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The following are notes taken from a seminar taught by Don Zagier at the Uni-
versity of California, Berkeley, in the Fall semester, 2000.

1. Preview

What follows is a preview of what these notes will cover; we defer proofs to the
corresponding sections in the text.

Complex multiplication on elliptic curves over C. Let

j(τ) = q−1 + 744 + 196884q + 21493760q2 + . . .

be the modular j-function, where τ ∈ H = {τ ∈ C : Im(τ) > 0} and q = e2πiτ .
Then

j

(
aτ + b

cτ + d

)
= j(τ) for

(
a b
c d

)
∈ SL2(Z).

If τ = u + iv and u ∈ Q, v2 ∈ Q, then τ is an CM point. This is equivalent to
the requirement that [Q(τ) : Q] = 2. In fact, we will see that j(τ) ∈ Z, i.e. j(τ) is
an algebraic integer. For example, j(i

√
2) = 8000.
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Associated to τ is a lattice Lτ = Zτ+Z, and hence an elliptic curve Eτ = C/Lτ ,
and conversely. E has complex multiplication iff [Q(τ) : Q] = 2.

An elliptic curve E is a curve of genus g = 1 with a point O ∈ E(C). The group
law (with O as the identity) is unique, and conversely any curve with an abelian
group law is elliptic. As a consequence of the Riemann-Roch theorem, such a curve
can be given an affine model y2 = f(x), where f(x) ∈ C[x], deg f = 3 with no
double roots, together the point the infinity O. We can write y2 = x3 − 3Ax+ 2B,
where the double root condition is equivalent to A3 6= B2. Then we have

j(E) = 1728
A3

A3 −B2
∈ C.

If E,E′ are elliptic curves, we can consider HomC(E,E′), and in particular
End(E) = HomC(E,E). When E is defined over C, either End(E) ' Z or
End(E) ' OD ⊂ C, an order in an imaginary quadratic field of discriminant D,
namely Z + Z((D +

√
D)/2), for D < 0, D ≡ 0, 1 (mod 4). The integers always

occur because we have the multiplication by n map, [n] : E → E.
Example. Let E : y2 = x3 − x. We can indeed “multiply” by complex numbers:

[i](x, y) = (−x, iy) = (x′, y′)

since if (x, y) ∈ E then (x′, y′) ∈ E. By composition, we can multiply by any
Gaussian integer [a+ bi]. Here the lattice Lτ is given by τ = i, and j = 1728 ∈ Z.
Example. Let E : y2 = x3 − 35x+ 98. Then τ = (1 +

√
−7)/2, j(τ) = −3375 ∈ Z.

Here End(E) = O−7 = Z + Z((1 +
√
−7)/2). If we let

u = (1 +
√
−7)/2, λ = (7 +

√
−7)/2, B = (−7 + 21

√
−7)/2,

then

[u](x, y) =
(
u2

(
x+

B

x− λ

)
, v3y

(
1− B

(x− λ)2

))
= (x′, y′)

has that (x′, y′) ∈ E whenever (x, y) ∈ E.
In algebraic terms, the complex multiplication map can be very complicated; on

the other hand, it is just the map C/O−7
[(1+

√
−7)/2]−−−−−−−−→ C/O−7.

Traces of singular moduli. Modular forms (of weight k) are holomorphic func-
tions on H with

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) for

(
a b
c d

)
∈ SL2(Z).

There exists a meromorphic modular form g(τ) of weight 3/2 such that if τ ∈ H
of discriminant D then Tr j(τ) is the Dth Fourier coefficient of g.

Class field theory. If K = Q(
√
D), let D be the actual discriminant, so OD = O

is the maximal order. Then for τ ∈ H, let D(τ) = D be the discriminant and
Aτ2 +Bτ + C = 0 for A,B,C ∈ Z.

Then the maximal unramified extension of K, the Hilbert class field H, is gener-
ated by j(τ)) over K. This is the only case where H is completely determined, and
it has been a main problem of number theory to compute the Hilbert class field in
a general situation.
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The Kronecker limit formula and Kronecker’s solution of Pell’s equation.
There exist solutions to Pell’s equation u2 − Dv2 = 1 (D > 0, D not a square)
constructed using elliptic functions, with applications to explicit class field theory
and the class number formula. For τ ∈ H and s ∈ C with Re s > 1, we define the
(nonholomorphic) Eisenstein series of weight 0

E(τ, s) =
1
2

∑
m,n∈Z

(m,n) 6=(0,0)

Im(τ)s

|mz + n|2s
.

These are similar to the ordinary Eisenstein series

Ek(τ) =
1
2

∑′

m,n

1
(mτ + n)k

∈Mk

for k = 4, 6, 8, . . . . We have that

E(τ, s) = E

(
aτ + b

cτ + d
, s

)
.

If τ is a CM point, then

E(τ, s) =
1
2

∣∣∣∣D4
∣∣∣∣2 ∑′

m,n

1
(Am2 +Bmn+ Cn2)s

.

If h = 1, this matches the Epstein zeta function

ζQ(s) =
∑
x∈Z2

1
Q(x)s

.

If A is an ideal class, K = Q(
√
D), then we define the partial zeta function

ζK,A(s) =
∑
a∈A

1
N(a)s

.

The Kronecker limit formula calculates c′(τ) where

E(τ, s) =
c

s− 1
+ c′(τ) +O(s− 1).

This gives information about special partial zeta functions, Epstein zeta functions,
and Eisenstein series, all at once.

There is also an application to the Chowla-Selberg formula: If τ is a CM-point,
then j(τ) ∈ Q. This is equivalent to proving f(τ) ∈ Q for all modular functions
f over Q, meromorphic functions in H invariant under SL2(Z) or a congruence
subgroup. This follows from the fact that f(τ) is algebraic over j(τ). It is also
equivalent to saying there exists Ωτ ∈ C× such that f(τ)Ω−kτ ∈ Q for all modular
forms of weight k and all k (to see this, set f1 ∈ M1, f1(τ) = Ωτ , so that for
f ∈Mk, f/fk1 ∈M0).

Application to Diophantine equations (Villegas). We have a functional equa-
tion

L(s, ψk) = cL(k − s, ψk−1)
for some constant c; so if k is even, one may look at the central critical value
L(k/2, ψk−1). We obtain a value for L(1, s), which tells us on the BSD whether there
is a point on the corresponding elliptic curve. This can be used to (conjecturally)
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answer the question of Sylvester, asking for the primes which are sums of 2 (rational)
cubes, e.g. 13 = (7/3)3 + (2/3)3.

L-series and CM modular forms. To every elliptic curve E/Q, we can associate
an L-series

L(E/Q, s) =
∏
p

(
1− ap

ps
+

p

p2s

)−1

for ap ∈ Z where |ap| < 2
√
p (we must omit in finitely many cases the last term in

the denominator). If E : y2 = f(x), then

ap = p−#{(x, y) ∈ F2
p : y2 = f(x)} = −

∑
x (p)

(
f(x)
p

)
.

If E has CM, then there is a closed formula for ap. In the first example,

∑
x (p)

(
x3 − x
p

)
=

{
0, p ≡ 3 (mod 4)
±2A, p ≡ 1 (mod 4), p = A2 + 4B2.

This is due to Gauss, with a formula to determine the appropriate sign. For the
second,

∑
x (p)

(
x3 − 35x+ 98

p

)
=

{
0, (p/7) = −1
±2A, (p/7) = +1, p = A2 + 7B2.

Question. Is there an elementary proof of this?
When E has CM, its L-series L(E, s) arises simultaneously as a theta series, an

L-series of a Hecke character, and a Hasse-Weil zeta function. This shows that the
three kinds of L-functions, those from algebraic geometry (like Dirichlet L-series),
those from algebraic number theory (like the Riemann ζ function, L(s, χ), ζK(s),
Artin L(s, π), Hecke LK(s, ψ) for an adelic character ψ), and those arising from
automorphic forms are linked in an important way (as contended by the Langlands
program). In general, these three can be quite different.

If Q(x1, . . . , x2h) is a positive definite quadratic form Z2h → Z, then∑
x∈Z2h

qQ(x) = ΘQ(τ) ∈Mh

is a modular form for some congruence subgroup. We may also insert a homoge-
neous polynomial P (x1, . . . , x2h) of degree d that is spherical, and then∑

x∈Z2h

P (x)qQ(x) = ΘQ,P (τ) ∈Mh+d.

These Θ series in fact span the space of modular forms (there are also special types
such as Eisenstein series).

If h = 1, Q is a binary quadratic form of discriminant D < 0 and hence arises
from an order OD; we say θQ,P ∈ Md+1 is a CM modular form. Then d = k − 1,
and ψ corresponds in some sense to the polynomial P (x).
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Other topics. There are also some other topics which arise in this context, in-
cluding factorization of (norms of) (differences of) singular moduli (the values
j(2i) = 2333113 and j((1 +

√
−67)/2) = −2153353113 demonstrate this compact-

ness), Heegner points (in some cases, an elliptic curve can be shown by CM theory
to have a nontrivial solution), special values of Green’s functions, and a higher
Kronecker limit formula. These topics are not covered here.

2. Complex Multiplication on Elliptic Curves over C

Elliptic Curves over C. We begin with a review of the theory of elliptic curves
over C. For more information about the material in this section, consult [7], [9],
[18], and [4].

Theorem. The following are equivalent definitions for an elliptic curve E over C:

(i) A compact curve (Riemann surface) E of genus 1 (one topological hole),
with a marked point O ∈ E;

(ii) A curve E which is also an (abelian) group;
(iii) E = {(x, y) ∈ C2 : y2 = x3 − 3Ax+ 2B} ∪ {∞};
(iv) E = C/L for a full lattice L.

Proof. (iv) ⇒ (i): Choose a fundamental domain for L, which will be the shape of
a parallelogram. Identifying the edges, we get a torus.

(iv) ⇒ (ii): E = C/L is the quotient of an abelian group by a subgroup.
(i) ⇒ (iv) [18, Proposition VI.5.2]: If E is a curve of genus 1, let ω = dx/y be

the invariant holomorphic differential on E. We then map z 7→
∫ z
O
ω ∈ C. In fact,

since any two paths from O to x differ by something homologous to an element of
Zω1 +Zω2 where γ1, γ2 generate the first homology of the torus and

∫
γi
ω = ωi, we

have a map E → C/L, and this is a complex analytic isomorphism of Lie groups.
For a topological proof, we can take the universal cover, which is C modulo the
fundamental group of E (a lattice).

(i) ⇒ (ii) [18, Proposition III.3.4]: If P1, P2 ∈ E, we need to produce a P3(=
P1 + P2) and check that it satisfies the axioms of a group law. Let V be the set
of meromorphic functions f on E with a pole of order ≤ 1 at P1, P2, and no other
poles. By Riemann-Roch, dimV = 2. So V = C⊕Cf for some nonconstant f . Let
g(z) = f(z)− f(0). If g had no pole at P1 or P2, the dimension of V would drop to
just a constant, so g must actually have only a simple pole at each of these points.
Since principal divisors have degree zero, we have

(g) = (0) + (P3)− (P1)− (P2)

for some P3. This definition is compatible with the group law.
(i) ⇒ (iii) [18, Proposition III.3.1]: By Riemann-Roch, we find that there are

no functions with only a simple pole at O, but there is one with a double pole at
O, which we call x. Continuing, we find a function y with a triple pole at O and
further a relation between 1, x, y, x2, xy, y2, x3 in degree 6. We can reduce this to
obtain a Weierstrass equation of the form above and check that this does indeed
give an elliptic curve.

(ii) ⇒ (i). Since the only surface with a group law must have topological Euler
number zero, we find χ = 2− 2g = 0 so g = 1. �
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The group law on the elliptic curve can also be characterized by the following:
if P1, P2, P3 ∈ E ∩ ` ⊂ P2

C where ` is a projective line ax + by + cz = 0, then
P1 +P2 +P3 = O. The function defining ` has divisor −3(O) + (P1) + (P2) + (P3).

We let Jac(E) be the set of degree zero divisors Div0(E) modulo principal divisors
(f); then Jac(E) = E = C/L [18, Proposition III.3.4]. Recall that if D =

∑
i ni(zi)

for mi ∈ Z, zi ∈ E, then D = (f) is principal iff
∑
i ni = 0 and

∑
i nizi = 0.

If f is principal, look at
∫
∂L
f ′(z)/f(z) dz and

∫
∂L
z (f ′(z)/f(z)) dz around the

boundary of a fundamental domain. For the converse, we can use the group to
replace n1(x1) +n2(x2) with a term of the form (x1 +x2), so we can reduce this to
zero, which therefore must be constant so f is principal.

Elliptic functions. As a reference for elliptic functions, consult [11], [20], [3].
From now on, let E = C/L, L = Zω1 + Zω2, where Im(ω1/ω2) > 0.

We let C(E) be the set of meromorphic functions on E, which if we extend
by periodicity is the same as the set of meromorphic functions f on C such that
f(z + ω1) = f(z) = f(z + ω2) for all z ∈ C, which are doubly periodic and also
called elliptic functions.
Proposition. If f ∈ C(E) has zeros and poles zi ∈ C/L with multiplicities mi, we
have

∑
imi = 0 and

∑
imizi ∈ L.

The reverse implication, that given the zi and mi satisfying these conditions we
can construct a (unique) elliptic function with the designated zeros and poles is due
to Abel-Jacobi, as we will see below.

Proof. (See also [18, Proposition VI.2.2], [7, Proposition 9.2.5].) If near zi we have
f(z) = c(z − zi)mi(1 + . . . ), so f ′(z)/f(z) = mi/(z − zi) + . . . has a simple pole
with residue mi. If we choose the fundamental domain such that no zi is on the
boundary of a fundamental domain (which we denote ∂L), we have by integrating
along the edge that ∫

∂L

f ′(z)
f(z)

dz =
∑
imi = 0;

by a direct calculation involving the periods of the lattice we find∫
∂L

z
f ′(z)
f(z)

dz =
∑
imizi ∈ L.

�

Let z ∈ C/L; the function

℘(z) =
1
z2

+
∑

0 6=ω∈L

(
1

(z − ω)2
− 1
ω2

)
=

1
z2

+
∑′

ω

(
2z
ω3

+
3z2

ω4
+ . . .

)

=
1
z2

+

(
3
∑′

ω

1
ω4

)
z2 +

(
5
∑′

ω

1
ω6

)
z4 + . . .

is even, doubly periodic, and has a unique double pole at zero [18, Proposition
VI.3.1]. This function is called the Weierstrass ℘-function. Since

℘′(z) = − 2
z3

+ 2cz + . . .

we have
℘′2(z) =

4
z6

+
8c
z2

+ · · · = 4℘(z)3 − g2℘(z)− g3;
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g3 is in fact a constant because the difference ℘′2(z) − 4℘(z)3 − g2℘(z) is elliptic
but has no pole and thus must be constant [18, Proposition VI.2.1]. Thus y2 =
4x3 − g2x− g3 is an explicit way to get a Weierstrass equation for E.

If τ ∈ H, q = e2πiτ , then we let Lτ = Zτ + Z (substitute τ = ω1/ω2 to get a new
lattice and then rescale our functions). We then have

E = Eτ = C/L ' {(x, y) : y2 = x3 − 3E4(τ)x+ 2E6(τ)},

where E4(τ), E6(τ) are the Eisenstein series of weight four and six [16, §VII.4.2]:

E4(τ) =
12

(2π)4
∑′

ω∈L

1
ω4

= 1 + 240(q + 9q2 + 28q3 + · · ·+ σ3(n)qn + . . . )

E6(τ) =
216

(2π)6
∑′

ω

1
ω6

= 1− 504(q + 33q2 + 244q3 + · · ·+ σ5(n)qn + . . . ).

The way to remember these formulas is to let τ →∞, so that the lattice becomes
compressed and we approach a degenerate (singular) curve, y2 = (x−α)2(x−β) =
x3 + 0x2 + · · · = (x − α)2(x + 2α) which after scaling becomes y2 = (x − 1)2(x +
2) = x3 − 3x + 2 which give the coefficients 3 and 2 on the standard model y2 =
x3 − 3Ax+ 2B.

Complex multiplication. We look at

HomC(E = C/L,E′ = C/L′) ' {α ∈ C : αL ⊂ L′}

(see [18, Proposition IV.4.1]). Topologically, if we have a map f : C/L → C/L we
can lift it to C→ C. f is a homomorphism of groups which is complex analytic, so
locally near 0 it has power series f(z) =

∑∞
j=1 ajz

j (f(0) = 0). Now f(z1)+f(z2) =
f(z1 + z2) for small z1, z2, so in particular f(2z) = 2f(z) for small enough z and
therefore

∞∑
j=1

aj(2j − 2)z = 0

which implies aj = 0 for all j 6= 1. We extend this to all of C by f(z) = nf(z/n)
for appropriate n so that f(z) = αz for some α ∈ C. We have shown:

Proposition. We have

EndC(E) = HomC(E,E) = {α ∈ C : αL ⊂ L}.

Therefore Z ⊂ EndC(E) = O, but it may be bigger. Since α ∈ O iff αL ⊂ L iff
αω1 = aω1 + bω2, αω2 = cω1 + dω2 for some integers a, b, c, d, we conclude

ω1

ω2
= τ =

aτ + b

cτ + d

so cτ2+(d−a)τ−b = 0. In other words, α = cτ+d, ατ = aτ+b, so α ∈ Zτ+Z = Lτ
so OE ⊂ Zτ + Z. This quadratic equation must have discriminant < 0 (since it
must have complex roots), so in this way we obtain an an order in an imaginary
quadratic field [18, Proposition VI.5.5].

Theorem. If E = Eτ , then O = End(E) = Z if τ is not imaginary quadratic;
otherwise, O is an order in an imaginary quadratic field Q(

√
D), D < 0.
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Since D < 0, we have D ≡ 0, 1 (mod 4) (if Aτ2+Bτ+C = 0, D = B2−4AC < 0
so D ≡ 0, 1 (mod 4), and conversely), and we write

OD = {(m+ n
√
D)/2 : m,n ∈ Z, m ≡ nD (mod 2)}

= Z + Z(D +
√
D)/2

=

{
Z[
√
−n], D ≡ 0 (mod 4), D = −4n;

Z[(1 +
√
D)/2], D ≡ 1 (mod 4).

Let E : y2 = x3 − 3Ax+ 2B (A3 6= B2); we define

j(E) = (12A)3/(A3 −B2),

the modulus of E; since we can always map (x, y) 7→ (c2x, c3y) and (A,B) 7→
(c4A, c6B), the ratio A3/B2 and hence j is well-defined up to change of coordinates
[18, §3.1].
Definition. We say E has CM if End(E) = OD for some D, i.e. there exists τ ∈ H
with [Q(τ) : Q] = 2 such that E = Eτ . If E has CM, j is called singular.

So far, A,B may be in C, but we will show that j ∈ Q.

j is Algebraic. The Eisenstein series E4, E6 are in fact modular (more on this
below):

E4(τ) = 1 + 240q + . . . , so E3
4(τ) = 1 + 720q + · · · ∈M12;

E6(τ) = 1− 504q − . . . , so E2
6(τ) = 1− 1008q + · · · ∈M12.

Therefore E3
4 − E2

6 = 1728q + · · · ∈M12 so [16, §VII.4.4]

∆(τ) =
E3

4 − E2
6

1728
= q − 24q2 + 252q3 − · · · − 6048q6 + . . .

= q
∞∏
n=1

(1− qn)24 6= 0 ∈M12.

Remark. Note −6048 = −24 · 252, and the multiplicativity of the coefficients of ∆
was first proved by Mordell.

We let

j(E) = j(Eτ ) = j(τ) =
E4(τ)3

∆(τ)
=

1
q

+ 744 + 196884q + 21493760q2 + . . . .

If τ 7→ aτ + b

cτ + d
for γ =

(
a b
c d

)
∈ SL2(Z) = Γ1 = Γ, we have

Lτ = [τ, 1] = [aτ + b, cτ + d] = (cτ + d)L(aτ+b)/(cτ+d)

so j(τ) = j(γ(τ)) for all γ ∈ Γ.
Theorem. If E has CM, then j(E) = j(τ) ∈ Q.

Proof. (See also [18, Appendix C, Corollary 11.1.1].) Let End(E) = OD and τ ∈ H,
and assume Aτ2 + Bτ + C = 0, A,B,C ∈ Z, gcd(A,B,C) = 1, A > 0. Then
τ = (−B +

√
D)/2A, D = B2 − 4AC < 0.

If α ∈ End(E), α(Zτ + Z) ⊂ Zτ + Z, so ατ = aτ + b, α = cτ + d; that is to

say, there exists M =
(
a b
c d

)
∈ M2(Z) with detM = ad − bc = n > 0. Then

cτ2 + (d − a)τ − b = 0, so there exists u ∈ Z such that c = Au, d − a = Bu,
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−b = Cu after matching coefficients, and certainly t ∈ Z such that a + d = t. We
have therefore that

M =
(
a b
c d

)
=
(

(t−Bu)/2 −Cu
Au (t+Bu)/2

)
∈Mn

where Mn ⊂M2(Z) denotes integer matrices with determinant n.
Therefore, there is a one-to-one correspondence between matrices M ∈ Mn

subject to the above conditions and integer pairs (t, u) ∈ Z; this is also in bijection
with elements λ = (t+ u

√
D)/2 ∈ OD with

N(λ) = λλ = n, trλ = λ+ λ = t

(note detM = n = (t2 − B2u2)/4 + ACu2 = (t2 − Du2)/4 so that e.g. D ≡ B
(mod 2)).

Now we have an explicit description of the ring End(E) = OD. Lτ = Zτ + Z ⊂
K = Q(

√
D), with Lτ a proper OD-module. If a ⊂ K is an OD-module with αa ⊂ a,

then α ∼ cα has the same multiplier, so we let Cl(D) be the set of proper O-modules
modulo K×, the class group, which is known to be finite. We let # Cl(D) = hD,
the class number.

So C/a = Ea has CM by OD. For fixed D, the set of elliptic curves with
CM by OD is in bijection with Cl(D), which is finite. On the other hand, if
y2 = x3 − 3Ax + 2B, A3 6= B2, and σ ∈ Aut(C) = Gal(C/Q), then A3σ 6= B2σ,
and have the curve Eσ : y2 = x3 − 3Aσx + 2Bσ. But σ maps preserve addition,
multiplication, so algebraic properties (including the endomorphism ring) are also
preserved. Thus

#{j(E) : E has CM by OD} = h(D),

and there exists a subgroup G ⊂ Gal(C/Q) of index <∞ (≤ h!) such that σ ∈ G,
E ' Eσ, which implies j(E1), . . . , j(Eh) ∈ CG = H/Q is finite. A complex number
with only finitely many conjugates is algebraic, so

∏h
i=1(X − j(Ei)) ∈ Q(x). �

We have actually proven:

Theorem. For all D < 0, D ≡ 0, 1 (mod 4), there exist exactly h(D) noniso-
morphic elliptic curves with End(E) = OD = Z + Z(D +

√
D)/2. Denoting these

E1, . . . , Eh, we have hD(X) =
∏h
i=1(X − j(Ei)) ∈ Q[x].

Example. If D = −7, h(D) = 1, so a = Z + Z(1 +
√
−7)/2, j = j((1 +

√
−7)/2) =

−3375, h−7(x) = x+ 3375.
Example. If D = −20, h(−20) = 2, and h−20(x) = x2 − 1264000x− 681472000.

3. Complex Multiplication: A Modular Point of View

Theta series. We want to now utilize the correspondence between elliptic curves
and modular forms. For more information on modular forms, consult [13], [21], and
[18, Appendix C, §12].

If E = C/L, L = Zω1 + Zω2, ω2(Zτ + Z) = ω2Lτ , τ = ω1/ω2 ∈ H, then
E ' C/Lτ = Eτ , so we can restrict our discussion to these curves. We have

Lγτ = L aτ+b
cτ+d

= Z
(
aτ + b

cτ + d

)
+ Z = (cτ + d)−1Lτ for

(
a b
c d

)
∈ Γ1 = SL2(Z),
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so τ ∼ γ(τ). We defined the Weierstrass ℘-function

℘(z) =
1
z2

+
∑′

ω∈L

(
1

(z − ω)2
− 1
ω2

)
which we write now as

℘(z, τ) =
1
z2

+
∑′

m,n∈Z

(
1

(z +mτ + n)2
− 1

(mτ + n)2

)
.

We have ℘(z +mτ + n, τ) = ℘(z, τ) and

℘

(
z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)2℘(z, τ).

This behaves like a modular form of weight 2.
The most famous of these series are theta functions [7, §10.2]:

θ(z, τ) = θ00(z, τ) =
∞∑

n=−∞
exp(πin2τ + 2πinz).

We have θ(z + 1, τ) = θ(z, τ), θ(−z, τ) = θ(z, τ), and

θ(z + τ, τ) =
∑
n

exp
(
πi(n2 + 2n)τ + 2πinz

)
= exp(−πiτ − 2πiz)

∑
n

exp
(
πi(n+ 1)2τ + 2πi(n+ 1)z

)
= exp(−πiτ − 2πiz)θ(z, τ).

These series also carry the properties of a modular function, but they are not quite
elliptic, since

θ(z +mτ + n, τ) = exp(−πim2τ − 2πimz)θ(z, τ).

We define

θ00(z, τ) = θ(z, τ)

θ0 1
2
(z, τ) = θ(z + 1/2, τ)

θ 1
2 0(z, τ) = θ(z + τ/2, τ)

θ 1
2

1
2
(z, τ) = θ(z + (1 + τ)/2, τ)

by adding the 2-torsion points of E = C/L. These satisfy similar formulas as the
above. We map [7, §10.3]

C/L 3 z 7→ (θ00 : θ0 1
2

: θ 1
2 0 : θ 1

2
1
2
) ∈ P3.

We have θ 1
2

1
2
(z, τ) = 0 iff z ∈ L, since the total number of zeros plus poles is zero,

and by taking
∫
∂L
θ′(z)/θ(z) dz, we see we have a unique zero, so it must be at the

origin and the zero must be simple. (Alternatively, one can prove this fact using
the Jacobi triple product [10, §3.2, Theorem 2].)

If ni ∈ Z, zi ∈ C/L,
∑
i ni = 0,

∑
i nizi ∈ L, then we let

f(z) =
∏
i

θ 1
2

1
2
(z − zi, τ)ni .



12 COMPLEX MULTIPLICATION

This is a doubly periodic function iff the above conditions are satisfied (just sub-
stitute z 7→ z + τ in the above formulae). We now have constructed an explicit f
with the desired zeros and poles which is elliptic.
Proposition. A function f is elliptic iff it has zeros and poles at zi ∈ C/L of
multiplicity ni with

∑
i ni = 0 and

∑
i nizi = 0, and conversely, there exists an

elliptic function f with the prescribed multiplicities under this hypothesis.

Modular forms. For Γ = SL2(Z), Mk = Mk(Γ) is the space of modular forms of
weight k on Γ, that is to say f : H→ C is holomorphic, f satisfies

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) for

(
a b
c d

)
∈ Γ,

and has less than exponential growth, i.e. f(x + iy) = O(yc) + O(y−c) for some c
(which implies f(x+ iy) = O(1) +O(y−k)) [16, §VII.2.1].

We know that dimMk <∞ [16, §VII.3.2, Theorem 4], and in fact

k dimMk Mk

< 0 0 –
odd 0 –
0 1 C
2 0 –
4 1 CE4

6 1 CE6

8 1 CE8 = CE2
4

10 1 CE10 = CE4E6

12 2 CE12 ⊕ C∆

where the dimension cycles with period 12. The generating forms E2i are Eisenstein
series,

Ek(τ) =
1
2

∑
gcd(m,n)=1

1
(mτ + n)k

= 1 + (−1)k
4k
Bk

∞∑
n=1

σk−1(n)qn

where σk−1(n) =
∑
d|n d

k−1 and Bk is the kth Bernoulli number.
So M∗ = C(E4, E6), that is to say the modular forms are generated by E4 and

E6. This is also true of Gk ∈ C(G4, G6). Recall

℘(z) =
1
z2

+ 3G4(τ)z2 + 5G6(τ)z4 + . . . , z → 0

hence
℘′(z)2 = 4℘(z)3 −G4(τ)℘(z)−G6(τ).

This gives a recursion for each Gk as a polynomial in the earlier Gk for k > 6.
We have found that there is a bijection

{E/C elliptic curve} oo // {L ⊂ C lattice}/C× oo // H/Γ

E
� //

∫
γ
ω

C/L L
�oo

Zω1 + Zω2
� // ω1/ω2

Zτ + Z τ�oo
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There is a map j : H/Γ→ C by

τ 7→ j(τ) =
E4(τ)3

∆(τ)
=

1728E4(τ)3

E4(τ)3 − E6(τ)2
,

and similarly one for the set of elliptic curves by j(Eτ ) = j(τ). Indeed, there
exists a unique τ ∈ H such that f(τ) = E4(τ)3 − λ∆(τ) = 0 for any λ ∈ C
(the integral

∫
∂L
f ′(z)/f(z) dz vanishes exactly once, so this zero must be λ) [16,

§VII.3.3, Proposition 5].
We can modify the above bijection as follows:

{E/C CM elliptic curve} oo // {τ ∈ H/Γ : [Q(τ) : Q] = 2}

These sets are now countable, and if D < 0, D ≡ 0, 1 (mod 4) is fixed, then the set
with CM by OD is in fact finite, as we shall see.

Quadratic forms. For more information, consult [5, §VII.2] and [11, §8.1].
Definition. Let QD be the set of positive definite quadratic forms of discriminant
D, i.e.

QD{Q = [A,B,C] : Q(x, y) = Ax2 +Bxy + Cy2, A,B,C ∈ Z, D = B2 − 4AC}.

We denote by Q0
D ⊂ QD be the subset of primitive quadratic forms, i.e. those

with gcd(A,B,C) = 1, A > 0.

For γ =
(
a b
c d

)
∈ Γ, we have (Q ◦ γ)(x, y) = Q(ax+ by, cx+ dy). We will show

that Q/Γ <∞ (it is a class number).
Let OD = Z + Z(D +

√
D)/2 ⊂ K = Q(

√
D) be an order in an imaginary

quadratic field. We define

Cl(D) = {a ⊂ K : (Z-rank 2) proper OD-modules, mult(a) = OD}/K×

where mult(a) = {λ ∈ K : λa ⊂ a}. We let h(D) = # Cl(D).
Since Q0

D/Γ ' Cl(D), we know

QD =
⊔
n2|D

nQ0
D/n2

and thus #QD =
∑
n2|D h(D/n

2).
To each Q = [A,B,C] we associate ZA+Z(B+

√
D)/2 = a. We do this because

the root τ = (−B +
√
D)/2A of Aτ2 + Bτ + C = 0 gives rise to the correct

lattice Zτ + Z. We have mult(a) = OD, since λa ⊂ a iff λA, λ(B +
√
D)/2 ⊂

ZA+ Z(B +
√
D)/2, which can be written in matrix form

λ

(
(B +

√
D)/2

A

)
=
(
a b
c d

)(
(B +

√
D)/2

A

)
for some a, b, c, d ∈ Z. For a fixed choice of a basis, we have mult(a) ' End(E) ↪→
M2(Z).



14 COMPLEX MULTIPLICATION

Relation to CM points. Recall that τ has CM iff there exists M =
(
a b
c d

)
∈

M2(Z), det(M) > 0 with τ = Mτ for M not a scalar matrix (also see [2, I, §5]).
We let tr(M) = t and detM = n = (t2 −Du2)/4.

We are therefore interested in the set of matrices

M ∈Mn = {M ∈M2(Z) : detM = n, trM = t}.

We may assume that t2−4n = Du2 ≤ 0 (so thatM is an elliptic hyperbolic isometry
and therefore has at least one fixed point). In order to study Mτ = τ , we look at
the map τ 7→ Mτ = τ ′ for fixed τ ∈ H. We have an induced map j(τ) → j(τ ′),
which runs over a finite set as follows: since j(Mτ) = j(γMτ) for γ ∈ Γ, we have

{j(τ ′) : τ ′ = Mτ, M ∈Mn} = {j(Mτ) : M ∈ Γ \Mn}.

We relate two matrices if they differ by multiplication by an element of SL2(Z),
therefore by the calculation(

a b
c d

)(
a′ b′

c′ d′

)
=
(
aa′ + bc′ ab′ + bd′

a′c+ c′d b′c+ dd′

)
,

and the assumption gcd(c, d) = 1, we may assume M =
(
a b
0 d

)
with ad = n,

a, d > 0. We then multiply(
1 r
0 1

)(
a b
0 d

)
=
(
a b+ rd
0 d

)
to bring 0 ≤ b < d. We have shown [16, §VII.5.2, Lemma 2]:

Proposition.

Γ \Mn =
{(

a b
0 d

)
: ad = n, 0 ≤ b < d

}
,

so #(Γ \Mn) =
∑
d|n d = σ1(n).

In particular,

{j(Mτ) : M ∈Mn} = {j((aτ + b)/d) : ad = n, 0 ≤ b < d}

and τ has CM iff j(τ) is in this set.

The modular polynomial Ψ. The next major result needed in this section re-
gards the classical polynomial Ψ.

Theorem (Modular equation). For all n ≥ 1, there exists a polynomial

Ψn(X,Y ) ∈ Z[X,Y ]

such that
{j(Mτ) : M ∈ Γ \Mn} = {roots of Ψn(X, j(τ))},

i.e.
Ψn(X, j(τ)) =

∏
M∈Γ\Mn

(X − j(Mτ)) =
∏
ad=n
0≤b<d

(X − j((aτ + b)/d))

with deg Ψn(X, j(τ)) = σ(n).
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Example. We have Ψ1(X, j(τ)) = X − j(τ),
Ψ2(X,Y ) = Y 3 − (X2 − 1488X + 162000)Y 2

+ (1488X2 + 4077375X + 8748000000)Y

+ (X3 − 162000X2 + 8748000000X − 157464000000000).

and

Ψ3(X, j(τ)) = (X − j(3τ))(X − j(τ/3))(X − j((τ + 1)/3))(X − j((τ + 2)/3));

for j(τ) = q−1 + 744 + 196884q + . . . for q = e2πiτ , this gives

Ψ3(X, j(τ)) = (X − q−3 − 744− 196884q3 + . . . )

· (X − q−1/3 − 744− 196884q1/3 + . . . )

· (X − ζ−2
3 q−1/3 − 744− 196884ζ2

3q
1/3 + . . . )

· (X − ζ−1
3 q−1/3 − 744− 196884ζ3q1/3 + . . . ) ∈ Z[ζ][X]((q1/3)).

Proof of theorem. (See also [2, I, §4, Theorem 1].) Ψn(X, j(τ)) is holomorphic in τ ,
Γ-invariant under τ 7→ γτ , Mτ 7→M(γτ) = (Mγ)(τ) and is bounded at infinity (it
has a finite pole of order n); any modular function satisfying these is a polynomial
in j(τ) (see [17, §6, Proposition 12] or [11, §5.2, Theorem 2]).

A priori, Ψn(X, j(τ)) ∈ Z[ζn][X]((q1/n)) since j((aτ + b)/d) = ζbdq
−a/d + . . . .

The coefficients of fractional powers of q sum over a fixed power of a primitive
nth root of unity, hence all powers are integral. Moreover, the Galois group acting
on j(Mτ) just permutes the factors, hence Ψn(X, j(τ)) ∈ Z[X]((q)). Inverting,
q = j(τ)−1 − 744j(τ)−2 − · · · ∈ Z((1/j)), so Ψn(X, j(τ)) ∈ Z[X]((1/j)), therefore
by the above ψn(X, j(τ)) ∈ Z[Y ][j]. �

We have shown [2, I, §5, Theorem 2]:
Corollary. j(τ) ∈ Z.

If τ has CM, there exists M ∈Mn, M not a scalar matrix, such that Mτ = τ .
Then Ψn(j(τ), j(Mτ)) = 0, and j(τ) is a root of Ψn(X,X) ∈ Z[X]. To avoid
trivialities, we must check that this polynomial is monic and not identically zero.
To do this, we will prove the following below:
Claim. Ψn(X,X) = ±Xα(n) + . . . , where α(n) =

∑
d|n max(d, n/d) > σ(n) when

n is not a square.

A word on the polynomial Φ. In parallel to

Ψn(X, j(τ)) =
∏

M∈Γ\Mn

(X − j(Mτ)),

we let
Φn(X, j(τ)) =

∏
M∈Γ\M0

n

(X − j(Mτ))

where M 0
n runs over primitive matrices (i.e. gcd(a, d) = 1). The same proof as

above shows Φn(X, j(τ)) ∈ Z[X, j(τ)]. We have

Ψn(X, j(τ)) =
∏
`2|n

Φn/`2(X, j(τ)).

Ψn has better analytic properties (because there is no primitivity condition), but
Φn is better algebraically (it is irreducible).
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Cyclic isogenies and the modular group. For the results of this section, con-
sult [11, §5.3]. We are therefore interested in roots of Φn(X, j(τ)), i.e. τ, τ ′ ∈ H/Γ
such that Ψ(j(τ), j(τ ′)) = 0; this is the same as τ ∼ τ ′′, τ ′ ∼ nτ ′′, for some τ ′′,

where ∼ denotes equivalence under Γ. But any γ ∈ Γ can be written γ1

(
n 0
0 1

)
γ2,

so after scaling we obtain

0→ Z/nZ→ E′ → E → 0,

a cyclic isogeny, corresponding to the inclusion of lattices E = C/L←↩ C/L′ = E′,
with deg(E′ → E) = n. In other words, Ψn(j(τ), j(τ ′)) = 0 iff there exists a cyclic
n-isogeny E′ → E.

To study these, we must define congruence subgroups. We have SL2(Z) = Γ1 =

Γ0(1) = Γ1(1) = Γ(1), but we also have for γ =
(
a b
c d

)
∈ Γ the subsets

Γ0(N) = {γ : c ≡ 0 (mod N)} ⊃ Γ1(N) = {γ : a ≡ 1 (mod N), c ≡ 0 (mod N)}
⊃ Γ(N) = {γ : a, d ≡ 1 (mod N), b, c ≡ 0 (mod N)}

Since Γ(N) / Γ1, we have an exact sequence

1→ Γ(N)→ Γ1 → SL2(Z/NZ)→ 1.

These are the modular groups. Just as Γ1\H parameterizes elliptic curves, Γ0(N)\H
parameterizes triples (E,E′, φ) with φ : E → E′ a cyclic N -isogeny. There are only
finitely many sublattices of index N , so there are only finitely many E′ for a fixed
E. Equivalently, we can look at the kernel

1→ Z/NZ→ E → E′ → 1,

which corresponds to a subgroup of order N in E. In sum [18, Appendix C, §13],
[7, §11.3],

Γ1 \ H←→ {E}
Y0(N) = Γ0(N) \ H←→ {(E,C) : E,C = Z/NZ ⊂ E}
Y1(N) = Γ1(N) \ H←→ {(E,P ) : E,P ∈ E of order N}
Y (N) = Γ(N) \ H←→ {(E,P1, P2) : P1, P2 ∈ E a basis for N -torsion}

We can also take their compactifications X0(N), X1(N), and X(N).
We have a map j : Γ0(N) \ H = X0(N)→ H ' P1

C. Thus

{(X,Y ) ∈ C2 : Φn(X,Y ) = 0} = {(j(E), j(E′)) : E′ → E n-cyclic}
= {([E], [E′]) ⊂ X(1)2 : E → E′ n-cyclic}.

So we have a map j : X0(N) → X(1)2 → P1 × P1 by (E,E′) 7→ ([E], [E′]), and
hence we obtain a model for this curve. This is generically one-to-one, but may be
singular [18, Theorem 13.1].

A CM elliptic curve is cyclically isogeneous to itself, E
φ−→ E′ ' E. If we look

on the diagonal,

Φn(X,X) = 0 = Tn ⊂ X1 ×X1.
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If τ ∈ H, τ = τQ where Q ∈ Q0
D (which is to say B2−4AC = D, Aτ2 +Bτ+C = 0,

A > 0, gcd(A,B,C) = 1). From before,

End(E) ' {M ∈M2(Z) : Mτ = τ} ∪ {0}

←→ OD = {(t+ u
√
D)/2 : t, u ∈ Z, t ≡ Du (mod 2)}

where we associate to λ = (t+ u
√
D)/2 the matrix

M =
(

(t−Bu)/2 −Cu
Au (t+Bu)/2

)
.

We have trM = Trλ = t, detM = Nλ = n = (t2 −Du2)/4.
Therefore ⊔

D

Q0
D =

⋃
n

{fixed points of M ∈Mn}.

For fixed n, we have t2−4n = Du2 ≤ 0; hence |t| < 2
√
n, which allows only finitely

many t, hence only finitely many u (if we assume n is not a square), and thus
finitely many D.

Calculation for n = 2. We will now give an extended derivation of the fact that

Φ2(X,X) = (X − 8000)(X + 3375)2(X − 1728).

The first term corresponds to j = 203 = 8000, D = −8; j = −3375 = −153

corresponds to D = −7, with the curve y2 = x3 + 35x − 98; and j = 1728 = 123,
with the curve y2 = x3−x. Since |t| < 2

√
2 < 3, we have t = 0,±1,±2, which gives

d = −8, −7 (twice), and −4 (twice, but we count it only have the time because of
the extra involution of i in the fundamental domain—more on this below).

We can find these roots from another point of view. We want all E such that
there exists a 2-isogeny E → E, 0 → 〈T 〉 → E → E → 0 where 2T = O so T is a
2-torsion point, which is to say we want the set

{(E, T ) : T ∈ E, 2T = O, E/〈T 〉 ⊂ E}

for a fixed isogeny. In the Weierstrass model y2 = x3 +Ax2 +Bx, −(x, y) = (x,−y)
so 2T = O iff y = 0; after translation we may assume that T = (0, 0). (Note that
this implies X0(2) is rational, as we can always rescale A 7→ λA, B 7→ λ2B, so we
have a unique choice A2/B ∈ C determining the curve uniquely.)

To E and T we want to associate E′ = E/〈T 〉, so to P = (x, y) ∈ E we associate
P ∗ = P + T = (x∗, y∗) = (B/x,−By/x2), and (P ∗)∗ = P . We have

xx∗ = B

x+ x∗ = x+B/x = ξ

y + y∗ = y(1−B/x2) = η

yy∗ = −B(x+A+B/x) = −B(ξ +A)

This implies η2 = (ξ2 − 4B)(ξ + A), so we obtain the curve E′ : η2 = ξ3 +
Aξ2 − 4Bξ − 4AB. According to our model, we take ξ 7→ ξ − A = ϑ and have
η2 =

(
(ϑ−A)2 − 4B

)
ϑ.

So E/〈T 〉 = E′, E/〈T ′〉 = E, and Y ′2 = X ′3 + A′X ′2 + B′X ′ for T ′ = (0, 0),
hence A′ = −2A, B′ = A2 − 4B. A′′ = 4A, B′′ = A′2 − 4B′2 = 16B, so E′′ ' E.
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So we have a general description for 2-isogeny:

j(E) = 1728
(B −A2/3)3

B2(B −A2/4)
= 1728

(1− t2/3)3

(1− t2/4)
= j

where we let t = A2/B, and

j(E′) = 1728
(B +A2/12)3

B(B −A2/4)
= 1728

(1 + t2/12)3

(1− t2/4)
= j′.

We can now look for a relation between these two functions. Rewriting, we have

j =
44(3− t2)3

4− t2
= X, j′ =

4(1 + t2)3

(4− t2)2
= Y

and we get Φ2(X,Y ) = 0. Setting them equal, we have j = j′ iff

(B −A2/4)(B −A2/3)3 = B(B +A2/12)3.

If A = 0, j = j′ = 1728, so this gives one solution. Since A′ = −2A, B′ = 4B =
A2− 4B so A2− 8B = 0 is another solution ((1− 2)(1− 8/3)3 = (1 + 2/3)3): A2 =
8B = 8000. What is left is a quadratic equation: letting λ = B/A2, λ′ = 1/4− λ,
B 7→ λ, A 7→ 1, we obtain (λ− 1/8)(λ2 − 1/4λ+ 4/81) = 0. We find the final root
in H

λ =
1
8

+
5
√
−7

72
, j = −3375.

Therefore if E 2−→ E, we have one of the following curves: If D = −4, we have
y2 = x3 +Bx, and

(x, y) 7→
(
y2

2ix2
,
y(x2 −B)
2(1− i)x2

)
.

If D = −8, we have y2 = x3 − 30c2x+ 56c3, and

(x, y) 7→
(

4c− y2

2(x− 4c)
,
−y(x2 − 8cx− 2c2)

2
√
−2(x− 4c)2

)
.

And if D = −7, we have y2 = x3 − 35c2x− 98c3, with a complicated rule.

4. A Class Number Relation and Traces of Singular Moduli

For the development of this section, see [22].

Hurwitz-Kronecker class number relation. For K = Q(
√
D), we have the

class group
Cl(D) = {a ⊂ K : a Z-rank 2, mult(a) ' OD}/K×

We let # Cl(D) = h(D). We define

h′(D) =
h(D)

(1/2)w(D)

where w(D) is the number of roots of unity in Q(
√
D), thus

h′(D) =


1/3, D = −3
1/2, D = −4
h(D), otherwise.
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We have QD ⊃ Q0
D together with an action of Γ, and

Γ \Q0
D ' Cl(D)

[A,B,C] 7→ (x 7→ N(x)/N(a)), a = ZA+ Z(B +
√
D)/2.

where Q 7→ τQ, a root of Aτ2 +Bτ + C = 0. Let

h(D) = #(Γ \Q0
D) =

∑
Q∈Γ\Q0

D

1

and thus

h′(D) =
∑

Q∈Γ\Q0
D

1
#ΓQ

where #ΓQ is the stabilizer of Q by Γ = PSL2(Z). We let H(D) be the same
expression dropping the primitivity condition (though we now may no longer have
the full endomorphism ring), i.e.

H(D) =
∑

Q∈Γ\QD

1
#ΓQ

.

H(D) is called the Hurwitz class number.
Example. The first nontrivial example is d = −D = 15, and we have the roots
τ = (1 +

√
−15)/2, τ2 − τ + 4 = 0, and τ = (1 +

√
−15)/4, 2τ2 − τ + 2 = 0. We

find h(15) = H(15) = 2, and

j =
−191025± 85995

√
5

2
,

respectively.
Continuing in this way, we have

|D| h′(D) H(D) |D| h′(D) H(D)
3 1/3 1/3 23 3 3
4 1/2 1/2 24 2 2
7 1 1 27 1 4/3
8 1 1 28 1 2
11 1 1 31 3 3
12 1 4/3 32 2 3
15 2 2 35 2 2
16 1 3/2 36 2 5/2
19 1 1

...
...

...
20 2 2

Letting H(D) = H(−D), we have

Theorem (Hurwitz-Kronecker). For all n > 0, n not a square, we have∑
|t|<2

√
n

H(4n− t2) =
∑
d|n

max(d, n/d).

If we formally define H(0) = −1/12, then the formula is also true when n is a
square.
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Proof. We have the modular polynomial Ψn(X,Y ), where the degree of Ψn in both
X and Y is σ(n). For n not a square, we can write

Ψn(X,X) =
∏
t2<4n

H4n−t2(X)

where

HD(X) =
∏

Q∈Γ\QD

(X − j(τQ))1/ΓQ .

Since deg Hd(X) = H(D), deg Ψn(X,X) =
∑
t2<4nH(4n− t2). We have

Ψn(j(τ), j(τ)) = q−k + · · · =
∏
ad=n
0≤b<d

(j(τ)− j((aτ + b)/d))

=
∏
M

(q−1 − ζbdq−a/d + o(1)).

Counting the order of the poles, we indeed have k =
∑
ad=n max(a, d). �

Traces of singular moduli: definitions. With h(D) = h, we showed that for
the quadratic forms Γ \ Q0

D = {Q1, . . . , Qh} the numbers j(τQ1), . . . , j(τQh
) are

conjugate algebraic numbers. Thus

Tr(j((D +
√
D)/2)) =

h(D)∑
i=1

j(τQi
).

This does not quite have the right analytic properties, so we replace Q0
D with QD,

and count with multiplicities 1/#ΓQ as above.
Note that when we defined j(τ) = E4(τ)3/∆(τ) = q−1 + 744 + . . . , we could

have replaced the constant with any other and still have a modular function; we
may also choose to define J(τ) = j(τ)− 744 so that J has no constant term.
Definition. We let

t(d) =
∑

Q∈ΓQD

1
#ΓQ

J(τQ)

where d = −D.
Example. Following the computation above, we have the following values:

d H(d) t(d)
3 1/3 −248 = (0− 744)/3
4 1/2 492 = (1728− 744)/2
7 1 −4119
8 1 7256
11 1 −33512
12 4/3 53008
15 2 −192513
16 3/2 287244
19 1 −885480



COMPLEX MULTIPLICATION 21

In the following discussion, we need the following modular forms:

E4(τ) = 1 + 240(q + 9q2 + · · ·+ σ3(n)qn + . . . )

∆(τ) =
1

1728
(E3

4 − E2
6) = q

∞∏
n=1

(1− qn)24

η(τ) = q1/24
∞∏
n=1

(1− qn) = q1/24 − q25/24 − . . .

θ1(τ) =
∞∑

n=−∞
(−1)nqn

2
= 1− 2q + 2q4 − 2q9 + . . .

Definition. We define the weight 3/2 modular form

g(τ) = θ1(τ)
E4(4τ)
η(4τ)6

= (1− 2q + 2q4 + . . . )
1 + 240q4 + . . .

q(1− 6q4 + . . . )
= q−1 − 2 + 248q3 − 492q4 + 4199q7 − . . . .

A quick check suggests:

Theorem. Write g(τ) =
∑∞
n=−1Bnq

n. Then t(n) = −Bn for all n > 0.

This theorem will follow from the following:

Theorem. For all n > 0:

(i)
∑
r2<4n

H(4n− r2) =
∑
d|n

max(d, n/d) +

{
1/6, n a square;
0, else.

(ii)
∑
r2<4n

(n− r2)H(4n− r2) =
∑
d|n

min(d, n/d)3 −

{
n/2, n a square;
0, else.

(iii)
∑
r2<4n

t(4n− r2) =


−4, n a square;
2, 4n+ 1 a square;
0, else.

(iv)
∑

1≤r<2
√
n

r2t(4n− r2) = −240σ3(n)+


−8n, n a square;
4n+ 1, 4n+ 1 a square;
0, else.

If we take H(0) = −1/12, we can replace these with the simpler expressions:

(i)
∑
r2≤4n

H(4n− r2) =
∑
d|n

max(d, n/d).

(ii)
∑
r2≤4n

(n− r2)H(4n− r2) =
∑
d|n

min(d, n/d)3.

(iii)
∑

r2≤4n+1

t(4n− r2) = 0.

(iv)
∑

1≤r≤
√

4n+1

r2t(4n− r2) = −240σ3(n).

In fact, these relations completely determine t and H successively, as we will see
below.
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Example. Let n = 3. We compute inductively in pairs. By (1) and (2),

H(12) + 2H(11) + 2 + 2(1/3) = 3 + 3 = 6

3H(12) + 4H(11)− 2− 12(1/3) = 1 + 1 = 2

Solving these we find H(11) = 1, H(12) = 4/3. Similarly, once can compute t(12)
and t(11).

Traces of singular moduli: proofs I. See [22, §2].

Proof (Equalities (iii)–(iv) imply the first theorem). We show that Bn satisfy the
same equations (iii) and (iv) as t(n). Since t is unique (as the above example
suggests), this will imply the result.

We have

g(τ) = q−1 − 2 + 248q3 − · · · =
∑

n≡0,3 (4)

Bnq
n ∈M+

3/2(Γ0(4)).

But also we have

θ(τ) =
∑
n∈Z

qn
2

= 1 + 2q + 2q4 + · · · ∈M+
1/2(Γ0(4))

with nonzero coefficients only when n ≡ 0, 1 (mod 4). We multiply these:

g(τ)θ(τ) = (q−1− 2 + 248q3 + . . . )(1 + 2q+ 2q4 + . . . ) = q−1 + 0 + · · · ∈M2(Γ0(4))

which has every coefficient 2 (mod 4) equal to zero. Applying the U2 operator
which acts by

∑
n anq

n 7→
∑
n a2nq

n, we obtain an element of M2(Γ0(2)) with only
even coefficients, which then lives in M2(Γ(1)); but this space is empty, therefore
the form is constant and thus identically zero. In other words,(∑

d

Bdq
d

)(∑
r

qr
2
)∣∣∣∣U4 =

∑
n

(∑
r

Bn−r2q
n

)∣∣∣∣U4

=
∑
n

(∑
r

B4n−r2

)
qn = 0.

For the other, use the Rankin-Cohen bracket; check that g′(τ)θ(τ)−3g(τ)θ′(τ) ∈
M4(Γ0(4)) is modular with all coefficients with n ≡ 2 (mod 4) equal to zero, so
that we actually have an element of M4(SL2(Z)), hence a constant multiple of E4:

(g′θ − 3gθ′) |U4 =
(∑

d

dBdq
d

)(∑
r

qr
2
)
− 3
(∑

d

Bdq
d

)(∑
r

r2qr
2
)∣∣∣∣U4

=
∑
r

(4− r2 − 3r2)Bdqr.

�

We now proceed to ([22, §3]):

Proof of (i) and (ii). For all n ∈ N, we have Ψn(X,Y ) ∈ Z[X,Y ] with

Ψn(X, j(τ)) =
∏

M∈Γ\Mn

(X − j(Mτ)) =
∏
ad=n
0≤b<d

(X − j((aτ + b)/d)
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where Mn = {M ∈ M2(Z) : detM = n}. Then Ψn(j(τ), j(τ)) = 0 iff τ = Mτ
for some M ∈Mn, which happens iff τ has CM by OD where n is a norm in OD,
D = r2 − 4n. Thus for n not a square,

Ψn(X,X) =
∏
r2<4n

H4n−r2(X),

where for all d > 0, d ≡ 0, 3 (mod 4) we have

Hd(X) =
∏

τ∈Γ\Qd

(X − j(τQ))1/#ΓQ

(Hd is a polynomial except for the cases H3(X) = 3
√
X and H4(X) =

√
X − 1728).

So Hd(X) =
∏H(d)
i=1 (Xj(τi)), and

Hd(j(τ)) =
H(D)∏
i=1

(J(τ)− J(τi)) =
∏

Q∈Γ\QD

(q−1 − J(τQ) +O(q))1/#ΓQ

= q−H(d)(1− t(d)q +O(q2)).

and

Ψn(j(τ), j(τ)) =
∏
r2<4n

H4n−r2(j(τ))

= q−
∑

r H(4n−r2)(1− (
∑
r t(4n− r2))q +O(q2)).

Indeed,

Ψn(j(τ), j(τ)) =
∏
ad=n
0≤b<d

(q−1 − ζbdq−a/d + 0 +O(q>0))

=
∏
ad=n

(q−1 − ζbdq−a/d)(1 +O(q>1))

=
∏
ad=n

(q−d − q−a)(1 +O(q2)) = ±q−
∑

ad=n max(a,d) + . . .

which proves (i). For (ii), we have the term 1 + εq + O(q2) instead, where ε = −2
if n = `(`+ 1), i.e. 4n+ 1 is a square.

If n is a square, Ψn(X,X) = 0; instead we use

Ψn(X,Y )
Ψ1(X,Y )

∣∣∣∣
X=Y

=
∏
r2<4n H4n−r2(X)
H4(X)H3(X)2

which implies the result up to a simple correction factor. �

Remark. In fact, the calculation #(C1∩C2) = [C1]·[C2] is actually one of homology
on H(S2×S2) ' Z×Z. This looks locally like four branched lines, which correspond
to four points in the projective line which will have a nontrivial invariant—therefore
this is not just a homology intersection but sections are also involved, explaining
the higher weight.
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Traces of singular moduli: proofs II. Now consult [22, §4]. To prove (iii) and
(iv), we need to set up some more machinery. We start with

Ψn(X,X) =
∏
r2<4n

H4n−r2(X)

and take the logarithmic derivative of both sides to obtain∑
M∈Γ\Mn

1
(j(τ)− j(Mτ))

=
∑
r

Λ4n−r2(τ)

where

Λd(τ) =
1

2πτ
d

dτ
log HD(j(τ)) =

−1
2πi

j′(τ)
H ′
D(j(τ))

HD(j(τ))

so since j = E3
4/∆, −1/(2πi)dj/dτ = E2

4E6/∆ by uniqueness.
Differentiating the relation in the preceding proof, we find

Λd(τ) = H(d) + t(d)q +O(q2).

Proposition. We have

E4(τ)E6(τ)
∆(τ)

∑
M∈Γ\Mn

(E4|M)(τ)
j(τ)− j(Mτ)

=
1
2

∑
r2<4n

(n− r2)Λ4n−r2(τ)

where for M =
(
a b
c d

)
∈Mn we let

(E4|M)(τ) =
n3

(cτ + d)4
E4

(
aτ + b

cτ + d

)
so E4|(γM) = E4|M .

Proof. Both sides are meromorphic modular of weight 2, as τ 7→ γτ just permutes
M . Both are holomorphic at ∞ because each term is bounded. Both have only
simple poles, since locally there are no multiple intersections. If the residues at the
poles are the same, we are done.

Let Mα = α, M =
(
a b
c d

)
, λ = cα+d, where α is a CM point. Then the residue

of the left-hand side at τ = α is
E4(α)E6(α)

∆(α)
(E4|M)(α)

j′(α)− (n/λ2)j′(Mα)
=
E4(α)E6(α)

∆(α)
(n3/λ4)E4(α)

(1− n/λ2)j′(α)

=
−1
2πi

(
n3/λ4

1− n/λ2

)
=
−1
2πi

(
λ

3

λ− λ

)
since n = λλ, M(α, 1)t = λ(α, 1)t, λ+ λ = r. Therefore we obtain

−1
2πi

∑
r2<4n

∑
α∈Qr2−4n/Γ

−λ3

λ− λ
=

1
4πi

∑
r

∑
α

λ3 − λ3

λ− λ

=
1

4πi

∑
r2<4n

(
λ2 + λλ+ λ

2
)

= (λ+ λ)2 − λλ = r2 − n

If we total these, we will find simple poles, each with residue 1, added r2−n times.
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As τ →∞, q → 0, the right-hand side becomes

1
2

∑
r2<4n

(n− r2)
(
H(4n− r2) + t(4n− r2)q +O(q2)

)
.

Expanding, we have on the left-hand side

(1 + 240q + . . . )(1− 504q + . . . )
q(1− 24q + . . . )

∑
ad=n
0≤b<d

(
a3

d

)
E4((aτ + b)/d)

j(τ)− j((aτ + b)/d)

= q−1(1− 240q + . . . )
∑
ad=n

a3

d

∑
b (mod d)

1 + 240
∑∞
`=1 σ3(`)ζb`d q

a`/d

q−1 − ζbdq−a/d +O(q>0)

so if a < d, this becomes∑
b (mod d)

240q

(∑
`

σ3(`)ζb`d q
a`/d

)( ∞∑
m=0

ζ−bmd q(1−a/d)m

)

= 240q
∑
`,m

σ3(`)qa`/d+m(1−a/d)

{
d, l ≡ m (mod d)
0, else

= qd(1 + (240σ3(`)δa,1 + δa,d−1)q + . . . ).

We find that ` = m = 1 or ` = d,m = 0 (a = 1) or ` = 0,m = d (a = d − 1). In
total, we have

a3(1 + (240σ3(d)δa,1 + δa,d−1 + . . . )q +O(q2)

For a > d, there is no constant term, and we get a3(0 + (−δa,d+1)q+O(q2)) so the
sum is ∑

0<a<
√
n

a|n

a3 + (240σ3(d) + ε)q + . . .

for a correction factor ε if n = k(k + 1). Altogether, this gives the result. �

Remark. This can be generalized as follows: we let

M+
3/2 =

∑
d�−∞
d≡0,3 (4)

Bdq
d

where the + signifies allowing one pole. This space is generated by the forms

g1 = q−1 − 2 + 248q3 − 492q4 + . . .

g4 = q−4 − 2− 26752q3 − . . .
q5 = q−5 + 85995q3 + . . .

Notice that
1√
5
(j(α−15)− j(α′−15)) = (−191025− 85995

√
5)/2

so in some sense these represent twisted traces. We find the form

q−1 + 10− 64q3 + 108q4 + · · · ∈M+
−1/2,
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where now the coefficients are the sum ofK(αQ)/ΓQ for a different modular function
K: letting j(τ) = E4(τ)3/∆(τ), the function

E∗2 (τ) = E2(τ)−
3

π Im(τ)
is modular of weight 2, and then

K(τ) =
E∗2E4E6 + 3E3

4 + 2E2
6

6∆(τ)
.

We have a similar theorem that if τ is CM then K(τ) ∈ Q.

5. Constructing Class Fields

A review of class field theory. For the results of this section, see [8]. For a
more general reference on class field theory, see [14, Chapter VI], [12, Part 2], or
[1].

For K be a number field, one of the main motivating problems of algebraic
number theory is to characterize finite extensions L/K.

K

L

~~~~~~~~

K

G=Gal(K/K)

��������������

Q

If L/K is Galois and abelian, then class field theory gives a one-to-one correspon-
dence between such extensions and something explicit, namely, decompositions of
ideals of K into classes.

We have the usual class group Cl(K) as the quotient of all fractional ideals by
principal fractional ideals, with #Cl(K) = h(K) < ∞. In this case, the usual
classes correspond to the Hilbert class field H of K which is the maximal abelian
unramified extension of K (which class field theory says is of finite degree, indeed
[H : K] = h(K)).
Theorem. Let K = Q(

√
D) for D < 0 squarefree, and

h = h(K) = #(QD/Γ) = #{τ ∈ H/Γ : τ quadratic, D(τ) = D}.
Let j1 = j(τ1), . . . , jh = j(τh) ∈ Z be the corresponding conjugate algebraic integers.
Then the Hilbert class field H = K(j1) = K(j1, . . . , jh).

K(j1) = K(j1, . . . , jh) = H

Q(j1)

2

kkkkkkkkkkkkkkkkk
K

h

Q

h
2

lllllllllllllllllll
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Pick m ⊂ ZK integral (this may involve some real place), and let Im be the set of
fractional ideals prime to m (in numerator and denominator); Im is a group under
multiplication [14, §VI.1]. Let Pm = {〈ξ〉 : ξ ≡ 1 (mod m)}, which in the case
p∞ | m corresponding to σ : K ↪→ R, we insist σ(ξ) > 0. If L/K is Galois, we let
Nm(L/K) = NL/K(Im(L))Pm(K).
Theorem (Second inequality of class field theory).

hm(L/K) = [Im : Nm] ≤ [L : K].

See e.g. [8, §4].
Definition. L/K is a class field if hm(L/K) = [L : K] for some m. The smallest
such m is called the conductor, f.

We have that
Pm(K) ⊂ Nm(L/K) ⊂ Im(K).

The reason:

{p : p a norm from L} ⊂ {p : p ∈ Nm} ⊂ {p : p ∈ ZK}.

The first has density 1/[L : K], the second has density 1/hm(L/K).
Example. If K = Q, m = 〈p〉, p ≡ 1 (mod 4), Im = 〈α〉 prime to p, Pm = {〈ξ〉 : ξ ≡
1 (mod p)}. L = Q(

√
p) has N = NL/K(a) = ax2 + bxy + cy2 where b2 − 4ac = p,

so 4aN = (2ax+ by)2 − py, so
(
N
p

)
=
(
a
p

)
= 1.

Therefore Nm(L/K)/Pm = ((Z/pZ)×)2, and 〈α〉 ∼ 〈β〉 if α ≡ β (mod p) and(
α
p

)
=
(
β
p

)
.

Theorem (Main theorem of class field theory).
(i) L/K is a class field iff L/K is abelian.
(ii) Given any Im ⊃ H ⊃ Pm, there exists a unique class field L/K such that

H = Nm(L/K), so [L : K] = (Im : H).
(iii) p is ramified in L/K iff p | f(L/K).
(iv) (Artin reciprocity) Gal(L/K) ' Im/Nm(L/K).
See [8, §6]. For example, if we take OK , then Gal(H/K) ' Cl(K).
The Artin map is defined as follows Im/H → Gal(L/K) by [a] 7→ σa, defined

multiplicatively where [p] 7→ σp = Frobp, where FrobP/p(x) ≡ xN(p) (mod P) for
all x ∈ OL, so Frobp ∈ Gal(L/K) is well-defined up to conjugation (for an abelian
extension this condition is trivial).

To sum up, we have some partition of the (fractional) ideals of K, prime to some
m, into finitely many classes A1 = [O], . . . ,Ah, such that if λ ≡ 1 (mod m) for
λ ∈ K×, then 〈λ〉 ∈ A1.

Then the splitting of any prime ideal p of K depends only on the class of p. We
have NL/K(Pi) = pf , fg = n, f is the smallest number such that pf ∈ A1. Every
NL/K(A) = a, implies a ∈ A1, so Nm(L/K) ⊂ H ⊂ Im(K), where the quotient
Im(K)/Nm(L/K) ' Gal(L/K).

Kronecker’s congruence. If we take K = Q(
√
D), we have τ1, . . . , τh ∈ H/Γ

where h(K) = h = h(D), from j(τ1), . . . , j(τh) by associating a to j(a).
Let L = Zω1 + Zω2 be a lattice; we define f̃(L) = ω−k2 f(ω1/ω2) implied by

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ).
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so f̃(tL) = t−kf̃(L) for all t ∈ C×. Thus modular forms of weight k correspond to
functions of lattices which are homogeneous of degree k.

A modular function has k = 0, a 7→ j(a) = C/a = j(Zτ + Z) = j(τ), and then
we have j(λa) = j(a), Cl(K)→ Q.

Theorem. If 〈p〉 = pp, p 6= p,
(
D
p

)
= 1, and a is a (fractional) ideal, then

j(ap) ≡ j(a)p (mod p)

(i.e. j(ap) = σp(j(a))).
We will first prove that the congruence holds modulo p or modulo p, since then

j(app) = j(a) ≡ j(ap)p (mod p).

Claim (Kronecker’s congruence). If X = j(α), Y = j(pa), then

(X − Y p)(Xp − Y ) ≡ 0 (mod p).

Proof of claim. (See also [2, II, §5, Theorem 2], [11, §10.1, Theorem 1].) We have

Φn(X, j(τ)) =
∏

M∈Γ\M0
n

(X − j(Mτ)) ∈ Z[X].

For n = p,

Φp(X, j(τ)) = (X − j(pτ))(X − j(τ/p)) . . . (X − j((τ + p− 1)/p))

which is in Z[ζp]((q1/p)). Let π = 1 − ζp, so that π | p and ζp ≡ 1 (mod π). We
have j(τ) = q−1 + . . . , hence j(pτ) = q−p + . . . , and j(τ/p) = q−1/p + . . . . Thus

Φp(X, j(τ)) ≡ (X −
∑
ncnq

np)
(
X −

∑
ncnq

n/p
)p

≡ (X − j(τ)p) (Xp −
∑
n c

p
nq
n)

≡ (X − j(τ)p)(Xp − j(τ)) (mod π).

Thus
Φ(X,Y ) ≡ (X − Y p)(Xp − Y ) (mod p)

in Z[X,Y ]. �

Letting X = j(a), Y = j(ap), we have the theorem. (Also see [8, §9].)

The function φM (τ) and the polynomial Dn(X, j(τ)). If a as a lattice is

spanned by ω1, ω2, then ap is spanned by aω1 + bω2, cω1 + dω2, with P =
(
a b
c d

)
and detP = p. Similarly we have a matrix P that acts as multiplication by p.

If f ∈ Mk, L = Zω1 + Zω2, f(L) = f(L) = ω−k2 f(ω1/ω2). Then the correspon-
dence L 7→ ∆(L) ∈ C has ∆(tL) = t−12∆(L) for t ∈ C×, where

∆(τ) = q
∞∏
n=1

(1− qn)24 = η(C)24 ∈M12.

The function F (τ) =
√

Im τ |η(τ)|2 has “weight zero” (it is not holomorphic, but
F : H/Γ→ R>0 is well-defined). Since

η

(
aτ + b

cτ + d

)
= ζn24

(√
cτ + d

)
η(τ),

we have |η(γτ)| = |cτ + d|1/2η(τ) and Im(γτ) = 1/|cτ + d|2.
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If M =
(
a b
c d

)
∈Mn, we define

(∆|M)(τ) = n12(cτ + d)−12∆
(
aτ + b

cτ + d

)
.

We have (∆|M1)|M2 = ∆|(M1M2), ∆|γ = ∆ for γ ∈ Γ = SL2(Z), so the definition
depends only on M ∈ Γ/Mn.

Let φM (τ) = (∆|M)(τ)/∆(τ).
Proposition. If τ ∈ H is a CM point, then φM (τ) ∈ Q.

In fact, later we will show that φM (τ) is a unit away from n.

Proof. (See also [2, II, §2].) The polynomial

Dn(X, j(τ)) =
∏

M∈Γ\Mn

(X − φM (τ))

is Γ-invariant, as

φM (γτ) =
(∆|M)(γτ)(cτ + d)−12

(∆(γτ))(cτ + d)−12
= φMγ(τ).

Moreover, Dn(X,Y ) ∈ Z[X,Y ], since taking the usual cosets{(
a b
0 d

)
: ad = n, 0 ≤ b < d

}
we have

Dn(X, j(τ)) =
∏
ad=n
0<b≤d

(
X − a12∆((aτ + b)/d)

∆(τ)

)
=
∏
ad=n

a12ζb` q
a/d(1− 24ζa/dq + . . . )
q(1− 24q − . . . )

so as with the proof for Ψn(X, j(τ)) the polynomial must have integer coefficients.
�

We actually have that:
Theorem. If n ∈ N, there exists a polynomial Dn(X,Y ) ∈ Z[X,Y ] such that∏

M∈Γ\Mn

(X − φM (τ)) = Dn(X, j(τ)),

and Dp(0, Y ) = (−1)p−1p12.

Proof. (See also [2, II, §2, Lemma 1].) The calculation of the constant coefficient
in X is as follows:

−φ(
p 0
0 1

)(τ)
p−1∏
b=0

(−φ(
1 b
0 p

)(τ) = p−12 ∆(pτ)
∆(τ)

p−1∏
b=0

∆((τ + b)/p)
∆(τ)

= p−12 q
p(1 + . . . )
q(1 + . . . )

p−1∏
b=0

ζbpq
1/p + . . .

q(1 + . . . )

= p12ζ1+···+p(p−1)/2
p (1 +O(q))

so the constant coefficient is p12(−1)p−1. �

Corollary. If τ is a CM point, M ∈Mn, then φM (τ) ∈ Z.
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Proof. It is a root of a monic equation with coefficients in Z. �

We have j(L) = j(ω1/ω2) = j(C/L) (e.g. a ⊂ C) if L = Zω1 + Zω2, and
similarly ∆(L) = ω−12

2 ∆(ω1/ω2), which is independent of the choice of basis, and
∆(tL) = t−12∆(L).

The proof of the congruence. We have shown Φp(X,Y ) ≡ (Xp − Y )(X − Y p)
(mod p), so

(j(ap)− j(a)p)(j(ap)p − j(a)) ≡ 0 (mod p).
Recall we have that NL/K(Im(L)) ⊂ H ⊂ Im(K) with

Im(K)/H ' Gal(L/K)

[p] 7→ Frobp

Proof of the theorem. (See also [8, §8].) Let j1, . . . , jh be conjugate over Q, and let
L be the Galois closure of K(j1, . . . , jh). The prime ideals p of K of degree 1, i.e.
those with N(p) = p, 〈p〉 = pp, have density of order 1/h. Let p be unramified in
L/K, with p - (ji − σ(ji)) for σ ∈ Gal(L/K) and i = 1, . . . , h.

We know that

Frobp(j(a)) ≡ j(a)p ≡ j(ap) (mod P),

so that Frobp(j(a)) = j(ap) for infinitely many p.
So for all σ ∈ Gal(L/K), the set contains infinitely many p with Frobp = σ.

Therefore σ(j(a)) is already contained in the conjugates above, so the original
extension is Galois. Density 1/h primes have Frobp(j(a)) = j(ap), but class
field theory says that this must be ≤ 1/h with = 1/h if it is the class field, so
Frobp(j(a)) = j(ap). �

Explicit examples. As examples, we have

D1(X,Y ) = X − 1

D2(X,Y ) = (X + 24)3 −XY
D3(X,Y ) = (X − 32)3(X − 36) + 72X(X + 21)Y −XY 2

D5(X,Y ) = (X2 − 8050X + 54)3 + 800X(X + 25)(47X2 + 269650X + 29375)Y

− 20X(207X2 − 254750X + 129375)Y 2 + 120X(X + 25)Y 3 −XY 4

Example. For D = −7, τ0 = (1 +
√
−7)/4, j(τ0) = −3375 = −153.

D2(X,−3375) = (X + 16)3 + 153X = (X + 1)(X2 + 47X + 212)

has roots −1, τ12
0 , τ0

12. Hence pp = 2, but p = 〈z0〉.

Γ \M2 =
{(

2 0
0 1

)
, P =

(
1 0
0 2

)
, P =

(
1 1
0 2

)}
corresponding to

τ0 7→ 2τ0 = [1, 1 +
√
−7], τ0/2 = [2, (1 +

√
−7)/2], (τ0 + 1)/2.

Note j(2τ0) = 2553, j(τ0/2) = −153, j((τ0 + 1)/2) = −153, and we have:

M φM (τ0)
2τ −1
τ/2 τ0

12

(τ + 1)/2 τ12
0
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Example. For D = −15, h(D) = 2, and τ0 = (1 +
√
−15)/2, τ1 = τ0/2. j(τ0) = λ,

j(τ1) = λ′ = λ where λ = (−191025 + 85995
√

5)/2. Then

H = K(λ) = Q(
√

5,
√
−3)

K = Q(
√
−15)

2

Q

2

We have

M j(Mτ0) j(Mτ1) φM (τ0) φM (τ1) 〈φM (τ0)〉 〈φM (τ1)〉(
2 0
0 1

)
µ λ −ε−8 ε−4τ6

0 1 p12(
1 0
0 2

)
λ′ µ′ ε4τ0

6 ε−4τ0
6 p12 p12(

1 1
0 2

)
λ′ λ ε4τ6

0 −ε−8 p12 1

where ε = (1 +
√

5)/2 and µ = (37018076625 + 16554983445
√

5)/2.

The values φM (τ). Motivated by the proceeding examples, we prove:

Theorem. If p is a prime of degree one, then

〈φM (τ)〉 =


p12, M = P

p12, M = P

1, M 6= P, P .

Proof. (See also [2, II, §3, Theorem 1].) Let pf = 〈α〉. Then

p12 ∆(ap)
∆(a)

= φP (τ)

with P ∈Mp. Then(
p12 ∆(ap)

∆(a)

)(
p12 ∆(ap2)

∆(a)

)
. . .

(
p12 ∆(apf )

∆(a)

)
= p12f ∆(αa)

∆(a)
= p12fα−12 = p12f .

But φM (τ) ∈ Z, so φM (τ) | p12, hence φP (τ) | (p12 + p12f ) = p12. We conclude
that φP (τ) | p12, and therefore( ∏

M 6=P,P

φM

)
φPφP = p12 = p12p12

so
〈∏

M 6=P,P φM (τ)
〉

= 〈1〉. �
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The polynomial Gp(X,Y, Z). We form

Gp(X,Y, j(τ)) =
∑

M∈Γ\Mp

(X − j(Mτ))
∏

M ′ 6=M∈Γ\Mp

(Y − φM (τ)).

This function is invariant under Γ and has no poles. If we look at the q-expansions
as we have done, we find Gp(X,Y, Z) ∈ Z[X,Y, Z] [2, II, §5].

We proved
Φp(X,Y ) ≡ (Xp − Y )(X − Y p) (mod p)

by

Φp(X, j(τ)) = (X − j(pτ))
∏
b (p)

(X − j((τ + b)/p))

≡ (X − j(τ)p)(X − j(τ/p))p

≡ (X − j(τ)p)(Xp − j(τ)) (mod p).

Similarly, we have

Gp(X,Y, j(τ)) = (X − j(pτ))
∏
b (d)

(
Y − φ(

1 b
0 p

)(τ)
)

+
∑
b (d)

(X − j((τ + b)/p))
(
Y − φ(

p 0
0 1

)) ∏
b′ 6=b

(
Y − φ(

1 b′

0 p

)(τ)
)
.

Since

φ(
1 b
0 p

)(τ) =
∆((τ + b)/p)

∆(τ)
=
ζq1/p + . . .

q + . . .
,

we have

Gp(X,Y, j(τ)) ≡ (X − j(τ)p)(Y p −∆(τ)/∆(pτ)) (mod π).

Therefore
∆(τ)
∆(pτ)

≡ f(j(τ)) (mod π),

where f(X) ∈ Z[X] is a certain polynomial of degree p− 1, and in particular

Gp(X,Y, Z) ≡ (X − Zp)(Y p − f(Z)) (mod p)

so in particular Gp(Zp, Y, Z) ≡ 0 (mod p).
But then

G(j(τ)p, φp(τ), j(τ)) = (j(τ)p − j(Pτ))
∏

M ′ 6=P

(φP (τ)− φM (τ)) ≡ 0 (mod p)

so j(τ)p ≡ j(Pτ) (mod p) since p12 | φP (τ) [2, II, §5].
We also define

Hn(X,Y, j(τ)) =
∑

M∈Γ\Mn

(Y − φM (τ))
∏

M ′ 6=M∈Γ\Mn

(Y − j(M ′τ)),

which is also a polynomial with integer coefficients.
We have shown that

Ψp(X, j(τ)) ≡ (X − j(τ)p)(Xp − j(τ)) (mod p)
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and similarly

Dp(Y, j) ≡
(
Y − p12∆(pτ)

∆(τ)

) ∏
b (d)

(
Y − ∆((τ + b)/p)

∆(τ)

)

≡ Y
(
Y p − ∆(τ/p)

∆(τ)

)p
≡ Y

(
Y p − ∆(τ)

∆(τ)p

)
≡ Y (Y p − fp(j(τ)) (mod p).

For this we need:
Proposition. For all p, there exists a polynomial fp(X) ∈ Z[X] such that

∆(τ)1−p ≡ fp(j(τ)) (mod p).

Proof. Since ∆(τ)p ≡ ∆(pτ), it suffices to note

∆(τ)−n = q−n + · · · = jn + · · ·+O(q) = Pn(j) +O(q)

and then take fp = Pp−1. �

Therefore

Gp(X,Y, j(τ)) ≡ (X − j(τ)p)(Y p − fp(j(τ))) (mod p).

Similarly, one shows

Hp(X,Y, j(τ)) ≡ Y (Xp − j(τ)) (mod p).

A congruence property of ∆. This section is developed in [11, §12.1].
Proposition. φP (τ), φP (τ) generate p12, p12 in H.

Proof. We have

Hn(j(Pτ), 0, j(τ)) = (0− φP (τ))
∏
M 6=P

(j(Pτ)− j(Mτ))

= −φP (τ)
∂

∂X
φP (j(Pτ), j(Pτ)) ∈ H.

But j(Pτ) ∈ H, j(Mτ) 6∈ H (it satisfies an equation of discriminant Dp2). We
showed φP (τ) ∈ H, so 〈φP (τ)〉 = p12. �

Indeed,

φP (τ) = p12 ∆(ap)
∆(a)

=
∆(ap−1)

∆(a)
∈ H.

But this only depends on ideal classes, as ∆(a〈λ〉) = λ−12∆(a), for λ ∈ K×. So〈
∆(ab−1)

∆(a)

〉
= b12 ∈ H

and in particular 〈
∆(O)
∆(a)

〉
= a12.

In general, ∆(a) 6∈ Q, but the ratio ∆(a)/∆(b) ∈ H×, and actually we have a
well-defined map

Cl(K)→ H×/(K×)12

[a] 7→ λ, 〈λ〉 = a12.
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Theorem. If a and b are fractional ideals of K, then ∆(a)/∆(b) ∈ H×, and〈
∆(a)
∆(b)

〉
= (ba−1)12.

Corollary. If a ⊂ K is any ideal, then a12 is principal in H.
Corollary. If we let F (τ) = Im(τ)12|∆(τ)|2 (note F (τ) = F (γτ) for γ ∈ Γ =
SL2(Z)), then

F (τ1)/F (τ2) ∈ O×
H

for τ ∈ QD.

Proof. For O = Zω1 + Zω2, we have

∆(a) = (cω1 + dω2)−12∆
(
aω1 + bω2

cω1 + dω2

)
hence

∆(a)
∆(O)

=
(cτ + d)−12∆(Mτ)

∆(τ)
=

1
n12

φM (τ).

But

〈φM (τ)〉 = a12 =
〈
n12(cτ + d)−12∆(Mτ)

∆(τ)

〉
and thus

〈φM (τ)φM (τ)〉 = a12a12 = (Na)12 = 〈n12〉 =
n24

|cτ + d|24
|∆(Mτ)|2

|∆(τ)|2
.

Note that

Im
(
aτ + b

cτ + d

)
=

n12

|cτ + d|24
Im(τ)2,

so we have

n12 Im(Mτ)12

Im(τ)24
= n12F (Mτ)

F (τ)
and so 〈

F (Mτ)
F (τ)

〉
= 〈1〉.

We have shown F (a)/F (O) ∈ (O×
H)+. �

Summary. In the past several sections, we have defined the four polynomials

Ψn(X, j(τ)) =
∏

M∈Γ\Mn

(X − j(Mτ))

Dn(Y, j(τ)) =
∏

M∈Γ\Mn

(Y − φM (τ))

Gn(X,Y, j(τ)) =
∑

M∈Γ\Mp

(X − j(Mτ))
∏

M ′ 6=M

(Y − φM ′(τ))

Hn(X,Y, j(τ)) =
∑

M∈Γ\Mp

(Y − φM (τ))
∏

M ′ 6=M∈Γ\Mp

(X − j(M ′τ))

where

φM (τ) = n12(cτ + d)−12 ∆(Mτ)
∆(τ)

.
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All of these have integer coefficients, the first values being

Ψ1(X, j(τ)) = G1(X,Y, j(τ)) = X − j(τ)
D1(X, j(τ)) = H1(X,Y, j(τ)) = Y − 1,

Ψ2(X, j(τ)) = j(τ)3 − (X2 − 1488X + 162000)j(τ)2

+ (1488X2 + 40773375X + 8748000000)j(τ)

+ (X − 54000)3,

D2(Y, j(τ)) = −Y j(τ) + (Y + 16)3

D3(Y, j(τ)) = −Y j(τ)2 + 72Y (Y + 21)j(τ) + (Y − 9)3(Y − 729)

G2(X,Y, j(τ)) = j(τ)3 − (Y 2 + 48Y + 2256)j(τ)2

+ (1488Y 2 + 67326Y + 1106688−X)j(τ)

+ 3(Y + 16)2(X − 54000)

H2(X,Y, j(τ)) = 2j(τ)3 − (2(X − 744)Y + 48X − 425568)) j(τ)2

+ ((2976X + 40773375)Y + 67326X + 2234304000)j(τ)

+ 3(Y + 16)(X − 54000)2.

For n = p prime one has the congruences:

Ψp(X, j(τ)) ≡ (Xp − j(τ))(X − j(τ)p) (mod p)

Dp(Y, j(τ)) ≡ Y (Y p − fp(j(τ))) (mod p)

Gp(X,Y, j(τ)) ≡ (X − j(τ)p)(Y p − fp(j(τ))) (mod p)

Hp(X,Y, j(τ)) ≡ (Xp − j(τ))Y (mod p)

where fp(j(τ)) is a polynomial of degree p − 1 such that ∆(τ)1−p ≡ fp(j(τ))
(mod pZ((q))).

The above congruences for Ψp(X, j(τ)) and Gp(X,Y, j(τ)) modulo p imply that
j(Pτ) ≡ j(τ)p (mod p) where P ∈Mp is the matrix acting on lattices that corre-
sponds to multiplication by p. Hence j(p−1a) = σp(j(a)), where σp ∈ Gal(H/K) is
the Frobenius element attached to p, while the equation

Hp(j(Pτ), 0, j(τ)) = −φP (τ)
∏
M 6=P

(j(Pτ)− j(Mτ))

= −φP (τ)
∂ψp(X, j(τ))

∂X

∣∣∣∣
X=j(Pτ)

and the corresponding equation for P show that the numbers

φP (τ) = p12 ∆(pa)
∆(a)

=
∆(p−1a)

∆(a)
and φP (τ) = p12 ∆(pa)

∆(a)
=

∆(p−1a)
∆(a)

belong to H. The equation Dp(φM (τ), j(τ)) = 0 and the fact that Dp(Y, j(τ)) is
monic with constant term p12 imply that each φM (τ) is an algebraic integer dividing
p12. Choosing f > 0 such that pf = 〈α〉 is principal, then φP (τ) also divides

f∏
i=1

∆(p−ia)
∆(p1−ia)

=
∆(α−1a)

∆(a)
= α12
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and from this we deduce that the ideal it generates (in H) is exactly p12. It
then follows that ∆(a)/∆(ab) for any fractional ideals a and b of K lies in H
and generates the ideal b12, which implies that the quotient F (a)/F (ab) where
F (τ) = Im(τ)12|∆(τ)|2 is a unit of H.

6. The Kronecker Limit Formula

For the results of this section, consult [11, §20]. Let K be a number field (not
necessarily imaginary quadratic). Then we have the zeta function

ζK(s) =
∑

a⊂OK
integral

1
N(a)s

=
∏
p

1
1−N(p)−s

=
κ

s− 1
+O(1),

where κ = (2r1+r2πr2)/
√
|DK |h(K)R(K) where h(K) is the class number and

R(K) = det(log |ε(j)i |), a matrix of row and column size r1 + r2 − 1. So

Ress=1 ζH(s) .= h(H)R(H)

for H the Hilbert class field of K with Galois group Gal(H/K) = G ' Cl(K). One
can show

ζH(s) =
∏

χ:G→C×
LK(s, χ) =

∑
a⊂OK

χ(a)
N(a)s

,

since the product of (1−N(p)−sζf ) runs over the fth roots of unity, where p splits
into g primes with fg = n = [H : K], so that N(P) = pf , has (1−N(P)−s)−1 = g.

Thus

LK(s, χ) =
∑

A∈Cl(K)

χ(A )ζA (s)

where

ζA (s) =
∑
a∈A

1
N(a)s

is the partial zeta function, and

ζK(s) =
h(K)∑
i=1

ζAi
(s).

A lemma from group representation. Indeed, we have

ζH(s) =
∏
χ∈Ĝ

∑
A∈G

χ(A )ζA (s) = det ζA B−1(s).

If G is a finite abelian group, map g 7→ xg ∈ C compatibly. Then

Proposition. We have∏
χ∈Ĝ

(∑
g∈G

χ(g)xg

)
= det(xgh−1)#G×#G.
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Example. For G cyclic of order 3, choosing x0, x1, x2, we have

(x0 + x1 + x2)(x0 + ωx1 + ωx2)(x0 + ωx1 + ωx2)

= (x0 + x1 + x2)
(
(x0 − (x1 + x2)/2)2 + 3(x1 − x2)2/2

)
= (x0 + x1 + x2)(x2

0 − x0x1 − x0x2 + x2
1 + x2

2 − x1x2)

=

∣∣∣∣∣∣
x0 x1 x2

x2 x0 x1

x1 x2 x0

∣∣∣∣∣∣ .
Proof of proposition. (See also [11, §21.1, Theorem 5].) Let C#G = {[g] = ag ∈ C :
g ∈ G} = V , and

λ : V → V

[g1] 7→
∑

xg[gg1]

Choose for all χ ∈ Ĝ vχ =
∑
χ(g)[g], so that

λ(vχ) = (
∑
gχ(g)xg)vχ ' Cn.

These are the eigenvalues, which are distinct, so the determinant is their product.
�

So ∏
χ∈Ĝ

∑
A∈G

χ(A )ζA (s)),

where each individual term has a pole iff χ is trivial. We find∏
χ6=1

∑
g∈G

χ(g)xg = det(xgh−1 − xg)(n−1)×(n−1).

The statement. Write

ζK,A (s) =
∑

a⊂OK

[a]=A

1
N(a)s

=
κ

s− 1
+ c(A ) +O(s− 1).

Definition. We let

c(A ) = lim
s→1

(ζK,A (s)− κ/(s− 1)) ∈ C.

We have

ζH(s)
ζK(s)

∣∣∣∣
s=1

=
∏
χ6=1

∑
A∈Cl(K)

χ(A )(c(A )− c(O)) = det(c(A B)− c(B))

for A ,B 6= 1 ∈ Cl(K).
Now if K is an imaginary quadratic field, K has (r1, r2, r) = (0, 1, 0) and H has

(0, h, h− 1), so R(H) is a determinant of an (h− 1)× (h− 1) matrix log |ε(j)i |, and
this is exactly the size of the matrix of class groups above.

Since h(H) is approximately the index in O×
H of c(A ), we have that c(A )−c(B)

is approximately the log of a unit of H. Specifically [11, §20.4, First limit formula]:
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Theorem (Kronecker limit formula). If A = [a] ∈ Cl(K) for an imaginary qua-
dratic field K, corresponding to τ ∈ Γ \QD, then

c(A ) =
4π

w
√
|D|

(
γ − 1

2
log 2− 1

4
log |D| − 1

24
logF (τ)

)
.

We will find that

c(A )− c(B) =
−π

6w
√
|D|

log
F (τA )
F (τB)

∈ O×
H ,

and that 〈F (a)/F (O)〉 ⊂ O×
H occurs with index approximately h(H).

Let

E(τ, s) = Im(τ)s
∑′

m,n∈Z
|mτ + n|−2s

for τ ∈ H and Re s > 1. For example, E(i, s) =
∑′

m,n
(m2 + n2)s, and more

generally for τ ∈ QD,

E(τ, s) =
(
|D|
4

)s/2 ∑′

m,n

Q(m,n)s

where Q(x, y) is a quadratic form with integer coefficients of discriminant D,
Q(m,n) = N(x)/N(a), x ∈ a, i.e. if 〈x〉 = ab then Q(m,n) = N(b). Thus

E(τ, s) = w(|D|/4)s/2ζK,A (s),

where A corresponds to τ .

Generalized L-series. Before we get to the proof of this theorem, we set up some
more general machinery. Consult [7, §16.4–16.5].

One can show that
ζK(s) = ζ(s)L(s, ε)

where ζ is the ordinary Riemann zeta function and ε(n) =
(
D
n

)
. Choose a0 ∈ A −1

so that aa0 = 〈λ〉; then λ ∈ a0, and

ζ(A , s) =
∑
a∈A

N(a)−s = N(a0)s
∑

λ∈(a0\{0})/O×
K

|N(λ)|s.

For an imaginary quadratic field, this is equal to

N(a0)s/w
∑′

λ∈a0

N(λ)s

where w = #O×
K is either 2, 4, or 6 is the number of roots of unity.

We let a0 = Zω1 + Zω2 ⊂ C, λ = mω1 + nω2, so that Q(m,n) = N(λ)/N(a0) =
am2 + bmn + cn2, where a = ω1ω1/N(a0), b = (ω1ω2 + ω1ω2)/N(a0), and c =
ω2ω2/N(a0), all a, b, c ∈ Z. Then

b2 − 4ac = (ω1ω2 − ω1ω2)2/N(a0) = D.

Thus

ζ(A , s) =
1
w

∑′

m,n

Q(m,n)−s
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where we associate as usual A ↔ [Q] for Q ∈ QD. Sending τ = ω1/ω2 ∈ H, we
have b2 − 4ac = −4|ω2|2 Im(τ), and

Q(m,n) = |D/4|1/2|mτ + n|2/ Im(τ)

so

ζ(A , S) =
1
w/2
|D/4|−s/2E(τ, s),

with

E(τ, s) =
1
2

∑′

m,n

Im(τ)s

|mτ + n|2s
.

We may generalize this slightly: let

LK(s, χ) =
∑
a∈O

χ(a)
N(a)s

=
h∑
i=1

χ(Ai)ζ(Ai, s)

for a character χ. We may also make the same definition for ψ where ψ is a
Hecke character, i.e. a Grossencharacter, mapping fractional ideals to C× with the
stipulation that ψ(〈λ〉) = λa, for some a ∈ Z≥0. Then∑

a∈A

ψ(a)
N(a)s

=
N(a0)s

w
ψ(a0)−1

∑
λ6=0∈a

λa

|λ|2s
.

With aa0 = 〈λ〉, ψ(aa0) = ψ(〈λ〉) = λa, we find this is

Im(τ)s

2

∑′

m,n

(mτ + n)a

|mτ + n|2s
= E(τ ; a, s) =

1
w
|D/4|−s/2ψ(a0)E(τ ; a, s).

A triple coincidence. Let f(z) =
∑∞
n=1 a(n)qn ∈ Sk be a cusp form, to which

we associate the Hecke L-series
∑∞
n=1 a(n)n−s, which has an Euler product and an

analytic continuation
∫∞
0
f(it)ts−1 dt.

We have associated [a]↔ Q(m,n) for Q ∈ Γ \QD; we now define

ΘA (z) =
∑
m,n∈Z

qQ(m,n) ∈M1(Γ0(D), ε)

i.e. ΘA ((az + b)/(cz + d)) = ε(d)(cz + d)ΘA (z) for
(
a b
c d

)
∈ Γ0(D). For any

f ∈Mk,
∑∞
n=1 a(n)/ns may have poles.

We have a triple coincidence: L(ΘA , s) =
∑
m,nQ(m,n)−s = wζ(A , s): The

series
LK(s, ψ) =

∑
E(τd; a, s) = L(s, fψ)

where fψ is a Hecke (CM) eigenform, a finite sum of Θ series

ΘA (a)(z) =
∑′

m,n

Re((mτA + n)a)q(mτ+n)(mτ+n)/ Im τ ∈Ma+1(Γ0(D), ε)

for a even.
Example. For h = 1, we have Q(i), Q(m,n) = m2 + n2, and

E(i, s) =
∑′

m,n

(m2 + n2)s = (1/4)ζQ(i)(s) = L(θ, s)
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where

θ(z) =
∑
m,n

qm
2+n2

=
(∑

n

qn
2
)2

= (1 + 2q + . . . )2.

For a = 4,

E(i, ψ, s) = 2
∑′

m,n

(m+ ni)4

(m2 + n2)s
=
∑′

m,n

m4 − 3m2n2

(m2 + n2)s
= (1/4)LQ(i)(s, ψ) = L(Θ(4), s)

where ψ(〈a+ bi〉) = (a+ bi)4 and

Θ(4)(z) =
∑
m,n

(m4 − 3m2n2)qm
2+n2

∈M3(Γ0(4),
(
−4
−

)
).

Corrolaries. Here is an equivalent statement of the formula:
Theorem (Kronecker Limit Formula). We have

E(τ, s) =
π/2
s− 1

+ π(γ − log 2− log
√

Im(τ)|η(τ)|)2 +O(s− 1)

where η(τ) = q1/24
∏
n(1− qn) so that

√
Im τη(τ)2 = F (τ)1/24.

Corollary.

ζ(A , s) =
κ

s− 1
+ c(A ) +O(s− 1)

where

κ =
π

w/2
√
|D|

=


π/4, D = −4
π/3
√

3, D = −3
π/
√
|D|, else.

and c(A ) = κ(γ − 2 log 2− 1/2 log |D| − f(τA )), f(τ) = 1/24 logF (τ).
Corollary. Let χ : Cl(K)→ C×. If χ 6= 1, then

LK(1, χ) =
∑
A

χ(A )c(A ) = −κ/24
∑
A

χ(A ) logF (τA ).

Corollary.
ζH(s)
ζK(s)

=
∏
χ6=χ0

L(1, χ)

and
ζH(s)
ζK(s)

∣∣∣∣
s=1

.=
h(H)R(H)
h(K)

=
∏
χ

LK(1, χ) =
∏
χ

∑
A

χ(A )c(A )

= det(c(A B−1)) .= det((log εA B−1)A ,B 6=1∈Cl(K)

so h(H) is the index of 〈εA 〉 in O×
H .

If χ : Cl(K)→ {±1}, there exists a description of χ by genus theory. D = D1D2,
chosen so that D1 > 0, D2 < 0. Then

χD1D2(p) =


(

D1
N(p)

)
, gcd(N(p), D1) = 1;(

D2
N(p)

)
, gcd(N(p), D2) = 1.

Since N(p) is equal to p, p2, p as (D/p) = 1,−1, 0, this definition is compatible.
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For Q(m,n), a = Q(1, 0), gcd(a,D) = 1, and χD1D2([Q]) =
(
D
a

)
. Thus

LK(s, χD1D2) =
∏
p

(1− χ(p)/ps)−1 =
∏
p

(
1−

(
D1
p

)
p−s
)−1 (

1−
(
D2
p

)
p−s
)

= LQ(s,
(
D1
−

)
)LQ(s,

(
D2
−

)
).

Corollary (Kronecker’s solution of Pell’s equation). We have

L(1,
(
D1
−

)
)L(1,

(
D2
−

)
) = − π

24
√
|D|

∑
A

χ(A ) logF (A )

= L(1,
(
D1
−

)
) = 2h(D1) log ε(D1)√

|D1|
πh(D2)

w2/2
√
|D2|

hence h1h2 log ε1 = (−1/12)
∑

A χ(A ) log εA .
Therefore

∏
A F (τA )χD1D2 (A ) = ε−12h1h2

1 .

Corollary. If χ = 1,
∏

A F (τA ) .=
∏

0<n<|D| Γ(n/|D|).

Proof of the formula. We are now ready to prove the formula. There are two
proofs.

Proof of the Kronecker Limit Formula. THe series

E(τ, s) = Im(τ)s/2
∑′

m,n

1
|mτ + n|2s

=
π/2
s− 1

+ c+O(s− 1)

has

E(τ, s) = Im(τ)sζ(s) + Im(τ)s
∞∑
m=1

∞∑
n=−∞

|mτ + n|−2s.

Replace the sum with the integral:∫ ∞

−m
|mτ + n|−2s dn =

∫ ∞

∞

dx

((mx+ n)2 +m2y2)s

=
∫

dt

(t2 +m2y2)
= (my)1−2sI(s)

where I(s) =
∫∞
−∞ dt/(t2 − 1)s. Therefore this is equal to

∞∑
m=1

( ∞∑
n=−∞

1
|mτ + n|2s

− I(s)
(my)2s−1

)
+ I(s)ζ(2s− 1)y1−2s.

We have ζ(2s−1) = π/(2(s−1))+ c+ . . . and y1−2s = y−1(1−2(s−1) log y+ . . . ),
and

I(1) =
∫ ∞

−∞

dt

t2 + 1
= π.

Therefore since ζ(s) = 1/(s− 1) + γ + . . . and ζ(2s− 1) = 1/2(s− 1) + γ + . . . , we
have

c = ζ(2)y +
∞∑
m=1

(∑
n∈Z

y

|mτ + n|2
− π

m

)
+ c− π log y.
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and
∞∑

n=−∞

y

|mτ + n|2
=

1
2im

∑
m,n

(
1

mτ + n
− 1
mτ + n

)
=

π

2im

(
1

tan(πmτ)
− 1

tan(πmτ)

)
since

∑
n 1/(x+ n) = π/ tanπx.

Now ∑
m,n

y

|mτ + n|2
− π

m
=

π

2im
(cot(πmτ)− i)− π

2im
(cot(πmτ) + i)

=
π

m

(
1

e2πimτ − 1
+

1
e−2πimτ − 1

)
=

π

m

∞∑
r=1

(
e2πimrτ + e−2πimrτ

)
thus

c = ζ(2)y +
∞∑
m=1

( ∞∑
n=−∞

2π
m

Re

( ∞∑
r=1

qmr

))

=
π2

6
y − 2πRe

( ∞∑
r=1

log(1− qr)

)
+ c− π

2
log y

= c− π log

(
e−πy/6y1/2

∞∏
r=1

|1− qr|2
)

which checks because η(τ)2 = e−πy/6
∏

(1− qr)2. �

But we never used that η is modular, so:

Second proof. Let

E(τ, s) = c− π log
√
y|η(τ)|2 = (π/2)/(s− 1) + c(τ) +O(s− 1)

with c′(τ) = c− log(
√
y|η(τ)|2).

c and c′ are Γ-invariant. Let ∇ = y2(∂2/∂x2 + ∂2/∂y2), so that ∇(ys) = s(s −
1)y2. We have ∇(f(γz)) = (∇f)(γz) for γ ∈ SL2(R).

Note
∇(E(τ, s)) = s(s− 1)E(τ, s)

and
∇(E(τ, s)− (π/2)/(s− 1))→ ∇(c(τ)) = π/2.

Therefore ∇(c′(τ)) = π(−1/2 log y) = π/2 and ∇(c(τ)) = π/2 = ∇(c′(τ)), so
c(τ)− c′(τ) is harmonic on H/Γ, and therefore constant. �

Remark. A note about computing:

F (τ) = F (x+iy) = y12|∆(x+iy)|2 = y12e−4πy
∞∏
n=1

(1−2e−2πny cos 2πnx+e−4πny)24
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hence

f(τ) = F (τ)1/24 =
√
ye−πy/6

∞∏
n=1

(1− 2e−2πny cos 2πnx+ e−4πny);

the nth term in this expansion is 1 +O(e−2πny) so choosing τ in the fundamental
domain we have |e−2πy| ≤ e−π

√
3 = 0.0017, so we have a very rapidly converging

product.
Let ε(n) = (D/n); then

L(s, ε) =
∞∑
n=1

ε(n)
ns

=
∑

0<n<|D|

ε(n)
(

1
ns

+
1

(n+ |D|)s
+ . . .

)
=

1
|D|s

∑
n

ε(n)ζ(s, n/|D|)

where ζ(s, x) = 1/xs + 1/(x− 1)s + · · · = 1/(s− 1) + . . . is a shifted zeta function.
Example. For D = −23, h = 3,

f((1 +
√
−23)/2)f((1 +

√
−23)/4)2233/226π/3 = 4972.31615... =

22∏
n=1

Γ(n/23)(
n
23 )

so (4π
√
|D|)h

∏
A f(τA ) =

∏
0<n<|D| Γ(n/|D|)ε(n).

If τ ∈ H is CM of discriminant D, then f(τ) is equal up to factors in Q×

f(τ) = 1/4π
√
|D|(

∏
n

Γ(n/|D|)ε(n))1/h(D) = Ω(D),

so f ∈ MQ
k is equal to an algebraic number times Ω(D)k, the Chowla-Selberg

formula.

7. CM Modular Forms

For more information on the many types of series covered in this section, consult
[15], especially Chapter VI.

CM modular forms. The space of modular forms Mk = {f : f(γτ) = (cτ +
d)kf(τ)} contains Eisenstein series, theta series, and CM forms.
Theorem. If Q : Z2k → Z is a positive definite quadratic form, then

ΘQ(τ) =
∑
x∈Z2k

qQ(x) =
∑
n=0

rQ(n)qn ∈Mk(Γ0(N),
(

∆
−

)
),

where if Qx = (1/2)xtAx, A = At symmetric even, then ∆ = ±detA and N is the
smallest integer such that NA−1 is even.

To f(τ) =
∑∞
n=0 a(n)qn, we associate the L-series L(f, s) =

∑∞
n=1 a(n)/ns. This

series has a functional equation and various other properties. In this case, we have

L(ΘQ, s) =
∞∑
n=1

rQ(n)
ns

=
∑′

x

1
Q(x)s

= ZQ(s),

an Epstein zeta function.
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Example. For k = 1, Q(x1, x2) = Ax1+Bx1x2+Cx2
2, B

2−4AC = D < 0, Q ∈ QD,
and [Q] corresponds to an ideal class A . Then

L(ΘQ, s) =
∑

a

N(a)s = ζ(A , s) = |D/4|−s/2E(τA , s).

Therefore we have the set of all generalized theta series contained in modular forms,
containing usual theta series (when P = 1, see below) and CM forms, and they
intersect precisely in the binary quadratic forms.

Theorem. If Q : Z2h → Z is a positive definite quadratic form with associated N
and

(
∆
−

)
, and P : Zh → C is a spherical polynomial with respect to Q homogeneous

of degree d (i.e. if Q : V = Rn → R, P a polynomial on V , choose a basis of V/R
so that Q = x2

1 + · · ·+ x2
n, then P is spherical iff(

∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

)
P = 0,

so if Q = (1/2)xtAx, this holds iff∑
i,j

(A−1)i,j
∂2P

∂xi∂xj
= 0.)

Then ΘQ,P (τ) =
∑
x∈Z2h P (x)qQ(x) ∈Mk

(
Γ0(N),

(
∆
−

))
where k = h+ d.

Proposition.

(i) Let x0 ∈ V ⊗ C, Q(x0) = 0. Then P (x) = B(x, x0)d is spherical.
(ii) Any spherical P is a finite sum

∑
i λiB(x, xi)d.

(iii) Any polynomial is uniquely written as F = H0 +QH1 +Q2H2 + . . . .

If h = 1, we have a lattice corresponding to an ideal a, and Q(x) = N(x)/N(a),
where N(x) = xx for a basis. Then P (x) = xd or P (x) = xd, hence

ΘQ,P (τ) =
∑
x∈a

xk−1qN(x)/N(a) ∈Mk(Γ0(D), εD).

Example. For Q = (x1, x2) = x2
1 + x2

2, x = x1 + ix2. Then∑
(x1 + ix2)k−1qx

2
1+x

2
2 ∈Mk

(
Γ0(4),

(
−4
−

))
where we take k ≡ 1 (mod 4) to avoid cancellation.

Then
ΘQ,P (τ) =

∑
λ∈a

λdqN(λ)/N(a) = f(τ)

a CM form with density zero nonzero terms.

L(f, s) =
∑
λ

λd

N(λ)s
= LK(s, ψ)

where ψ is a Grossencharacter. Then∑
a

ψ(a)
N(a)s

=
∑′

m,n

(mτ + n)a

|mτ + n|2s
.
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Example. For a = 0, we have
∑
d|n ε(d) =

∑
A rA (n), and

h(D)
w(D)

+
∞∑
n=1

(∑
d|n

ε(d)
)
qn =

1
w(D)

∑
A

ΘA (τ).

This is an Eisenstein series.

CM L-series and elliptic curves. For a = 1, LK(s, ψ) = L(
∑

A ΘQ,P (τ, s)) =
L(s, f) for f ∈M2(Γ0(D), 1).

To each elliptic curve E/Q we associate a modular form M2(Γ0(N)) and an L-
series L(E, s) = L(f, s). Indeed, the CM forms correspond to elliptic curves with
CM.

If E/Q has CM, then j = 0, 1728, . . . , corresponding to discriminants D =
−3,−4,−7,−8, . . . ,−163. Then L(E, s) = LK(s, ψ).

For D = −4, y2 = x3 − x, and

L(E, s) =
∏
p6=2

1
1− ap/ps + p/p2s

where

ap = p+ 1 + #E(Fp) = p−#{(x, y) ∈ F2
p : y2 = x3 − x} = −

∑
x (mod p)

(
x3 − x
p

)
.

Theorem. In this case,

ap =

{
0, p ≡ 3 (mod 4)
±2a, p ≡ 1 (mod 4)

where p = a2 + b2, a is odd and (−1)n/2a ≡ 1 (mod 4).

Therefore
∑
n an/n

s has
∑
n anq

n =
∑
a,b(a+ ib)qa

2+b2 = 1/2
∑
a,b aq

a2+b2 with
a congruence mod 4. We have h(D) = 1, p = (a2 +Db2)/4.

We also have:
Theorem. ∑

x (mod p)

(
x3 − 1
p

)
=

{
0, p ≡ 2 (mod 3);
±2c, p ≡ 1 (mod 3)

where p = c2 + 3d2.
To prove these, we use:

Lemma. If α, β ∈ Z/〈p〉, then∑
n (p)

(
(n− α)(n− β)

p

)
= pδα,β − 1.

Proof. We may assume β = 0 by shifting, so we want to show

g(α) =
∑
n

(
n(n− α)

p

)
= pδα,0 − 1.

Then

g(kα) =
∑
n

(
kn(kn− kα)

p

)
=
∑
n

(
n(n− α)

p

)
= g(α)
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so that

g(α) =

{
g(0), α = 0
g(1), α 6= 0.

But then
∑
α g(α) = p− 1 + (p− 1)g(1) = 0. �

Proof of theorem. Let

f(n) =
∑
x (p)

(
x3 − nx

p

)
.

Then for k 6≡ 0 (mod p), we let k 7→ kx, n 7→ k2n, so

f(k2n) =
∑
x (p)

(
k3(x3 − nx)

p

)
=
(
k

p

)
f(n).

Therefore f(0) = 0, f(n) = 0 for all n if p ≡ 3 (mod 4), and if p ≡ 1 (mod 4), then

f(n) =



0, n = 0;
A, n = g4i,F×p = 〈g〉;
−A, n = g4i+2;
B, n = g4i+1;
−B, n = g4i+3.

Now f(n) is even because

f(n) ≡
∑

0 6=x (p)

x2 6≡n (p)

1 ≡ 0 (mod 2).

Hence

(1/2)f(n) ≡

(p− 1)/2 ≡ 0,
(
n
p

)
= −1

(p− 3)/2 ≡ 1,
(
n
p

)
= 1

(mod 2).

So we replace A with 2A, B with 2B, where A is odd and B is (still) even. Then∑
n (p)

f(n)2 =
4(p− 1)

2(A2 +B2)
=
∑
n,x,y

(
x3 − nx

p

)(
y3 − ny

p

)

=
∑
x,y 6=0

(
xy

p

)
(pδx2,y2 − 1) = 2p

∑
x6=0

1−
(∑

x

(
x

p

))2

− 2p(p− 1)

= 2p(p− 1)

so A2 +B2 = p. �

Sketch of proof of second theorem. Let

f(n) =
∑
x (p)

(
x3 − n
p

)
.

Then f(0) = 0, and f(k3n) =
(
k
p

)
f(n). We conclude that f(n) = 0 if p ≡

2 (mod 3), and if p ≡ 1 (mod 3), then we have f(n) = 0, A,B,C,−A,−B,−C
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according as the exponent of n in 〈g〉 = F×p is 6i, 6i+ 2, 6i+ 4, 6i+ 3, 6i+ 5, 6i+ 1.
One shows that

∑
x (p) f(n)2 = A2 +B2 + C2 by the lemma, and then

f(n2) =
∑
x,n

(
x3 − n2

p

)
=
∑
x,n

(
nx3 − 1

p

)
= 0.

�

Periods and L-series. We have seen that L-series of Grossencharacters are ex-
actly Hecke L-series of CM modular forms as well as nonholomorphic derivatives
of (nonholomorphic) Eisenstein series, i.e.∑

m,n

ys

|mz + n|2s
1

(mz + n)k
.

These functions also have special values.
Example. If E/Q is an elliptic curve with CM over K, then L(E/Q, s) = LK(s, ψ);
in the space of modular forms, we have the subset of forms coming from elliptic
curves and those from CM modular forms intersecting exactly at forms coming from
CM elliptic curves.

We are interested in special values of these functions, e.g. L(E/Q, 1), motivated
by the Birch-Swinnerton-Dyer conjecture, which says that

L(E/Q, 1) = ΩESe
where ΩE ∈ R>0 is a real period (up to a constant, it is

∫∞
α
dx/y for a loop α) and

SE = 0 if #E(Q) =∞ and #X otherwise, where in the latter case this is a perfect
square due to the existence of an anti-symmetric nondegenerate pairing to Q/Z.
Theorem (Villegas). If E has CM, then there is an explicit expression involving
Θ-series for SE which shows that SE is a square. More generally, LK(s, ψ) is a
product of a period and such an explicit expression for critical values s = 1, . . . , k−1.

For this theorem and a development of the rest of this section, see [19].
Example (Gross-Zagier). Consider the elliptic curve E : y2 = x3 − 35x− 98 (which
is also X0(49)) with CM by Q(

√
−7) = K. It has minimal model y2 + xy =

x3 − x2 − 2x− 1.
Then L(E, s) = LK(s, ψ), where ψ(a) = 〈α〉, where α ≡ 1, . . . , 6 modulo p7 =

〈
√
−7〉, so we choose α ≡ 1, 2, 4 (mod p7), and ψ(a) =

(
n
p7

)
α. Hence

LK(s, ψ) = 1 +
1
2s

+ 0 +
−1
4s

+ 0 + . . .

where, for example, since 2 = ((1+
√
−7)/2)((1−

√
−7)/2) = αα, we have α ≡ 4 ≡

1/2 (mod p7), and so ψ(p2) = (1 +
√
−7)/2.

One finds that L(1, ψ) = (1/2)(2π/
√

7)Ω where

Ω =
Γ(1/7)Γ(2/7)Γ(4/7)

4π2
.

We have equalities LK(s, ψ) = L(E/Q, s) = L(f2, s) for f2 ∈ S2(Γ0(49)), and
more generally LK(s, ψk−1) = L(fk, s), fk ∈ Sk(Γ0(49),

(−
7

)k). Since s 7→ k−s has
a functional equation, we consider Lk(k, ψ2k−1) with k odd, and we find

L(k, ψ2k−1) = 2
(

2π√
7

)k Ω2k−1

(k − 1)!
A(k)
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where A(1) = 1/4, A(3) = 1, A(5) = 1, A(7) = 9, A(9) = 49, and so on until
A(33) = 447622863272552. All of these are squares!
Theorem. Define a sequence of polynomials {a2n(x)} by

an+1(x) =
√

(1 + x)(1− 27x)
(
x
d

dx
− 2n+ 1

3

)
an(x)−

n2

9
(1− 5x)an−2(x)

with a0(x) = 1. (E.g. a1(x) = (−1/3)
√

(1 + x)(1− 27x), but a2(x) is a polyno-
mial.)

Then A(2n+ 1) = (1/4)a2n(−1), and a2n(x) ∈ Z[1/6][x].
Theorem. Define

21bn+1(x) =
(

(32nx− 56n+ 42)− (x− 7)(64x− 7)
d

dx

)
bn(x)

− 2n(2n− 1)(11x+ 7)bn−1(x)

with b0(x) = 1/2, b1(x) = 1. Then A(2n+ 1) = (bn(0))2.
We will now set out to explain the derivation of these theorems.
For O = Z[(1 +

√
−7)/2], we let

f(τ) = L(s, ψ2k−1) =
∑
α∈O

α≡1,2,4 (p7)

α2k−1qN(α)

=
1
2

∑
m,n

(
m+ n

√
−7

2

)2k−1

q(m
2+7n2)/4

(m
7

)
= L(s, f) =

1
2

∑′

m≡n (2)

(
m
7

)
((m+ n

√
−7)/2)2k−1

((m2 + 7n2)/4)s
.

This is essentially ∑
m,n

(m+ n)/2
(mτ + n)2k−1

|mτ + n|2

∣∣∣∣
τ=(1+

√
−7)/2=τ0

.

A quasi-recursion. Since f(τ) ∈Mk, f ′(τ) 6∈Mk+2, but this almost holds: if we
replace the derivative with

∂ =
(

1
2πi

d

dτ
− k

4πy

)
,

then ∂f ∈M∗
k+2 where the ∗ signifies nonholomorphic. So we have a map M∗

k
∂h

−−→
M∗
k+2h, which takes

∂h
(

1
(mτ + n)k

)
=

Γ(h+ k)
Γ(k)

(
−1
4πy

mτ + n

mτ + n

)h 1
(mτ + n)k

.

We have nonholomorphic Eisenstein series

Ek,s =
∑ ys

|mτ + n|2s
1

(mτ + n)s

given by some derivative of a (holomorphic) Eisenstein series. Explicitly,

∂nk =
n∑
j=0

(
n

j

)
Γ(n+ k)
Γ(j + k)

(
−1
4πy

)n−j ( 1
2πi

d

dz

)j
.
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Therefore L(s, ψ) = (∂∗E)(τ0), so

L(ψ2k−1, k + r) = ∂k−r−1E2r+1,ε(τ0).

So the central value where r = 0 has ∂k−1E1,ε(τ0), here

E1,ε =
1
2

+
∞∑
n=1

(∑
d|n

(
d

7

))
qn =

1
2

+ q + 2q2 + 3q4 + · · · ∈M1

(
Γ0(7),

(−
7

))
.

Since ψ1(〈α〉) =
(
α
2

)
α, we have

L(ψ2k−1, k) =
(2π
√

7)k

(k − 1)!
∂k−1E1,ε((7 +

√
−7)/14).

Proposition. If f is a modular form, τ0 ∈ H, then {∂nf(τ0)}n satisfies a quasi-
recursion (which is always effectively computable).

For example, M∗(SL2(Z)) = C(E4, E6),

E2 = 1− 24
∑
n

σ1(n)qn 6∈M2, E∗2 (τ)E2(τ)−
3
πy
∈M∗

2

and ⊕
k

M∗
k = C[E∗2 , E4, E6]

with ∂E4 = (1/3)(E∗2E4−E6), ∂E6 = (1/2)(E∗2E6−E2
4), and ∂E∗2 = (1/12)((E∗2 )2−

E4), and

E1,ε =
h(D)

2
+

∞∑
n=1

(∑
d|n

(
D

d

))
qn =

1
2

∑
Q∈QD/Γ

ΘQ(τ).

In other words, suppose that f is a Hecke eigenform, then

f(τ) =
∑

a⊂OK

ψ(a)qN(a)

where ψ is a Grossencharacter; the corresponding L series

L(f, s) = LK(s, ψ) =
∑

a

ψ(a)
N(a)s

.

Then L(k+r, ψ) for 0 ≤ r < k is a finite linear combination of (∂k−r−1E2r+1,ε)(τA ).
We are interested in a quasi-recursion because one may want examples of Shimura

curves, for which there may not be a Fourier expansion at ∞: one can either take
a Fourier series along closed geodesics, an expansion at ∞2 on (H× H)/SL2(OK),
or what we will do here: expand about z0 ∈ H/Γ.

We now introduce the operators:

D =
1

2πi
∂

∂z
, ∂ = D − k

4πy

and

D = D − k

12
E2(z) = ∂ − k

12
E∗2

where E2 is the usual Eisenstein series of weight 2, with E∗2 = E2 − 3/πy ∈ M∗
2 .

Note that D preserves modularity: D : Mk →Mk+2.
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For f ∈Mk, we form the power series

fD(z,X) =
∞∑
n=0

Dnf(z)
k(k + 1) . . . (k + n− 1)

Xn

n!
∈ C (H)[[X]].

We define f∂(z,X) analogously, and note that

fD

(
aτ + b

cτ + b
,

X

(cτ + d)2

)
= (cτ + d)k exp(cX/2πi(cτ + d))fD(τ,X).

Therefore
f∂(z,X) = exp(−X/4πy)fD(z,X)

and we define

fD(z,X) = exp(−X/12E2)fD = exp(−X/12E∗2 )f∂(z,X).

Proposition. We have

fD(z,X) =
∞∑
n=0

Fn(X)
k(k + 1) . . . (k + n− 1)

Xn

n!

where F0 = f , F1 = Df , and

Fn+1 = DFn −
n(n+ k − 1)

144
E4Fn−1

with D(E2) = (E2
2 − E4)/12.

Example. We have E∗2 (i) = 0, and so f∂(i,X) = fD(i,X), ∂nf(i) = Fn(i) = i,
e.g. for f = E4, F0 = E4, F1 = −1/3E6, F2 = 5/36E2

4 , and similarly since
D(E4) = −(1/3)E6 and D(E6) = −(1/2)E2

4 , and then we continue using D(ab) =
D(a)b+ aD(b), therefore Fn in general is a polynomial in E4 and E6 and therefore
after factoring out En/2+1

4 it becomes a polynomial fn of degree n in E6/E
3/2
4 . In

particular, f0(t) = 1, f1(t) = −1/3t, and fn+1 = (t−1)/2f ′n − (n+ 2)/6tfn − n(n+
3)/144fn−1.

Now we have the factorization formula

L(ψ2k−1
1 , k) .= ∂k−1Θ .= |∂(k−1)/2Θ|2

as a formal consequence of Poisson summation.

Application to Diophantine equations. Sylvester asked which primes p are
sums of x3 + y3 = p, x, y ∈ Q. This equation gives the elliptic curve E : y2 =
x3 − 432p2 after a change of coordinates. To solve this, we form

L(Ep, s) = LQ(
√
−3)(ψχp, s)

where ψ is the Grossencharacter of weight 1 and χp is the cubic character modulo
p.

Then by the preceding discussion, we find

L(Ep, 1) =
√

3Γ(1/3)3

2π3√p
Sp

for an integer Sp ∈ Z. According to the BSD, Sp = 0 if p is a sum of cubes and
is the order of XE otherwise. Under this hypothesis (the work of Coates-Wiles
allows us only to say that Sp 6= 0 implies p 6= x3 + y3), and assuming p 6≡ 4, 7, 8
(mod 9) because the sign of the functional equation is negative in this case, and
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p ≡ 2, 5 (mod 9) implies that Sp ≡ 1 6≡ 0 (mod 3), so we must only consider p ≡ 1
(mod 9).
Theorem.

(a) Let p = 9k + 1. Then
Sp = Tr(αp)

where

αp =
3
√
p

54
Θ(pδ)
Θ(δ)

so that degαp = 18k and

Θ(q) =
1
2

∑
m,n

qm
2+mn+n2

=
3
2

+ 3
∑
n

(∑
d|n

(
d

3

))
qn

and δ = −1/2 + 2/6
√

3 ∈ H with

Θ(δ) =
−3Γ(1/3)3

(2π)2
.

(b) Moreover,
Sp = (Trβp)2

where if p = pp, p = 〈p,−r +
√
−3/2〉 so that r2 ≡ −3 (mod 4p), then

βp = −βp =
6
√
p

√
±12

η(pz0)
η(z0/p)

so that deg βp = 6k.
(c) If we define f0(t) = 1, f1(t) = t2,

fn+1 = (1− t3)f ′n + (2n+ 1)t2fn − n2tfn−1,

and Ak = f3k(0), then

Sp ≡ (−3)(p−10)/3(3k!)2A2k (mod p)

with |Sp| < p/2.
Sp can also be given as an explicit formula in B2

k with A2k = B2
k.

Link to hypergeometric functions. Let

h = F (1/3, 1/3; 2/3;x) =
∞∑
k=0

Ak
(3k)!

T k,

with

T = x
F (2/3, 2/3; 4/3;x)3

F (1/3, 1/3; 2/3;x)3
= x+ . . . ;

then

(1− x)1/24
√
h =

∞∑
k=0

Bk
(3k)!

(−T/2)k.

Then
1√

1− u
η

(
ω − ωu
1− u

)
= η(ω) + (η′(ω) = η(ω))u+ . . .

= c1

∞∑
n=0

Bn
(3n)!

(−c2u)3n
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where c1 = η(ω) = eπi/24(31/4Ω/2π)1/2 and c2 = −3
√

3/4πΩ2. This gives us an
explicit formula for calculating the above values.

Other special values. Therefore from the Kronecker limit formula we obtain
special values ζ(A,1). One can also ask for the values ζ(A ,m) for m > 1 and to
what they correspond (for example,

∏
χ6=1 LK(1, χ) .= (h(H)/h(K))R(K)). Classi-

cally, ζF (1) for a number field F corresponds to units and the class number; Borel
discovered that ζF (m) corresponds to the K group K2m−1(F ).

What we will need from K-theory is as follows: K1(R) = R× for any ring R,
so K1(OF ) .= Zr1+r2−1 ignoring torsion, and K1(F ) =

⊕
π Z generated by chosen

prime elements π of F (ignoring units). We have

rkK2m−1(F ) =


0, n even;
r2, n = 2m− 1, m even;
r1 + r2, n = 2m− 1, m odd.

and for higher n, Kn(OF ) .= Kn(F ), again up to torsion (or tensoring with Q).
Recall we have F ⊗Q R = Rr1 ×Cr2 , where the latter can be broken up into real

and imaginary pieces, hence we obtain two disjoint R-vector spaces of dimension
r1 + r2. We will now show that the image of K2m−1(F ) embeds as a lattice in such
a vector space, and the covolume of this lattice gives us ζF (m).

We have the dilogarithm Lim(X) =
∑∞
n=1X

n/nm, e.g.

Li2(X) =
∫ x

0

1
t

log
1

1− t
dt.

The function
D2(x) Im (Li2(X)− log |x|Li1(x))

is single-valued, like Re(log x) = log |x|.
Conjecture. K2m−1(F ) .= Bm(F ), where Bm(F ) is the Bloch group, which for
now is just certain Z-combinations of elements of F modulo a certain subgroup.

We will define the regulator map from K2m−1 to Rr1+r2 or Rr2 using the diloga-
rithm Dm : C→ R; since Dm(x) = (−1)m−1Dm(x), this number is determined by
the character of the embeddings of F .
Conjecture. If K is an imaginary quadratic field and m ≥ 2, then there exists an
ηm ∈ Bm(H) ↪→ Bm(C)n Dm−−→ Rn such that

ζ(A ,m) =
2(−1)(m−1)/2

(2π)m

(m− 1)!
|D|1/2−mDm(σA |ηm)).

For m = 2, this is a theorem, as we will see.
Example. Take K = Q(

√
−23), h = 3, then A0 ↔ [1, 1, 6], A1 ↔ [2, 1, 3], and

A2 = A −1
1 . Then

ζ0(s) + 2ζ1(s) = ζK(s) = ζ(s)L(s,
( −

23

)
)

since ζ1 = ζ2, and hence we also have

ζ0(s) + ζ1(s) = ζ0(s) + ωζ1(s) + ωζ2(s) = LK(s, χ)

where χ is a cubic character. We compute:

ζ0(2) = 1.219266 . . . , ζ1(2) = 0.54446 . . .
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and

ζ0(2)− 2ζ1(2) = ζK(2) =
4π2

2(23)3/2
D(ξK)

ζ0(2)− ζ1(2) = L(2, χ) =
16π2

233/2
D(θ)

where

ξK = 21[(1+
√
−23)/2]+7[2+

√
−23]+[(3+

√
−23)/2]−3[(5+

√
−23)/2]+[3+

√
−23].

and θ3 + θ + 1 = 0 is contained in the real subfield of H.

Case m = 2. We investigate the Bloch group B2(F ) = B(F ) (see [6]). In this case,

B(F ) = {
∑
i ni[xi] :

∑
i ni[xi] ∧ [1− xi] = 0} /H

where

H = {[a] + [b] + [(1− a)/(1− ab)] + [1− ab] + [(1− b)/(1− ab)]}.

We want ker
(
Z[F ] δ−→

∧2(F×)
)

by [x] 7→ [x] ∧ [1− x]. Note that B2(F ) is torsion
if F is totally real, e.g. F = Q. The relation corresponds to the relation of the
dilogarithm D(a) +D(b) + · · ·+D((1− b)/(1− ab)) = 0.
Example. For F = Q, the elements x = 1/2, 1/3, 3/4, 8/9, . . . , all defined multi-
plicatively using the primes 2, 3, have 1− x = 1/2, 2/3, 1/4, 1/9, . . . with the same
property. For example δ([1/2]) = [1/2] ∧ [1/2] = 0, and

[1/3] 7→ [1/3] ∧ [2/3] = −[3] ∧ ([2]− [3]) = [2] ∧ [3]

and similarly
[3/4] 7→ [3/4] ∧ [1/4] = 2([2] ∧ [3]),

so already we have the Bloch group elements [1/2] and [3/4]− 2[1/3].
Proposition (A. Levin). For a ⊂ K, λ ∈ OK , µ = 1− λ, and A = [a], we define

ξA ,λ = 4N(λ)N(µ)[λ] +
∑′

α∈λ−1a/a

β∈µ−1a/a

∑
` (N(λ))

[γα,β,`+mβ ].

where

γa,b,c =
℘(a)− ℘(c)
℘(a)− ℘(b)

=
σ(a− c)σ(a+ c)σ(b)2

σ(a− b)σ(a+ b)σ(c)2
∈ H ′ ⊃ H,

where σ is the Weierstrass σ-function.
Then ξA ,λ ∈ H ′.
One checks that δ(ξ) = [ξ] ∧ [1− ξ] = 0.

Theorem (A. Levin). We have

D(ξA ,λ) = (N(λ) + 1)(N(µ) + 1)ζK(A , 2).

8. Bowen Lectures: Periods and Special Values of L-functions

The contents of these lectures will appear as an article in the upcoming Springer
volume covering mathematics of the twenty-first century.
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Periods. We have the hierarchy of numbers N ⊂ Z ⊂ Q ⊂ Q (countable, con-
structible, accessible) but also Q ⊂ R ⊂ C with Q ⊂ C (uncountable, uncon-
structible, inaccessible). There is an intermediate class Q ⊂P ⊂ C (constructible,
but only partially accessible).
Definition. A period is a complex number whose real and imaginary parts can
be given as an absolutely convergent integrals of rational functions with rational
coefficients over domains in Rn given by polynomial inequalities with rational co-
efficients.

Ω =
∫
f1(x1,...,xn)≥0
fm(x1,...,xn)≥0

(R1(x1, . . . , xn) + iR2(x1, . . . , xn)) dx1 . . . dxn

Example.
√

2 =
∫
2x2≤1

dx.
Example.

π =
∫∫

x2+y2≤1

dx dy =
∫ ∞

−∞

dx

1 + x2

= 2
∫ 1

−1

√
1− x2 dx =

∫ 1

−1

dx√
1− x2

=
1
2i

∮
|z|=1

dz

z
.

Example. log 2 =
∫ 2

1
dxx, but is also∫ 1

0

x dx

log (1/(1− x))
.

Alternative definitions:
• Allow algebraic functions and algebraic coefficients.
• Integrate only 1, so Ω = A1−A2 + iA3− iA4 with Aj a volume of a domain

in Rn defined by polynomial inequalities.
• If X is a smooth quasiprojective variety, Y ⊂ X subvariety, defined over Q,
ω a closed algebraic n-form on X such that ω|Y = 0, C a singular n-chain
in X(C) with ∂C ⊂ Y (C), then we let

∫
C
ω ∈P.

Example. If a, b ∈ Q≥0, a 6= b,

E(a, b) = 2
∫ b

−b

√
1 + a2x2

b4 − b2x2
dx

is not in Qπ.
Example. We have

ζ(n) = 1 + 1/2n + 1/3n + . . .

for n ≥ 2, e.g.

ζ(3) =
∫∫∫

0<x<y<z<1

dx dy dz

(1− x)yz
.

Example. For µ the Mahler measure, and P a polynomial in x±1
1 , . . . , x±1

n with
coefficients in Q, we have

µ(P ) =
∫
. . .

∫
|x1|=···=|xn|=1

log |P (x1, . . . , xn)|
dx1

x1
. . .

dxn
xn
∈P.

Example. Γ(s) =
∫∞
0
ts−1e−t dt, has Γ(p/q)q ∈P.
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e and γ are presumably not periods, but we do not know this.

Properties of periods.
Question. π

√
163/3 = 13.36972333037750 equal to the real number log(640320) =

13.36972333037750?
Question. What about π/6

√
3502 and

log

2
4∏
j=1

(xj +
√
x2
j − 1)


where x1 = 1071/2 + 92

√
34, x2 = 627/2 + 221

√
2, x3 = 1553/2 + 133

√
34, x4 =

429 + 304
√

2. They agree to 80 decimal places.
The answer to both of these questions is no, as one can check by taking a longer

approximation to each.
Question. Finally, what about√

11 + 2
√

29 =

√
16− 2

√
29 + 2

√
55− 10

√
29

= 7.3811759408956579709872 =
√

5 +
√

22 + 2
√

5?

This time the numbers are algebraic. Are they equal? We can tell by determining
their minimal polynomial. For two algebraic numbers of bounded degree there is
an explicit bound on the number of digits we must write down to tell if they are
equal. There is nothing true for periods. Similarly, given a real number one can
construct a minimal polynomial which by LLL can construct it; nothing such is
true for periods.

Rules of calculus. We have the following rules from calculus which allow us to
operate on periods:

(i) Additivity:∫ b

a

(f(x) + g(x)) dx =
∫ b

a

f(x) dx+
∫ b

a

g(x) dx

and ∫ b

a

f(x) dx =
∫ c

a

f(x) dx+
∫ b

c

f(x) dx.

(ii) Change of variables:∫ f(b)

f(a)

F (y) dy =
∫ b

a

F (f(x))f ′(x) dx.

(iii) Newton-Leibniz formula:∫ b

a

f ′(x) dx = f(b)− f(a).

For higher dimensional integrals, there are also corresponding formulas.
Conjecture. Any two representations of the same number as a period can be ob-
tained from one another using only the preceding rules, with all functions and do-
mains of integration algebraic with coefficients in Q.

There is also a fourth rule: πA = πB implies A = B for any period π.
Principles:
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(1) If an interesting number arises, try to exhibit it as a period!
(2) If an equality of two numbers is conjectured, try to write them both as

periods and prove their equality using the “Rules of calculus”.

Example. µ(P ) the Maahler measure; show by the “rules of calculus” that

6µ(x+ y + 16 + x−2 + y−2) = 11µ(x+ y + 5 + x−1 + y−1).

Open problems:

(1) Find an algorithm to determine whether two given numbers in P are equal.
(2) Find an algorithm to determine whether a numerically given element of C

is equal (to given precision) to a simple element of P.
(3) Explicit examples of numbers not belonging to P.

Periods and differential equations. Start with Z ⊂ Q ⊂ Q ⊂ P. We have
the analogy Z[T ] ⊂ Q(T ) ⊂ Q(T ) and the analogy of P are solutions of (special)
differential equations with algebraic coefficients coming from integrals with a free
parameter.
Example. Elliptic curves Et : y2 = x(x− 1)(x− t). Have

Ω1(t) =
∫ 1

t

dx√
x(x− 1)(x− t)

=
∫ 1

t

dx

y

and similarly Ω2(t) =
∫∞
1
dx/y.

Elliptic functions are doubly periodic. If t ∈ Q, Ω1(t),Ω2(t) ∈P; and Ω1(t) and
Ω2(t) satisfy the differential equation

t(t− 1)Ω′′(t) + (2t− 1)Ω′(t) + 1/4Ω(t) = 0.

Example. Hypergeometric functions

F (a, b; c;x) =
∞∑
n=0

(a)n(b)n
(c)nn!

xn

where (a)n = a(a+1) . . . (a+n−1). If a, b, c ∈ Q, then x ∈ Q implies F (a, b; c;x) ∈
(1/π)P.

There are relations among these examples:

Ω2(t) =
∫ ∞

1

dx√
x(x− 1)(x− t)

= 2
∫ π/2

0

dθ√
1− t sin2 θ

= 2
∞∑
n=0

(
2n
n

)
(t/4)n

∫ π/2

0

sin2n θ dθ

= π
∞∑
n=0

(
2n
n

)2

tn/16n = πF (1/2, 1/2; 1; t).

Example. Modular forms: z ∈ H, f(z) holomorphic, not too big,

f

(
az + b

cz + d

)
= (cz + d)kf(z)
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for all z ∈ H,
(
a b
c d

)
∈ SL2(Z) is a modular form of weight k. For example,

∆(z) = e2πiz
∞∏
n=1

(1− e2πinz)24

(k = 12) and

j(z) =
1

∆(z)

(
1 +

∞∑
n=1

240n3

e−2πinz − 1

)3

(k = 0) are modular.
j(z) ∈ Q and ∆(z) ∈ P[1/π]. Moreover, ∆(z) = F (j(z)), implies F (t) satisfies

a linear differential equation of order 13.

4

√√√√1 +
∞∑
n=1

240n3

e−2πinz − 1
= F (1/12, 5/12; 1; 1728/j(z)).

E.g. j(i) = 1728, ∆(i) = Γ(1/4)24/224π28.

An overview of L-functions. Let X be an arithmetical object (a number field,
character, Galois representation, arithmetic algebraic variety, modular form, etc.).
Then we associate to it L(X, s), the Dirichlet series encoding certain characteristics
of X:

L(s) = L(X, s) =
∞∑
n=1

an
ns
.

Assume the an have polynomial growth so that the series converges; then it does
so for Re(s)� 0.

There are five typical properties:
(1) Euler product: L(s) =

∏
p Pp(p

−1)−1 where Pp(T ) is a polynomial with
integral coefficients of degree ≤ n with = n when p - ∆.
n is called the level, ∆ is called the conductor. This directly measures

the p-adic properties of X (the number of points on a variety, eigenvalues
of a Hecke operator, how a prime splits, etc.).

(2) Meromorphic continuation and functional equation:

L∗(s) = γ(s)L(s) = ±L∗(k − s)
where

γ(s) = ∆s/2π−ns/2
n∏
j=1

Γ((s+ αj)/2)

for k ∈ N.
(3) Local Riemann hypothesis: Pp(p−s) = 0 implies Re(s) = (k − 1)/2.
(4) Global Riemann hypothesis: L(s) = 0 implies Re(s) = k/2 or s ∈ Z.
(5) Special values: For certain s ∈ Z such that γ(s) 6=∞, γ(k − s) 6=∞, then

L(s) ∈P[1/π].
Example. L(s) = ζ(s) =

∑
n 1/ns =

∏
(1 − p−1)−1, so Pp(X) = 1 − X, n = 1,

∆ = 1 (Euler). ζ∗(s) = π−s/2Γ(s/2)ζ(s) = ζ∗(1 − s), so k = 1 (Euler, Riemann).
1−p−s = 0 implies Re(s) = 0, and the global Riemann hypothesis ζ(s) = 0 implies
s ∈ −2N or Re(s) = 1/2 (this has been checked for the first 2 billion zeros, but still
not known).
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We have ζ(2) = π2/6, ζ(4) = π4/90, . . . and ζ(−1) = −1/12, ζ(−3) = 1/120,
. . . (again due to Euler), with a simple relationship between certain pairs.

There are examples that come from number theory:
Example (Dirichlet). We have L(s, χ) for χ a Dirichlet character. Pp(x) = 1−χ(p),
n = 1, ∆ is the conductor of χ, k = 1.
Example (Dedekind). We have ζF (s) for F a number field. n = [F : Q], δ is
the discriminant of F , and k = 1. If F = Q(α), and f(α) = 0 is minimal, then
Pp(T ) =

∏
1−Xdeg fi if f =

∏
i fi (mod p) for p - ∆.

Example (Artin). We have L(s, ρ), where ρ a Galois representation. Here n = dim ρ,
∆ is the conductor of ρ, k = 1, and the Pp is obtained from eigenvalues of Frobenius.

There are also examples that come from algebraic geometry:
Example (Hasse-Weil). For L(C/Q, s), C a curve, n = 2g, k = 2, we have Pp(T ) =
1 − apT + · · · + pgT 2g for p - ∆, where e.g. ap counts the the number of points in
Z/〈p〉, etc. We conjecture with γ(s) = N3/2(2π)2gΓ(s)g that

L∗(s) = ±L ∗ (k − s);

this is known for genus 1 curves (Wiles) and modular curves.
Example (Weil, Grothendieck, Dwork, Deligne). More generally, for any algebraic
geometry X, we have

ζX(s) = exp

(∑
p

∞∑
r=1

#X(Fpr )
p−rs

r

)
=
L0(s)L2(s) . . . L2d(s)
L1(s) . . . L2d−1(s)

where d = dimX, and for Li(T ), n = dimHi(X), k = i+ 1.
Finally, there are examples coming from modular (automorphic) forms:

Example. Let f be a modular form of weight k, e.g.

E4(z) = 1 + 240
∞∑
n=1

n3/(q−n − 1)

for q = e2πiτ and

∆(z) = q
∞∏
n=1

(1− qn)24

Then we obtain 1/240L(E4, s) = ζ(s)ζ(s− 3), and (Ramanujan)

L(∆, s) = 1− 24
2s

+
252
3s

+ · · · =
∏
p

Pp(p−s)−1

with Pp(T ) = 1 − π(p)T + p11T 2, n = z have local Riemann hypothesis, |τ(p)| ≤
2p11/2. Then we associate L(f, s), n = 2, k the weight, and ∆ the level of f , and

L∗(f, s) = (2π)−sΓ(s)L(f, s) = ±L∗(f, k − s)

where the γ term is in fact (1/2
√
π)π−1Γ(s/2)Γ((s+ 1)/2).

We can also take L(Sym2 f, s) the symmetric square (Rankin-Selberg), n = 3, k
twice the weight minus 1 and many others (L-series of Siegel and Hilbert modular
forms, L-series of automorphic representations) (Langlands).

Langlands tells us that there is only one kind of L-series: already, the case of
algebraic number theory is just algebraic geometry in dimension zero.
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Special values. Recall the special values of the ζ function: ζ(1) =∞, ζ(2) = π2/6,
ζ(4) = π4/90, . . . , and ζ(0) = −1/2, and ζ(−1) = −1/12, . . . . There is no such
result for ζ(3), since ζ∗(s) = γ(s)ζ(s) = ζ∗(1− s); since Γ(s) 6= 0, but Γ(s) =∞ if
s = 0,−1,−2, . . . , so γ(s) =∞ iff s = 0,−2,−4, . . . , and Γ(1− s) =∞ as well for
s = 1, 3, . . . .
Definition (Deligne 1979). Let L(χ, s) be an L-series as above. s is called critical
for X if s ∈ Z, γ(s) 6=∞, and γ(k − s) 6=∞.

Conjecture (Deligne’s conjecture). If s is critical, then LX(s) ∈ P̂ = P[1/π].
This conjecture is absolutely explicit; up to a rational number, there is a specific

matrix with the period equal to a determinant.
This was generalized by Beilinson (and Scholl):

Conjecture. For s ∈ Z critical, let m the order of vanishing at s of L. Then
L(m)(s) ∈ P̂.
Example. The Dedekind zeta-function. The critical values: if F is totally real,
then already ζF (2), ζF (4), · · · ∈ Q[π], ζF (−1), ζF (−3), · · · ∈ Q (Klingen-Siegel).
(If the field is not totally value, all are noncritical, since γ(s) has the factors
Γ(s/2)r1+r2Γ((s+ 1)/2)r2 .)

For noncritical values, s = 1 implies ζF (s)/ζ(s)
∣∣
s=1
∈ Q[π, log |ε|], ε units of F

(Dirichlet). If s = m > 1, ζF (m) the regulator for K2m−1(F ), so is in P (Borel).
Conjecture (Zagier). ζF (m) ∈ Q[π,Lim |α|], where

Lim(T ) =
∞∑
n=1

Tn

nm
.

For m = 2, F = Q(
√
−d) ⊃ O the ring of integers, we have

ζF (2) =
4π2

d3/2
vol(H3/SL2(O))

(Humbert). More generally, ζF (2) for any number field is the volume of some
hyperbolic (r2 = 1) or multihyperbolic (r2 > 1) manifold.

If ∆ is a hyperbolic 3-simplex (a tetrahedron), then vol(∆) is a combination of
values of D(x) (Lobachevski), where

D(x) = Im(Li2(x) + log |x| log(1− x)
is a uniquely defined function.
Example. For F = Q(

√
−7),

ζF (2) =
4π2

21
√

7
(2D

(
D((1 +

√
−7)/2) +D((1 +

√
−7)/4)

)
.

Also there are many examples for m > 2, e.g.

ζ(3) = D3(1) = 8/7D3(1/2) = 6/13(2D3(3)−D3(−3)

and so forth. This is proved for m = 2, 3 (Goncharov). Generalization to Artin
L-functions specializes to:
Conjecture (Zagier). Let Q(x, y) = ax2 + bxy+ cy2 ∈ Z[x, y] be a positive definite
binary quadratic form, then

ζQ(s) =
∑′

x,y∈Z

1
Q(x, y)s
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is an Epstein zeta function. For m > 1,

ζQ(m) =
πm√
|D|

∑
j

αjDm(xj)

for αj ∈ Q, xj ∈ Q.
The conjecture has been proved for m = 2 (Levin). Explicit computation has

been done for Q(x, y) = 2x2 + xy + 3y2.
Example (Mahler measures). (Deninger, Boyd, Villegas) For example, for k > 0,
k 6= 4, let

Pk(x, y) = (x+ y)(xy + 1)− kxy
The eqatuion Pk(x, y) = 0 defines an elliptic curve Ek and one expects

|L′(Ek, 0)| = N/4π2L(Ek, 0) = Bkµ(Pk)

where µ is the Mahler measure with Bk ∈ Q. For example, k = 1, 2, 3, . . . give
Bk = 1, 1, 1/2, 1/6, 2, 2, 1/4, . . . .

Modular forms. For f a modular form, the only special values are s = 1, . . . , k−1,
and we need only to know half by the functional equation.

The theory of “period polynomials” or the Rankin-Selberg method imply that
there exist two periods Ω± ∈P such that for 0 < s < k,

L∗(f, s) ∈

{
QΩ+, s even;
QΩ−, s odd.

Example. For ∆(z), L(∆, s) = 1− 24/2s + 252/3s − . . . :

s L∗(∆, s)
6 1/30 Ω+

7 1/28 Ω−
8 1/24 Ω+

9 1/18 Ω−
10 2/25 Ω+

11 90/691 Ω−

According to Deligne, L(∆, s) is a motivic L-function, corresponding to a piece
of H11(K) for a certain 11-dimensional variety K (Kuga variety, 11th symmetric
power of the universal elliptic curve). Hence L∗(s,∆), s = 1, . . . , 11, should be
given by integrals of 11-forms over 11-cycles. Can we make this explicit? Yes!

Step 1:

Γ(s) =
∫ ∞

0

ts−1e−t dt

so

(2π)−sΓ(s)n−s =
∫ ∞

0

ts−1e−2πnt dt

and

(2π)−sΓ(s)L(∆, s) =
∫ ∞

0

ts−1∆(it) dt.

Step 2: Recall the Legendre family of elliptic curves

Et : y2 = x(x− 1)(x− t)
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for t ∈ C with periods

Ω1(t) =
∫ 1

t

dx

y
, Ω2(t) =

∫ ∞

1

dx

y
.

If we substitute

t = λ(z) = 16
∆(z/2)1/3∆(2z)2/3

∆(z)
= 16q1/2 − 128q + 704q3/2 − . . .

for z ∈ H, q = e2πiz. Then

Ω2(t) = πF (1/2, 1/2; 1; t) = πθ(z)2

and
Ω1(t) = πzθ(z)2

where θ(z) =
∑
n e

πin2z = 1 + . . . .
Step 3: Thus Ω2(t) for t = Λ(z) is a modular of weight 1, Ω(z) is a modular

form of weight 12. Therefore ∆(z)
Ω2(t)12

is a modular function, and hence an algebraic
function of t = λ(z), and in fact a short calculation gives this as t2(t − 1)2. Since
dt = λ′(z) dz, λ′(z) = Ω2(t)2/t(1 − t) is a modular form of weight 2, and Ω1(t) =
zΩ2(t). Hence for s = 1, . . . , 11,

L∗(∆, s) =
∫ ∞

0

ts−1∆(it) dt

= is−1π−11

∫ 1

0

Ω1(t)s−1Ω2(t)11−st(1− t) dt.

Noncritical values.

Theorem (Beilinson, Deninger-Scholl). For f a modular form, weight k, m ≥ k ≥
2. Then L(f,m) ∈ P̂ = P[1/π].

Beilinson’s proof gives L(f, 2) as the sum of integrals of the form∫ b

a

log |A(x)|B(x) dx

with a, b ∈ Q, A,B ∈ Q(x), equal to the Mahler measure in some cases.
For k = 1, the corresponding statement would follow from Stark’s (m = 1) and

Zagier’s (m > 1) conjectures in general and is true for “CM forms”.
Corollary. If n is even, Q(x1, . . . , xn) a positive definite quadratic form with in-
tegral coefficients. Let

ζQ(s) =
∑′

x1,...,xn∈Z

1
Q(x1, . . . , xn)s

(Epstein zeta function, converges for Re(s) > n/2). Then s ∈ Z implies ζQ(s) ∈ P̂.
Question (Open). Is this true also for n odd? In particular, is “Glaischer’s constant”∑′

x,y,z∈Z

1
(x2 + y2 + z2)2

= 16.53231595 . . .

a period?
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Central values. If k is even, then the central value s = k/2 is critical, but
L(f, k/2) often vanishes (e.g. if the functional equation L∗(f, s) = ±L∗(f, k − s)
has a minus sign). In this case, the Beilinson-School conjecture still predicts that
the first nonzero derivative of L(f, s) at s = k/2 is a period.
Theorem. If f is a Hecke eigenform of weight k, L∗(f, s) = −L∗(f, k− s) implies
L′(f, k/2) ∈ P̂.

Idea of proof. The central derivative L′(f, k/2) can be expressed as a finite rational
linear combination of logarithms of integers and special values of higher weight
Green’s functions Gk/2(z, z′) with z, z′ ∈ Q (Gross-Zagier). These special values
are sometimes conjectured to be logarithms of algebraic numbers, e.g.

−1√
2G2(i, i

√
2)

= log
27 + 19

√
2

27− 19
√

2
but can be proved to be periods by a calculation like the one for critical values of
L(∆, s). There are formulas:

−1√
2
G2(i, i

√
2) =

20
π
G+ 1728

∫
√

2

E4(iy)∆(iy)
E6(iy)2

(y2 − 2) dy . . .

which can be expressed explicitly. �

Conjecture of Birch and Swinnerton-Dyer. For E/Q an elliptic curve over
Q, so that (Mordell)

E(Q) ' ZP1 ⊕ · · · ⊕ ZPr ⊕ Ztors.

By Wiles, L(E, s) = L(f, s) for f a modular form of weight 2. Then the Birch and
Swinnerton-Dyer conjecture says that ords=1 L(E, s) = r and

L(r)(E, 1) = cΩR

where c ∈ Q, c 6= 0 (there explicit formulas for it), Ω a real period of E, equal
to
∫
E(R)

dx/y, and R is the regulator of E, the determinant of the r × r matrix
(〈Pi, Pj〉)i,j where 〈, 〉 is the bilinear height pairing on E(Q) defined by 〈P, P 〉 =
h(P ), the canonical height, defined as follows: h0(P ) is the naive height

log max(|x1|, |x2|, |y1|, |y2|)
where P = (x1/x2, y1/y2), then h(P ) = limn→∞ h0(nP )/n2.
Example. The simplest example E : y2 = 4x3−4x+1 of conductor 37. E(Q) = ZP ,
P = (0, 1), and

n nP
2 (1, 1)
3 (−1,−1)
4 (2,−5)
5 (1/4,−3/4)
6 (6, 29)

Then Ω = 5.98691729 . . . , R = h(P ) = 0.0511114082 . . . , and L′(E, 1) = ΩR =
0.305999773 . . . .
Theorem. The quantity ΩR appearing in the BSD conjecture is always a period,
more specifically, it is the determinant of an (r+ 1)× (r+ 1) matrix whose entries
are Q-linear combinations of integrals

∫ b
a
ω, a, b ∈ E(Q), ω an algebraic 1-form.
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Example. E,P as above y =
√

4x3 − 4x+ 1 implies

ΩR =

∣∣∣∣∣∣
∫ 0

−1
dx
y

∫ 0

−1

(
1− 1

y

)
dx
2x∫ 2

1
dx
y

∫ 0

−1

(
1− 1

y

)
dx
2x

∣∣∣∣∣∣
Question. Show that f a modular form of even weight k, r = ords=k/2 L(f, s),
implies L(r)(f, k/2) ∈ P̂.

This is a previously stated theorem if r = 0, r = 1. There are not even examples
known for elliptic curves of higher rank.

Sketch of proof. For 〈P,Q〉 =
∑
v〈P,Q〉v, a sum over the places v of Q of local

heights. Then
〈P,Q〉 =

∑
p

(P ·Q) log p+G(P,Q)

where the finite primes runs over only finitely many primes, and G is a Green’s
function. G(P, z) is harmonic in z except for logarithmic singularity at P , namely
G(P, z) = Re

∫ z
z0
ωP where ωP is a 1-form over R with a simple pole at P with

residue 1 and Re
(∫

E(R)
ωP

)
= 0.

Choose ω∗P a 1-form defined over Q, with a pole at P , so that ω∗P = ωP + λω0,
ω0 = dx/y the holomorphic 1-form. Then

0 = Re

(∫
E(R)

ωP

)
= Re

(∫
E(R)

ω∗P

)
− λΩ

so λ = (1/Ω) Re
(∫

E(R)
ω∗P

)
. Thus

G(P,Q) = Re

(∫ Q

z0

ωP

)
= Re

(∫ Q

z0

(ω∗P − λω0)

)
=

1
Ω

∣∣∣∣∣Re(
∫
E(R)

ω0) Re(
∫ Q
z0
ω0)

Re(
∫
E(R)

ω∗P ) Re(
∫ Q
z0
ω∗P )

∣∣∣∣∣
and is therefore a matrix of periods. �
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