2.14 Linear Approximations
|
By the end of your studying, you should know:
On-screen applet instructions:
The initial configuration is an implementation of the figure at the beginning of Section 2.14 of the text, except that the slope of the line is not fixed. The applet is to be used to investigate the nature of the error function error(x) = f(x) − L(x) as x → a. First, for a fixed x from the pull-down menu use the slider to change the slope m of the line: in fact, let the slope of the line approach f′(a). For each m, the normalized error function error(t) is shown in the inset: watch its shape. Can you explain the change in the error function as the slope of the line approaches f′(a)? What can you conclude about the error as x → a? Click here for more details and an explanation.
ExamplesWhen solving problems in geometric optics, engineers and physicists often use the simplifying assumption that, for small angles θ, sin(θ) is approximately equal to θ. Find a linear approximation for sin(x) that shows why this is a reasonable assumption.A pizza restaurant sells an average of 80 pizzas per day at its usual price of $12.95. It experiments with sales and coupons for dollars off the usual price, and finds that the number of pizzas sold when the price decreases by 2 dollars is 135. It estimates that the number of pizzas sold when the price does down by x dollars is modeled by the function 50 ln(x + 1) + 80. Use linear approximation to find the change in the number of pizzas sold when the price drops from $10.95 to $9.95.
Find the linear approximation of the function
AppletsBest Linear Approximation
VideosSee short videos of worked problems for this section.
QuizExercisesSee Exercises for 2.14 Linear Approximations (PDF).Work online to solve the exercises for this section, or for any other section of the textbook. |
Resources on the WebInformation on NewtonBiographical data from St. Andrew's University's Web site Excerpt from W.W. Rouse Ball's "A Short Account of the History of Mathematics"
Information on Leibniz
Calculus Applications
Linear Approximations
|
Interesting ApplicationNothing yet has been found. Any ideas? |
2.13 Newton?s Method | Table of Contents | 2.15 Antiderivatives and Initial Value Problems |
Software requirements: For best results viewing and interacting with this page, get the free software listed here.
Copyright © 2005 Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel