
INTRODUCTION TO ALGEBRAIC STACKS

JOHN VOIGHT

Abstract. In these notes, we give an introduction to stacks with an eye

toward moduli spaces of elliptic curves. The goal is to give a full definition of

a Deligne-Mumford stack.
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In beginning of algebraic geometry, one starts with varieties over the complex
numbers, a set of points with a Zariski topology in which all points are closed
points. In generalizing this to schemes, one asks for a locally ringed topological
space equipped with a structure sheaf, allowing for closed and nonclosed points. To
generalize this further, we define an object called a stack which will allow “points”
equipped with nontrivial automorphisms: it will be a category with a Grothendieck
topology.

1. Why stacks?

Stacks are a natural class of objects to consider in many situations.
First, stacks arise in the context of moduli spaces. For example, over C, two

elliptic curves E,E′ are isomorphic if and only if j(E) = j(E′). Therefore, the j-
line A1

C
= Spec C[j] is a natural ‘coarse moduli space’ for elliptic curves over C. But

this is too coarse in some sense. For one, every elliptic curve has an automorphism
[−1], therefore the j-line cannot ‘distinguish’ between an elliptic curve and its
negative. Worse still, the curves with j invariants j = 0 and j = 1728 have extra
automorphisms, and this information is forgotten by the j-line. The existence of
these automorphisms mean that there is no ‘universal elliptic curve’, but such an
object exists as a stack. (For more on this, read on!)

If we would like to not just parametrize algebraic objects but also families of
algebraic objects, we are led to allow the base to be any scheme. In this context,
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2 JOHN VOIGHT

one can prove for example that the moduli space of smooth curves of genus g is
irreducible in any characteristic.

Second, stacks arise when one takes quotients. If X is a variety and G a group
acting on X, the quotient X/G may not exist as a variety or a scheme. Quotients
are much more natural as stacks. As a novelty example, given positive integers
p, q, r we may ask for all coprime integer solutions to the Diophantine problem
xp + yq = zr. This equation defines a scheme over Spec Z of relative dimension 2.
Being ‘weighted homogeneous’, it has an action by the scheme Gm. Removing the
zero section and dividing out by this action gives a stack of dimension 1, and its
‘rational points’ are the desired coprime solutions!

Finally, stacks are a more basic object than sheaves, topological spaces, or even
groups!

2. Fibered categories

We will build up slowly to the definition of a stack. Let S be a scheme, and let
Sch/S be the category of S-schemes.

Definition. A category over S is a category F equipped with a functor

p : F → Sch/S.

We will often leave the “projection” functor p implicit in the notation, and will
refer to F as an S-category.

Definition. A category F over S is fibered in groupoids if:

(i) (Arrow lifting) For all arrows φ : U → V in Sch/S and all y ∈ p−1(V ),
there exists an arrow f : x→ y in F such that p(f) = φ;

(ii) (Diagram lifting) For all diagrams

x
f

  @
@@

@@
@@

z

y

g

??�������

in F , with image

U
φ

  A
AA

AA
AA

A

W

V

ψ
>>}}}}}}}}

under p, and for all χ : U → V such that φ = ψ ◦ χ, there exists a unique
h : x→ y in F such that f = g ◦ h and p(h) = χ.

An element y ∈ p−1(V ) is referred to as a lift of V ; the element f is a lift of φ,
or lies above φ.
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Remark. Condition (ii) implies that the f : x → y in (i) is unique up to unique
isomorphism. Given f : x → y and f ′ : x′ → y two such, we have a diagram

x
f

  @
@@

@@
@@

@

y

x′

f ′

??�������

so by (ii) there exists a unique map x→ x′, which by swapping x and x′ we see to
be an isomorphism.

Remark. Condition (ii) implies that an arrow f of F is an isomorphism if and
only if p(f) is an isomorphism. The sufficiency is trivial (apply p); in the other
direction, suppose we have f : x→ y in F with image φ : U → V an isomorphism.
Let ψ : V → U be a left inverse, so we have a diagram

V
id

  @
@@

@@
@@

ψ

��

V

U

φ
>>~~~~~~~

so by (ii) there exists a lift to a diagram

y

id

��>
>>

>>
>>

g

��

y

x

f
??�������

which implies that f has a left inverse as well. This also applies to the right inverse,
so f is an isomorphism.

Definition. Let U be a scheme over S. Then F(U), the fiber of F over U , is the
category whose objects are p−1(U) and whose arrows f : x → y with x, y ∈ p−1(U)
have p(f) = id.

From the preceding remark, we see that the fiber F(U) is a groupoid, i.e. all
arrows in F(U) are isomorphisms.

Almost always, these lifting properties follow automatically by base-change or
by fibered products.

3. Elliptic curves

In order to introduce our main example, we recall in this section the definition
of an elliptic curve over a general base scheme.
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Definition. Let S be a scheme. An elliptic curve E over S is an S-scheme p : E → S
where:

(i) p is proper and smooth of relative dimension 1;
(ii) The geometric fibres of p are connected curves of genus 1; and
(iii) There exists a section O ∈ E(S) = Hom(S, E) (i.e. p ◦O = idS).

A morphism f : X → S is smooth if and only if:

• f is flat;
• f is locally of finite presentation; and
• For all s ∈ S, the fiber Xs = X ×S Spec k(s) over the residue field k(s) is

geometrically regular.

A scheme X over a field k is geometrically regular if Xk is nonsingular (every local
ring is a regular local ring). Therefore condition (i) implies that all fibers of p are
smooth (nonsingular) curves. Thus one can think of p : E → S as a “continuous
family of curves over the scheme S”.

Condition (ii) says the following: if k = k is an algebraically closed field and
Spec k → S a morphism, then in the pullback (fibre square)

Ek = E ×S Spec k //

��

E

��
Spec k // S

we have that the curve Ek satisfies dimkH
1(Ek,OEk

) = 1, i.e. Ek has (arithmetic
or geometric) genus 1. (Note that the curve is smooth and connected, therefore
integral.)

Remark. Note that there are no elliptic curves over Spec Z. Also, there is no
elliptic curve over Spec C[t] with ∆(E) 6∈ C, since then ∆(E) has a zero in C. We
can recover in each of these examples by removing finitely many points, i.e. those
points in the support of ∆(E).

Let Ell be the category whose objects are elliptic curves (over schemes) and whose
morphisms are pullback diagrams

E′ //

��

E

��
S′ // S

which are cartesian squares compatible with the section O, i.e. E′ is a fiber product
of E and S′ over S, so there is a unique isomorphism E′ → E ×S S

′.
We would like to find a final object in Ell, since then we could realize every elliptic

curve over a scheme as a unique pullback of this “universal” elliptic curve over a
universal base. Unfortunately, it does not exist: the morphism E′ → E can always
be changed by the automorphism [−1] on E, so the pullback cannot be unique.

However, the forgetful map p : Ell → Sch/Z by (p : E → S) 7→ S gives Ell the
structure of a category over Z. The condition (i) follows immediately by pullback:
If E → S is an elliptic curve, and φ : T → S a morphism, then we have the fiber
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square,

E ×S T //

��

E

��
T

φ
// S

which is a morphism in Ell whose image is φ.
Condition (ii) follows similarly: Given cartesian squares

E′S′ //

��

E

��
S′ // S

and

E′′S′′ //

��

E

��
S′′ // S

and a connecting arrow

S′

  A
AA

AA
AA

A

��

S

S′′

>>}}}}}}}}

on the base, we see that E′′ ×S′′ S′ is a fiber product for E → S and S′ → S:
Given morphisms Z → E and Z → S′ which are equal on S, we obtain a unique
morphism Z → E×S S

′′ ∼= E′′ by the extension Z → S′ → S′′, and hence a unique
morphism Z → E′′ ×S′′ S′.

Therefore Ell is fibered in groupoids over Z. The fiber Ell(S) is the category of
elliptic curves over S with morphisms the isomorphisms among them.

4. Stacks

Recall the definition of a Grothendieck topology: it makes sense to say whether
{Si → S} is an open cover (isomorphisms are an open cover, an open cover of an
open cover is an open cover, and a base extension of an open cover is an open
cover). We assume that our base category Sch/S is equipped with a Grothendieck
topology, the étale topology if not specified.

Furthermore, we assume a choice of lift for each arrow φ : U → V in Sch/S; this
will be the fiber product in our examples, and we denote it x = y|U = φ∗y.

Definition. A stack over a scheme S is a category F fibered in groupoids over S
such that the assignment

Sch/S → Set

U 7→ F(U) = p−1(U)

is a sheaf of groupoids, i.e.:
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(i) (Isomorphisms are a sheaf) For all U ∈ Sch/S and all x, y ∈ F(U), the
functor

IsomU (x, y) : Sch/U → Set

V 7→ {α : x|V
∼
−→ y|V an isomorphism in F(V )}

is a sheaf (in the (étale) topology), i.e. for all U ∈ Sch/S, all x, y ∈ F(U),

all open covers {Ui → U} of U , and all isomorphisms αi : x|Ui

∼
−→ y|Ui

such that αi|Uij
= αj |Uij

where Uij = Ui ×U Uj , there exists a unique
isomorphism α : x→ y such that α|Ui

= αi;
(ii) (Descent datum is effective) For all open covers {Ui → U}, all xi ∈ F(Ui),

and all αij : xi|Uij

∼
−→ xj|Uij

such that αik = αjk◦αij over Uijk, there exists

an x ∈ F(U) and αi : x|Ui

∼
−→ xi in F(Ui) such that αij = αj |Uij

◦(αi|Uij
)−1.

Example. Let Bundr/S be the category of vector bundles of rank r, whose objects
are line bundles L of rank r on an S-scheme U and morphisms pullbacks, i.e. there
exists a morphism L ′ → L if and only if there exists a map φ : U ′ → U of S-
schemes and an isomorphism L ′ ∼= φ∗L , which is necessarily unique. The forgetful
functor (to the underlying scheme of the bundle) gives Bundr/S the structure of
an S-category: a fiber Bundr(T ) is the category of vector bundles of rank r over T
with isomorphisms between them.

This category is fibered in groupoids via the pullback: given φ : U → V and L a
vector bundle on V , we have the vector bundle φ∗L on U , and given vector bundles
L ′ and L ′′ over U ′ and U ′′, respectively, a commuting morphism χ : U ′ → U ′′ gives
the pullback χ∗L ′′ which, since the pullback is unique up to unique isomorphism,
and (fg)∗ = g∗f∗, there is a unique map L ′ ∼= χ∗(L ′′).

Condition (i) in the definition of a stack says that isomorphisms between bundles
on the same scheme can be defined locally on an open cover and glued in a unique
way if they agree on overlaps.

Condition (ii) says that line bundles can be glued. You cannot reconstruct
a vector bundle L from its restrictions Li over an open cover {Ui → U} (every
bundle is trivialized over some open cover!); however, we have induced isomorphisms

αij : Li|Uij

∼
−→ Lj|Uij

which satisfy the cocycle condition, and by glueing, L can
be recovered from Li and the αij.

Example. Let g ≥ 1 be an integer. Let Mg be the category over Spec Z of smooth
curves of genus g whose objects are smooth, proper morphisms p : C → S of
relative dimension 1 whose geometric fibres are connected curves of genus g and
whose morphisms are cartesian squares. (If g = 1, then Mg differs from Ell in that
an elliptic curve comes equipped with a point.) Then Mg is a stack.

5. Schemes and functors as stacks

A functor is a stack, and a scheme is a stack via its functor of points. More
explicitly, let X be an S-scheme. Then

p : Sch/X → Sch/S

given by composition with the structure morphism X → S gives Sch/X the struc-
ture of an S-category: indeed, an X-morphism Y → Z becomes an S-morphism
via composition with X → S.
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Moreover, Sch/X is fibered in groupoids: in fact, the fibers are just F(U) =
HomS(U,X) as a set. The objects of F(U) are X-schemes Z such that Z → X → S
is the map U → S, so Z = U , and an X-morphism U → U in F projects to the
S-morphism U → U , which if the identity then so was the original map. Therefore
the only morphisms in the category F(U) are the identity morphisms, and in this
way we identify the fiber (a category) as a set.

Condition (i) is clear: if f, g : U → X ∈ HomS(U,X) are elements of F(U), then
from the above IsomU (f, g)(V ) has one element or none, depending on if f |V = g|V
or not. Therefore locally IsomU (f, g) is the constant sheaf or the empty sheaf.

Condition (ii) is nontrivial, and follows from the statement that the functor of
points is a sheaf in the étale topology. It is true in the Zariski topology and the étale
topology for general schemes. To prove it in general, we appeal to the following
lemma:

Lemma. A presheaf F of sets on X in the étale topology is a sheaf if and only if
the ‘condition for sheaves’ holds for coverings of the following types: {Ui → U} is
a surjective family of open immersions; {V → U} is a single surjective morphism
of affine schemes.

Corollary. For each S-scheme X, the functor HomS(−, X) is a sheaf in the étale
topology on S.

Proof. Let U be an S-scheme. Given an open Zariski covering U =
⋃
i Ui, a mor-

phism φ : U → X is uniquely determined by its restrictions φ|Ui
: Ui → X, and

conversely, given φi : Ui → Z such that φi|Uij
= φj|Uij

, there exists a unique
morphism φ : U → Z such that φ|Ui

= φi.
If V → U is a surjective S-morphism of affine schemes, étale over S, then such

a morphism is faithfully flat and quasi-compact, therefore we quote the following
general result from descent theory: A faithfully flat, quasi-compact morphism of
schemes is a universal effective epimorphism in the category of schemes. �

Therefore, by the ‘sheaf condition’, we obtain not only one but a unique lift as
required by the descent datum in this case.

We will denote by X both the scheme X and the stack X given above in the
étale topology.

6. Morphisms of stacks

Definition. A morphism of stacks is a functor F : F → G such that pF = pG ◦ F .

Example. Let X, Y be S-schemes. Then a morphism F : X → Y of stacks is
determined by a morphism f : X → Y of S-schemes, and vice versa. This is the
statement of Yoneda’s lemma, which we reprove for illustrative purposes.

Given f : X → Y , composition with f gives a functor Sch/X → Sch/Y which
commutes with projections: the projection of the X-morphism U → V is the S-
morphism U → V , which is the same as the projection of the Y -morphism U → V .

Conversely, given F : Sch/X → Sch/Y , let f = F (X
id
−→ X) = Z → Y . Then

since F commutes with projections, we have

pX(X
id
−→ X) = X → S = (pY ◦ F )(X

id
−→ X) = Z → Y → S.
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Therefore X = Z, and (f : X → Y ) ∈ HomS(X, Y ). It is easy to see that F is
determined by f . Let g : U → X be any X-scheme. Consider the morphism

U
g

  @
@@

@@
@@

g
// X

id
~~}}

}}
}}

}

X

of X schemes. Then the image of this diagram under F is the morphism of Y -
schemes

U
F (U)

��@
@@

@@
@@

F (g)
// X

f
~~~~

~~
~~

~

Y

so the equality of projections says that F (U) = f ◦ g.

Example. Let Mg,1 be the stack of smooth pointed curves of genus g, whose objects
are curves C → S as above together with a section S → C and whose morphisms
are cartesian squares which respect the sections. It is easy to see that the map
Mg,1 → Mg is a morphism of stacks.

Example. The natural map Ell → Spec Z[j] is a morphism of stacks.
Let E → S be an elliptic curve. There exists an affine open cover Si = SpecRi

of S on which the restriction Ei of E to Ri is given by a Weierstrass equation with
coefficients in Ri. We define the map SpecRi → Spec Z[j] by j 7→ j(Ei), given by
the usual rational expression for j; this is well-defined since ∆(Ei) ∈ R∗

i , as Ei is
an elliptic curve over Ri. Now Sij = Si ∩Sj also has an affine open cover SpecRijk
such that Ei|Sijk

∼= Ej|Sijk
, hence j(Ei|Sijk

) = j(Ej |Sijk
) ∈ Rijk, so by glueing

these morphisms we obtain a well-defined morphism S → Spec Z[j].
This gives a commutative diagram

Ell //

$$J
JJJJJJJJJ Sch/ SpecZ[j]

vvnnnnnnnnnnnn

Sch/ SpecZ

by

(E → S)
�

''OOOOOOOOOOO
� // (S → Spec Z[j])-

vvmmmmmmmmmmmmm

(S → Spec Z)

so the functor commutes on the level of objects. Let

E′ //

��

E

��
S′

f
// S

be a cartesian square and let S be covered by SpecRi, with f−1(SpecRi) covered
by SpecRij

′ such that E and E′ are given by Weierstrass equations on SpecRi and
SpecR′

i, respectively. Since E′ ∼= E ×S S
′, we see that E′|SpecRij′ is isomorphic to
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the curve defined by the Weierstrass equation forE over Ri under the map f |#SpecRi
:

Ri → R′
ij, hence f(j(Eij′)) = j(Ei) ∈ Ri. Hence as above these morphisms glue,

and we have a morphism S′ → S over Spec Z[j].

Remark. Note if F and G are moduli stacks (i.e. ‘families’ of objects over schemes),
then a morphism of stacks is simply a mapping between families which commutes
with base change.

Definition. A stack F is representable if there exists an S-scheme X and an iso-
morphism F → X.

Remark. Note that a morphism F → X is a functor, so an isomorphism of stacks
is an equivalence of categories: we do not insist that the composition of the two
functors is the identity functor spot on. In fact, the morphisms from two stacks F
and G form a category: the arrows in HomS(F , G) are natural transformations of
functors. Therefore we say that stacks form a 2-category.

7. Fibered products and representability

Definition. Let F : F → H and G : G → H be morphisms of stacks over S. The fiber
product F×HG is the category whose objects are triples (x, y, α) where α : F (x) →
G(y) is a morphism in a fiber of H (i.e. pF (x) = pG(y) and α : F (x) → G(y) is an
arrow in H such that pH(α) = id) and whose morphisms (x, y, α) → (x′, y′, α′) are
pairs (φ : x→ x′, ψ : y → y′) in fibers of F and G such that

G(ψ) ◦ α = α′ ◦ F (φ) : F (x) → G(y′).

Remark. The fiber of F×HG over U are pairs (x, y) ∈ F(U)×G(U) such that F (x)
is isomorphic to G(y) in H(U).

Proposition. The category F ×H G is a stack over S. Given a commutative dia-
gram of stacks

A //

��

G

��
F // H

there is a morphism A → F ×H G which is unique up to unique isomorphism.

Definition. Let F : F → G be a morphism of stacks. Then F is representable if for
all S-schemes X and all morphisms X → G, the fiber product F ×G X is a scheme.

Definition. Let P be a property of morphisms which is stable under base change
and local on the target, and let F : F → G be a representable morphism. Then F
has P if for all S-schemes X and all morphisms X → G, the induced morphism of
schemes F ×G X → X has P.

Example. Any morphism of schemes is representable.

Example. A morphism F → X where X is a scheme is representable if and only if
F is a representable stack. (Take the identity map X → X.) Therefore the map
Ell → Spec Z[j] is not representable.

Example. If g ≥ 1, the morphism F : Mg,1 → Mg is representable, proper, and
smooth. If S is a scheme and G : S → Mg a morphism (think: G is a family of
genus g curves over S), then it is represented by a family of curves p : C → S
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(the image of the identity, commutes with projection implies the base is S), and
Mg,1 ×Mg

S ∼= C.
Note: Mg,1 ×Mg

S has objects triples (C ′ → S′, S′′ → S, α) with p(C ′ → S′) =
S′ = p(S′′ → S) = S′′ (over Spec Z), so S′′ = S′. Now α is an arrow in Mg (i.e. a
Cartesian diagram) with pMg

(α) = id, so

F (C ′ → S′) = C ′ //

��

C ′′

��
S′ S′

= G(S′)

but G is a functor, so the image of the diagram (morphism)

S′ //

��@
@@

@@
@@

S

id
����

��
��

�

S

is the cartesian square

C ′′ //

��

C

��
S′ // S

which implies that

C ′ //

��

C

��
S′ // S

is Cartesian as well. Thus we have a map

Mg,1 ×Mg
S // C

(C ′, S′, α) � // S′

(C ×S T, T, id) T
�oo

which shows this is an equivalence of categories, hence an isomorphism. (One can
also prove this using the universal property of the fibered product.)

It is proper and smooth because C → S is so.

8. Algebraic stacks

Let F be a stack, and consider the diagonal ∆ : F → F ×S F given by the two
identity morphisms. Let X be an S-scheme and let X → F ×S F be a morphism.
By projection, we get two maps X → F , i.e. two objects x, y ∈ F(X).

Lemma. The fiber product F ×F×SF X is (isomorphic to) the sheaf (functor)
IsomX(x, y).

Proof. The sections over an S-scheme U are pairs (u, v) ∈ F(U)×X(U) such that

img(u ∈ F → F ×S F) = (u, u, id) ∼= img(v ∈ X → F ×S F) = (x|U , y|U , α),

which is what we need to show. �
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Proposition. The diagonal ∆ is representable if and only if every morphism from
a scheme to F is representable.

Proof. Suppose ∆ is representable. Let F : X → F be a morphism. We must show
that for all G : Y → F , X ×F Y is a scheme. We have a cartesian diagram

X ×F Y

��

// X ×S Y

(f,g)

��
F

∆ // F ×S F

since it is easy to see that X ×F Y satisfies the universal property. Now ∆ repre-
sentable implies that the fiber product is a scheme, which by definition says that
G is representable.

Conversely, suppose every morphism from a scheme to F is representable. We
want to show that for all morphisms h : X → F ×S F that the fiber product
F ×F×SF X is a scheme. Now h = (f, g) ◦ ∆X for maps F,G : X → F , i.e. the
diagram

X

F

��5
55

55
55

55
55

55
55

5
G

))SSSSSSSSSSSSSSSSSSS

##H
HH

HHH
HHH

F ×S F //

��

F

��
F // S

commutes. Then we have a cartesian diagram

F ×F×SF X //

��

X

∆X

��
X ×F X //

��

X ×S X

(f,g)

��
F

∆F // F ×S F

so X ×F X is a scheme. This says that

F ×F×SF X ∼= (X ×F X) ×X×SX X

is a scheme as well. �

Definition. A stack F is Deligne-Mumford (DM) if the two conditions hold:

(i) The diagonal ∆F is representable, quasi-compact, and separated;
(ii) There is a scheme U and an étale surjective morphism U → F .

A stack F is Artin if (i) holds and with (ii) replaced by: There is a scheme U and
a smooth surjective morphism U → F .

The scheme U in (ii) is called an atlas.

Example. A functor F : Sch/S → Set is a DM stack if and only if F is represented
by a locally separated algebraic space.

Example. The stacks Mg and Mg are DM provided g ≥ 2.



12 JOHN VOIGHT

Example. The stack Bundr(X) is not a DM stack if r ≥ 1, because (in general)
the groups of automorphisms of a nonzero vector bundle is not finite. Under some
hypotheses on X, it is Artin.
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