ≤ u ≤ 1;
(u− 1)/p+ 1/p(p− 1), 1 < u ≤ 1 + 1/(p− 1);
1 + 1/(p− 1), u > 1 + 1/(p− 1)

which implies the result.
Problem 5.1(f). iF/Qp

= 2/p(p− 1) as this is the maximum value. Therefore

uF/Qp
= φ(iF/Qp

) = 1− 1/(p− 1) + p(2/p(p− 1)) = 1 + 1/(p− 1)

and

v(DF/Qp
) = uF/Qp

− iF/Qp
= 1 + 1/(p− 1)− 2/p(p− 1) = 1 + (p− 2)/p(p− 1).

Problem 5.2(a). For a quadratic imaginary extension, the class group is in one-
to-one correspondence with reduced quadratic binary forms, [a, b, c] such that d =
b2 − 4ac = −7, and reduced implies −|a| < b ≤ |a| < |c| or 0 ≤ b ≤ |a| = |c|. We
need only check 0 < a ≤

√
−d/3, i.e. a ≤ 1; we find only a = b = 1, c = 2, so the

class group is trivial.
Problem 5.2(b). The group schemes of order 2 are in one-to-one correspondence
with factorizations of 2, for which we have the trivial factorization and 2 = ππ,
giving us 2 others.
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Problem 5.3(a). We have A = R[T,X]/〈T 2 + πT,X2 − 1〉, so

Ω1
A/R = (AdT ⊕AdX)/〈(2T + π) dT, 2X dX〉 ' A/〈2T + π〉 ⊕A/〈2X〉.
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[J] A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry,
Inst. Hautes tudes Sci. Publ. Math., 82 (1995), 5–96.

[L] Serge Lang, Algebraic number theory, 2nd ed., Graduate texts in mathematics, 110, New

York: Springer-Verlag, 1994.
[Mac] Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate texts

in mathematics, vol. 5, New York: Springer-Verlag, 1998.
[Mar] Jacques Martinet, Petits discriminants des corps de nombres, Number theory days, (Ex-

eter, 1980), London Math. Soc. lecture note series, vol. 56, Cambridge-New YorK: Cam-

bridge Univ. Press, 1982, 151–193.
[Mat] Hideyuki Matsumura, Commutative algebra, New York: W.A. Benjamin, 1970.

[Mil] J.S. Milne, Étale cohomology, Princeton mathematical series, vol. 33, Princeton, New Jer-

sey: Princeton University Press, 1980.

[Mur] J.P. Murre, Lectures on an introduction to Grothendieck’s theory of the fundamental group,
Tata Institute of Fundamental Research lectures on mathematics, No. 40, Bombay: Tata

Institute of Fundamental Research, 1967.
[O] A. Ogg, Abelian curves of 2-power conductor, Proc. Cambr. Phil. Soc. 62 (1966), 143–148.

[R] M. Raynaud, Passage au quotient par une relation d’quivalence plate, Proc. Conf. Local

Fields (Driebergen, 1966), Berlin: Springer, 78–85.
[Ser] Jean-Pierre Serre, Local fields, Graduate texts in mathematics, vol. 67, New York: Springer-

Verlag, 1979.
[Sha] S.S. Shatz, Group schemes, formal groups, and p-divisible groups, in Arithmetic geometry

(University of Connecticut, Storrs, Conn., 1984), eds. G. Cornell and J.H. Silverman, New

York: Springer-Verlay, 1984, 29–78.
[Sil] J.H. Silverman, The arithmetic of elliptic curves, Graduate texts in mathematics, vol. 106,

Berlin: Springer, 1994.
[Tat] John Tate, Finite flat group schemes, in Modular forms and Fermat’s last theorem, eds.

Gary Cornell, Joseph H. Silverman, and Glenn Stevens, New York: Springer-Verlag, 1997,

121–154.
[Tat2] John T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179–206.

[TO] John Tate and Frans Oort, Group schemes of prime order, Ann. Sci. École Norm. Sup. (4)
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