THE APPEL-HUMBERT THEOREM

ERAN ASSAF

ABSTRACT. This is a proof of the theorem, as can be found in [2], using some of the more modern exposition and notation, as can be found in [1].

1. Proof

1.1. Introduction. The goal of this short note is to present a proof of the following theorem:

Theorem 1.1.1 (Appel-Humbert, [2, p. 20]). Let $X = \mathbb{C}^n / \Lambda$ be a complex torus. Then any line bundle \mathscr{L} on X is of the form $\mathscr{L}(\psi, \alpha)$ where ψ is a Riemann form, and α is a semi-character with respect to ψ . Furthermore, ψ, α are uniquely determined.

The proof is based on Mumford.

1.2. Notation and definitions. Throughout, we let V be a finite dimensional complex vector space of dimension n, and $\Lambda \subseteq V$ is a lattice, i.e. a subgroup of rank 2n such that $\Lambda \otimes \mathbb{R} \cong V$ under the canonical map $\alpha \otimes \lambda \mapsto \alpha \lambda$.

Definition 1.2.1. A complex torus is a complex Lie group isomorphic to $X = V/\Lambda$.

Definition 1.2.2. A *Riemann form* on V with respect to Λ is a Hermitian form $\psi: V \times V \to \mathbb{C}$ such that $\operatorname{Im} \psi(\Lambda \times \Lambda) \subseteq \mathbb{Z}$

Definition 1.2.3. A semi-character with respect to a Riemann form ψ is a map

$$\alpha: \Lambda \to U_1(\mathbb{R}) = \{ z \in \mathbb{C} : |z| = 1 \}$$

such that

$$\alpha(\lambda_1 + \lambda_2) = \alpha(\lambda_1)\alpha(\lambda_2)e^{\pi i \operatorname{Im}\psi(\lambda_1,\lambda_2)}$$

Remark 1.2.4. These could be obtained if one tries to find linear solutions when solving for the factor of automorphy given ψ .

Definition 1.2.5. The factor of automorphy corresponding to the pair (ψ, α) consisting of a Riemann form and a semi-character is the element $j_{(\psi,\alpha)} \in H^1(\Lambda, \mathscr{O}^{\times}(V))$ represented by the cocycle

$$j_{(\psi,\alpha)}(\lambda)(v) = \alpha(\lambda)e^{\pi\psi(v,\lambda) + \frac{\pi}{2}\psi(\lambda,\lambda)}$$

Remark 1.2.6. Note that $j_{(\psi,\alpha)}$ is indeed a cocycle, i.e. it satisfies

$$j(\lambda_1 + \lambda_2) = \lambda_2(j(\lambda_1)) \cdot j(\lambda_1)$$

which explicitly is

$$j(\lambda_1 + \lambda_2)(v) = j(\lambda_1)(\lambda_2 + v) \cdot j(\lambda_2)(v)$$

1.3. Outline of the proof. We are going to proceed in the following steps:

- (1) Establish a canonical isomorphism $\operatorname{Pic}(X) \cong H^1(X, \mathscr{O}_X^{\times}) \cong H^1(\Lambda, \mathscr{O}^{\times}(V))$. Thus, for any $(\psi, \alpha), j_{(\psi, \alpha)}$ defines a line bundle, which we denote by $\mathscr{L}(\psi, \alpha)$.
- (2) Show commutativity of the diagram

$$\begin{array}{c} H^1(\Lambda, \mathscr{O}^{\times}(V)) \longrightarrow H^2(\Lambda, \mathbb{Z}) \\ & \downarrow \cong & \downarrow \cong \\ H^1(X, \mathscr{O}_X^{\times}) \longrightarrow H^2(X, \mathbb{Z}) \end{array}$$

so that the image of any line bundle in $H^2(\Lambda, \mathbb{Z}) \cong \bigwedge^2 \operatorname{Hom}(\Lambda, \mathbb{Z})$ gives us an alternating form ψ .

- (3) Show that the image of a line bundle in $H^2(\Lambda, \mathbb{Z})$ is a Riemann form.
- (4) Looking at the commutative diagram with exact rows

we prove that λ is an isomorphism. By the above, ν is also an isomorphism, hence the result.

1.4. Step 1 - factors of automorphy.

Proposition 1.4.1. There exist a canonical isomorphism $H^1(X, \mathscr{O}_X^{\times}) \cong H^1(\Lambda, \mathscr{O}^{\times}(V))$.

Proof. Let $\pi: V \to X$ be the natural projection, and let \mathscr{L} be a line bundle on X. Because V is simply connected, every line bundle on it is trivial, and therefore $\pi^*\mathscr{L} \cong V \times \mathbb{C}$. Let T_{λ} be translation by λ map on V given by $T_{\lambda}(x) = x + \lambda$. Then

$$T_{\lambda}^{\star}\pi^{\star}\mathscr{L} = (\pi \circ T_{\lambda})^{\star}\mathscr{L} = \pi^{\star}\mathscr{L}$$

But by the definition of the pullback of a line bundle, we have

$$(T^{\star}_{\lambda}(\pi^{\star}\mathscr{L}))_{v} = (\pi^{\star}\mathscr{L})_{v+\lambda}$$

so under the isomorphism with the trivial bundle $T^*_{\lambda}(v, z) = (v + \lambda, J(z))$, but J(z) is an automorphism of \mathbb{C} , i.e. it must be of the form $z \mapsto j(\lambda)(v) \cdot z$ for some $j(\lambda)(v) \in \mathbb{C}^{\times}$. Therefore $j(\lambda) : V \to \mathbb{C}^{\times}$ is an element of $\mathscr{O}^{\times}(V)$. Moreover, as $T_{\lambda_1+\lambda_2} = T_{\lambda_1} \circ T_{\lambda_2}$, we see that

$$j(\lambda_1 + \lambda_2)(v) = j(\lambda_1)(\lambda_2 + v) \cdot j(\lambda_2)(v)$$

so that in fact j is a cocycle, i.e. $j \in Z^1(\Lambda, \mathscr{O}^{\times}(V))$.

If we alter the trivialization, multiplying by some $f \in \mathscr{O}^{\times}(V)$, then j will be replaced by the cohomologous cocycle

$$j'(\lambda)(v) = j(\lambda)(v) \cdot f(v+\lambda)/f(v)$$

so that we have defined a map $H^1(X, \mathscr{O}_X^{\times}) \to H^1(\Lambda, \mathscr{O}^{\times}(V))$. Conversely, just define the line bundle as the quotient of the trivial bundle by the relation $(v, z) \sim (v + \lambda, j(\lambda)(v) \cdot z)$. \Box

1.5. Step 2 - the alternating form.

Proposition 1.5.1 ([2, p. 18]). The Chern class of the line bundle corresponding to $j \in Z^1(\Lambda, \mathscr{O}^{\times}(V))$ is the alternating 2-form on Λ with values in \mathbb{Z} given by

$$E(\lambda_1, \lambda_2) = f_{\lambda_2}(v + \lambda_1) + f_{\lambda_1}(v) - f_{\lambda_1}(v + \lambda_2) - f_{\lambda_2}(v)$$

where $j(\lambda)(v) = e^{2\pi i f_{\lambda}(v)}$.

Proof. We get from the exponential sequence

$$0 \to \mathbb{Z} \to \mathscr{O}(V) \to \mathscr{O}^{\times}(V) \to 0$$

the following diagram

$$\begin{array}{c} H^1(\Lambda, \mathscr{O}^{\times}(V)) \xrightarrow{\delta} H^2(\Lambda, \mathbb{Z}) \\ \downarrow \cong & \downarrow \cong \\ H^1(X, \mathscr{O}_X^{\times}) \longrightarrow H^2(X, \mathbb{Z}) \end{array}$$

This diagram commutes, because the isomorphism is compatible with the connecting morphisms. (Check!)

Write $j(\lambda)(v) = e^{2\pi i f_{\lambda}(v)}$, then by definition of δ , we have

$$\delta([j])(\lambda_1,\lambda_2) = f_{\lambda_1}(v+\lambda_1) - f_{\lambda_1+\lambda_2}(v) + f_{\lambda_1}(v) \in \mathbb{Z}$$

The proof will be complete with the following Lemma.

Lemma 1.5.2 ([2, p. 16]). The map $A: Z^2(\Lambda, \mathbb{Z}) \to \bigwedge^2 \operatorname{Hom}(\Lambda, \mathbb{Z})$ defined by

$$A(F)(\lambda_1,\lambda_2) = F(\lambda_1,\lambda_2) - F(\lambda_2,\lambda_1)$$

induces an isomorphism $H^2(\Lambda, \mathbb{Z}) \cong \bigwedge^2 \operatorname{Hom}(\Lambda, \mathbb{Z}).$

Moreover, for any $\xi, \eta \in \text{Hom}(\Lambda, \mathbb{Z}) = H^1(\Lambda, \mathbb{Z})$, we have $A(\xi \cup \eta) = \xi \land \eta$.

Proof. Exercise.

Remark 1.5.3. The last line is needed so that the two isomorphisms we have with $H^2(X, \mathbb{Z})$ will coincide.

1.6. Step 3 - Riemann form. The goal of this step is to prove the following proposition.

Proposition 1.6.1 ([2, p. 18]). If we extend E from previous proposition \mathbb{R} -linearly to a map $E: V \times V \to \mathbb{R}$, then E(ix, iy) = E(x, y).

In order to prove this proposition, we first need to prove some auxiliary results on the structure of cohomology of X. Let $T = \operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$ be the complex cotangent space to X at 0. We have a natural map $\mathscr{O}_X \otimes_{\mathbb{C}} \bigwedge^p T \to \Omega^p$ sending $\alpha \in \bigwedge^p T$ to the form ω_{α} defined by $(\omega_{\alpha})_x = dT^*_{-x}(\alpha)$, i.e. $(\omega_{\alpha})_x(v_1, v_2) = \alpha(dT_{-x}(v_1), dT_{-x}(v_2))$. This is an isomorphism (check!) so that Ω^p is globally generated, and we get $H^q(X, \Omega^p) \cong H^q(X, \mathscr{O}_X) \otimes \Lambda^p T$. We will prove

Theorem 1.6.2 ([2, p. 4]). Let $\overline{T} = \text{Hom}_{\mathbb{C}-antilinear}(V, \mathbb{C})$, then there are natural isomorphisms

$$H^q(X,\mathscr{O}_X)\cong \bigwedge^q \overline{T}$$

for all q, hence

$$H^q(X,\Omega^p) \cong \bigwedge^p T \otimes \bigwedge^q \overline{T}$$

Proof. Denote by $\Omega^{p,q}$ the sheaf of C^{∞} complex-valued differential forms of type (p,q) on X, and let $\overline{\partial}$ be the component of the exterior derivative mapping $\Omega^{p,q}$ to $\Omega^{p,q+1}$ (derivation by \overline{z}). The Dolbeaut resolution

$$0 \to \mathscr{O}_X \to \Omega^{0,0} \to \Omega^{0,1} \to \Omega^{0,2} \to \dots$$

defines isomorphisms

$$H^{q}(X, \mathscr{O}_{X}) \cong \frac{Z^{0,q}_{\overline{\partial}}(X)}{\overline{\partial}(\Omega^{0,q-1}(X))}$$

where $Z^{0,q}_{\overline{\partial}}(X)$ are the $\overline{\partial}$ -closed forms of type (0,q). We have an isomorphism

$$\phi_{p,q}:\Omega^{0,0}\otimes_{\mathbb{C}}\left(\bigwedge^{p}T\otimes\bigwedge^{q}\overline{T}\right)\to\Omega^{p,q}$$

taking $\sum f_i \otimes \alpha_i$ to $\sum f_i \omega_{\alpha_i}$ where ω_{α} is the translation-invariant (p, q)-form with value α at 0. Let us show that these ω_{α} are all closed. Since $\omega_{\alpha \wedge \beta} = \omega_{\alpha} \wedge \omega_{\beta}$, it is enough to consider degrees (1,0) and (0,1). Since $\pi : V \to X$ is a local isomorphism, it is enough to check that $d(\pi^*(\omega_{\alpha})) = 0$. Since $\alpha \in T \oplus \overline{T}$, we see that $\pi^*(\omega_{\alpha}) = d\alpha$, hence $d(\pi^*\omega_{\alpha}) = d^2\alpha = 0$.

The map $\phi_{0,q}$ gives an isomorphism

$$\Omega^{0,0}(X) \otimes_{\mathbb{C}} \bigwedge^{q} \overline{T} \to \Omega^{0,q}(X)$$

Defining a differential $\overline{\partial}$ on $\Omega^{0,0}(X) \otimes_{\mathbb{C}} \bigwedge^q \overline{T}$ by $\overline{\partial}(f \otimes \alpha) = \overline{\partial}f \wedge \alpha$, then because the ω_{α} are closed, the complexes $\Omega^{0,0}(X) \otimes_{\mathbb{C}} \bigwedge^{\bullet} \overline{T}$ and $\Omega^{0,\bullet}(X)$ are isomorphic.

Therefore $H^q(X, \mathscr{O}_X) \cong H^q\left(\Omega^{0,0}(X) \otimes_{\mathbb{C}} \bigwedge^{\bullet} \overline{T}\right).$

Finally, we will show that the inclusion $i : \bigwedge^{\bullet} \overline{T} \to \Omega^{0,0}(X) \otimes_{\mathbb{C}} \bigwedge^{\bullet} \overline{T}$ induces an isomorphism on the cohomology, i.e. $\bigwedge^{q} \overline{T} \cong H^{q} \left(\Omega^{0,0}(X) \otimes_{\mathbb{C}} \bigwedge^{\bullet} \overline{T} \right).$

Let μ be the measure on X induced by the Euclidean measure on V, normalized so that $\mu(X) = 1$. It induces a map $\mu_{\bigwedge^{\bullet}\overline{T}} := \mu \otimes 1_{\bigwedge^{\bullet}\overline{T}} : \Omega^{0,0}(X) \otimes \bigwedge^{\bullet}\overline{T} \to \bigwedge^{\bullet}\overline{T}$, which is $\bigwedge^{\bullet}\overline{T}$ -linear and such that $\mu_{\bigwedge^{\bullet}\overline{T}} \circ i = 1_{\bigwedge^{\bullet}\overline{T}}$.

We will show that $i \circ \mu_{\Lambda^{\bullet} \overline{T}}$ is homotopic to the identity, hence the result.

For that purpose, we will need to introduce several maps.

First, if $\lambda \in \Lambda^* = \operatorname{Hom}(\Lambda, \mathbb{Z})$, then λ extends to an \mathbb{R} -linear map $\lambda : V \to \mathbb{R}$ and the function $x \mapsto e^{2\pi i \lambda(x)}$ on V is Λ -invariant, hence factors through π as $e_{\lambda} \circ \pi$, for some $e_{\lambda} : X \to \mathbb{C}$. For any $f \otimes \alpha \in \Omega^{0,0}(X) \otimes_{\mathbb{C}} \bigwedge^{\bullet} \overline{T}$, we may define the Fourier coefficients

$$a_{\lambda}(f \otimes \alpha) = \mu(e_{-\lambda} \cdot f) \cdot \alpha \in \bigwedge^{\bullet} \overline{T}$$

so that

$$f = \sum_{\lambda \in \Lambda^{\star}} e_{\lambda} \otimes a_{\lambda}(f)$$

Next, let $\overline{C}: \Lambda^{\star} = \operatorname{Hom}(\Lambda, \mathbb{Z}) \to \overline{T}$ be the composition

$$\Lambda^{\star} \to \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R}) \subseteq \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C}) \cong T \oplus \overline{T} \to \overline{T}$$

For every $0 \neq \lambda \in \Lambda^*$, define an element $\lambda^* \in \operatorname{Hom}_{\mathbb{C}}(\overline{T}, \mathbb{C})$ by

$$\lambda^{\star}(x) = \frac{\langle x, \overline{C}(\lambda) \rangle}{2\pi i \left| \overline{C}(\lambda) \right|^2}$$

Then λ^* induces a map $\lambda^* : \bigwedge^p \overline{T} \to \bigwedge^{p-1} \overline{T}$ (inner multiplication / contraction by λ^*) via

$$\lambda^{\star}(\alpha_1 \wedge \ldots \wedge \alpha_p) = \sum_{k=1}^{p} (-1)^{p-k} \lambda^{\star}(\alpha_k) \cdot \alpha_1 \wedge \ldots \wedge \widehat{\alpha}_k \wedge \ldots \wedge \alpha_p$$

Now, for any $\omega \in \Omega^{0,0}(X) \otimes \bigwedge^{p} \overline{T}$ we define $k(\omega) \in \Omega^{0,0}(X) \otimes \bigwedge^{p-1} \overline{T}$ by

$$k(\omega) = \sum_{0 \neq \lambda \in \Lambda^{\star}} (-1)^{p-1} e_{\lambda} \otimes \lambda^{\star}(a_{\lambda}(\omega))$$

This indeed defines an element (check the rate of decay of the coefficients!) uniquely by Fourier analysis, and we claim

$$\partial k + k \partial = \mathbf{1}_{\Omega^{0,0}(X) \otimes \bigwedge} \bullet_{\overline{T}} - i \circ \mu_{\bigwedge} \bullet_{\overline{T}}$$

This is verified by computing Fourier coefficients on both sides - here it is for $\lambda \neq 0$:

$$a_{\lambda}(\overline{\partial}k\omega + k\overline{\partial}\omega) = (-1)^{p} \left(2\pi i a_{\lambda}(k\omega) \wedge \overline{C}(\lambda) + \lambda^{*}(a_{\lambda}(\overline{\partial}\omega))\right)$$
$$= 2\pi i \left(\lambda^{*}(a_{\lambda}(\omega)) \wedge \overline{C}(\lambda) + \lambda^{*}(a_{\lambda}(\omega) \wedge \overline{C}(\lambda))\right)$$
$$= a_{\lambda}(\omega)$$

where we used that $a_{\lambda}(\overline{\partial}\omega) = (-1)^p 2\pi i \left(a_{\lambda}(\omega) \wedge \overline{C}(\lambda)\right)$ and $2\pi i \lambda^{\star}(\overline{C}(\lambda)) = 1$.

The proof of theorem actually gives us more corollaries.

Corollary 1.6.3. The following diagram commutes:

Corollary 1.6.4. The natural map induced by cup product

$$\bigwedge^{q} H^{1}(X, \mathscr{O}_{X}) \to H^{q}(X, \mathscr{O}_{X})$$

is an isomorphism.

A similar computation with the cohomology of the de-Rham complex

$$0 \to \mathbb{C} \to \Omega^0 \to \Omega^1 \to \dots$$

shows that $H^n(X, \mathbb{C}) \cong \bigwedge^n \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})$, in a way that cup products are compatible with exterior products. Also, since $\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C}) = T \oplus \overline{T}$, this shows the Hodge decomposition:

$$H^n(X,\mathbb{C}) \cong \bigoplus_{p+q=n} H^q(X,\Omega^p)$$

Next, we would like to establish a certain compatibility between the maps we have:

Proposition 1.6.5. *The following diagram commutes:*

$$\begin{array}{ccc} H^1(X,\mathbb{Z}) & \xrightarrow{\alpha} & H^1(X,\mathbb{C}) & \xrightarrow{\beta} & H^1(X,\mathscr{O}_X) \\ & & & \downarrow \cong & & \downarrow \cong \\ \Lambda^{\star} = \operatorname{Hom}(\Lambda,\mathbb{Z}) \xrightarrow{1 \otimes_{\mathbb{Z}} \mathbb{R}} & \operatorname{Hom}_{\mathbb{R}}(V,\mathbb{C}) = T \oplus \overline{T} \xrightarrow{pr_2} & \overline{T} \end{array}$$

Proof. Let $p_{0,1}: \Omega^1 = \Omega^{1,0} \oplus \Omega^{0,1} \to \Omega^{0,1}$ be the natural projection. Then the following diagram is commutative:

Passing to cohomology, we obtain the commutative diagram

establishing commutativity of the right square.

For the left square, note that the isomorphism on the left is given as follows - for $a \in H^1(X, \mathbb{Z})$, if $\phi : S^1 \to X$ is a loop in X representing $[\phi] \in \pi_1(X)$, then $\phi^*(a) \in H^1(S^1, \mathbb{Z}) \cong \mathbb{Z}$. Let us denote the canonical isomorphism on the right by $\epsilon : H^1(S^1, \mathbb{Z}) \to \mathbb{Z}$. This way, one obtains $\tilde{a} : \pi_1(X) \to \mathbb{Z}$ defined by

$$\tilde{a}([\phi]) = \epsilon(\phi^{\star}(a))$$

In particular, for $\lambda \in \Lambda$, let $\phi_{\lambda} : S^1 \to X$ be the loop

$$\phi_{\lambda}(t) = \pi(t\lambda) \quad t \in S^1 = \mathbb{R}/\mathbb{Z}$$

Then a determines $\tilde{a} \in \Lambda^*$ by $\tilde{a}(\lambda) = \epsilon(\phi_{\lambda}^*(a))$. Consider $\alpha(a) \in H^1(X, \mathbb{C})$. There is a unique $b \in T \oplus \overline{T}$ s.t. if $\omega_b \in H^0(X, \ker(\Omega^1 \to \Omega^2))$ is the invariant 1-form on X with value b at

0, $\delta(\omega(b)) = \alpha(a)$. (By definition of the middle isomorphism). We pull back to S^1 to get $\delta(\phi_{\lambda}^{\star}(\omega_b)) = \phi_{\lambda}^{\star}(\alpha(a)) = \alpha(\phi_{\lambda}^{\star}(a))$. In S^1 , we have $\epsilon(\delta(\eta)) = \int_{S^1} \eta$, hence

$$\tilde{a}(\lambda) = \epsilon(\phi_{\lambda}^{\star}(a))$$
$$= \epsilon(\delta(\phi_{\lambda}^{\star}(\omega_{b})))$$
$$= \int_{S^{1}} \phi_{\lambda}^{\star}(\omega_{b})$$
$$= \int_{0}^{\lambda} \pi^{\star}(\omega_{b})$$
$$= b(\lambda)$$

so that \tilde{a} is simply the restriction of b to Λ .

Furthermore, compatibility with cup products gives us the following:

Corollary 1.6.6. The following diagram commutes

We can now prove proposition 1.6.1.

Proof. (of proposition 1.6.1). Consider the commutative diagram

Since E is in the image of the leftmost map, by the exactness of the exponential sequence, $(j \circ i)(E) = 0$. Since i(E) is the \mathbb{R} -linear extension of E, we denote it again by E, and write $E = E_1 + E_2 + E_3$, with $E_1 \in \bigwedge^2 T$, $E_2 \in \bigwedge^2 \overline{T}$ and $E_3 \in T \oplus \overline{T}$. Since E is real, it is fixed by conjugation, and it follows that $E_1 = \overline{E_2}$. Now, j is the projection onto the second factor, so that $j(E) = E_2$. But j(E) = 0, hence $E = E_3$. Therefore

$$E(ix, iy) = i \cdot (-i) \cdot E(x, y) = E(x, y)$$

1.7. Step 4 - Finish the proof.

Proof. (of Theorem 1.1.1). Let ψ be a Riemann form, α a semi-character with respect to ψ , and $j_{(\psi,\alpha)} \in H^1(\Lambda, \mathscr{O}^{\times}(V))$ the corresponding factor of automorphy. Denote by $\mathscr{L}(\psi, \alpha) \in$ $H^1(X, \mathscr{O}_X^{\times})$ the corresponding line bundle.

Note that $\mathscr{L}(\psi_1, \alpha_1) \otimes \mathscr{L}(\psi_2, \alpha_2)$ will have factor of automorphy $j_{(\psi_1, \alpha_1)} \cdot j_{(\psi_2, \alpha_2)}$, and finally that

$$j_{(\psi_1,\alpha_1)} \cdot j_{(\psi_2,\alpha_2)} = j_{(\psi_1+\psi_2,\alpha_1\alpha_2)}$$

Therefore, if we denote by \mathscr{G} the group of pairs $\{(\psi, \alpha)\}$ such that ψ is a Riemann form for Λ and α a semi-character with respect to ψ , with multiplication defined by

$$(\psi_1, \alpha_1) \cdot (\psi_2, \alpha_2) = (\psi_1 + \psi_2, \alpha_1 \alpha_2)$$

then the map $\beta : \mathscr{G} \to \operatorname{Pic} X$ is a group homomorphism. If we denote by $\mathscr{G}_1 = \operatorname{Hom}(\Lambda, U_1(\mathbb{R})) = \{(0, \alpha) \in \mathscr{G}\}$ the subgroup of semi-characters with respect to the zero Riemann form, and by \mathscr{G}_2 the group of Riemann forms with respect to Λ , then we have a commutative diagram with exact rows ¹

Indeed, for $\psi \in \mathscr{G}_2$, let $\gamma(\psi) = \operatorname{Im} \psi|_{\Lambda}$. Since ψ is Hermitian, $\gamma(\psi)(ix, iy) = \gamma(\psi)(x, y)$ and as ψ is a Riemann form, we see that $\gamma(\psi) \in \bigwedge^2 \operatorname{Hom}(\Lambda, \mathbb{Z}) \cong H^2(X, \mathbb{Z})$. Further, from the proof of proposition 1.6.1, we see that $j(\gamma(\psi)) = 0$, hence $\gamma(\psi) \in \ker(H^2(X, \mathbb{Z}) \to H^2(X, \mathscr{O}_X))$.

By proposition 1.6.1, for any element $E \in \ker(H^2(X,\mathbb{Z}) \to H^2(X,\mathscr{O}_X))$, we have E(ix, iy) = E(x, y), hence the form $\psi(x, y) = E(ix, y) + iE(x, y)$ is Hermitian, so $\psi \in \mathscr{G}_2$, and the map γ is surjective, hence an isomorphism.

Thus, to show that the middle map is an isomorphism, it is enough to show that β is an isomorphism. Let $\alpha \in \operatorname{Hom}(\Lambda, U_1(\mathbb{R}))$ be such that $\beta(\alpha) = \mathcal{O}_X$. Note that the factor of automorphy is then $j_{(0,\alpha)}(v) = \alpha(\lambda)$. Since this is the trivial line bundle, there exists $g \in \mathcal{O}^{\times}(V)$ such that

$$\alpha(\lambda) = \frac{g(v+\lambda)}{g(v)}$$

Let K be the fundamental parallelogram for X, so that $K + \Lambda = V$ and K is compact. Then we see that

$$|g(v)| = |g(k+\lambda)| = |\alpha(\lambda)g(k)| \le \sup_{K} |g(k)|$$

because $|\alpha(\lambda)| = 1$. But then g is bounded, hence constant, and we see that $\alpha(\lambda) = 1$, hence β is injective.

Consider the commutative diagram

$$\begin{array}{cccc} H^{1}(\Lambda, \mathbb{C}) & \longrightarrow & H^{1}(\Lambda, \mathscr{O}(V)) & \longrightarrow & \ker(H^{1}(\Lambda, \mathscr{O}^{\times}(V)) \to H^{2}(\Lambda, \mathbb{Z})) \\ & & & \downarrow \cong & & \downarrow \cong & \\ H^{1}(X, \mathbb{C}) & \longrightarrow & H^{1}(X, \mathscr{O}_{X}) & \longrightarrow & \ker(H^{1}(X, \mathscr{O}_{X}^{\times}) \to H^{2}(X, \mathbb{Z})) = \operatorname{Pic}^{0} X \end{array}$$

By proposition 1.6.5, the map $H^1(X, \mathbb{C}) \to H^1(X, \mathcal{O}_X)$ is surjective. Therefore, since the exponential maps on the right are surjective, for any line bundle $\mathscr{L} \in \operatorname{Pic}^0 X$, there exists some factor of automorphy $j \in H^1(\Lambda, \mathbb{C})$ giving rise to it. But that means that $j(\lambda)(v) = \alpha(\lambda)$ for all v, for some $\alpha \in \operatorname{Hom}(\Lambda, \mathbb{C}^{\times})$. Write $\alpha(\lambda) = e^{2\pi\gamma_{\lambda}}$, then

$$\gamma_{\lambda_1+\lambda_2} - \gamma_{\lambda_1} - \gamma_{\lambda_2} \in i\mathbb{Z}$$

¹Actually we haven't shown that $\mathscr{G} \to \mathscr{G}_2$ is surjective, but this is a fun exercise. Hint: Look for linear solutions for the exponents.

Then $\operatorname{Re} \gamma_{\lambda}$ is additive and can be extended to an \mathbb{R} -linear map $l: V \to \mathbb{R}$. Let $L: V \to \mathbb{C}$ be defined by L(v) = l(v) - il(iv), so that L is \mathbb{C} -linear and $\operatorname{Re} L = l$. Now, the function $f(v) = e^{-2\pi L(v)}$ lies in $\mathscr{O}^{\times}(V)$, hence the factor of automorphy $j(\lambda)(v) = \alpha(\lambda) \cdot \frac{f(v+\lambda)}{f(v)}$ is cohomologous to α . But

$$\alpha(\lambda) \cdot \frac{f(v+\lambda)}{f(v)} = \alpha(\lambda) \cdot \frac{e^{-2\pi L(v+\lambda)}}{e^{-2\pi L(v)}} = e^{2\pi\gamma_{\lambda}} \cdot e^{-2\pi L(\lambda)} = e^{2\pi(\gamma_{\lambda} - L(\lambda))}$$

Note that by choice of L, we have

$$\operatorname{Re}(\gamma_{\lambda} - L(\lambda)) = 0$$

so that $j(\lambda)(v) \in U_1(\mathbb{R})$, showing that β is surjective, and finishing the proof.

References

- [1] Eyal Zvi Goren. Lectures on Hilbert modular varieties and modular forms. Number 14. American Mathematical Soc., 2002.
- [2] David Mumford, Chidambaran Padmanabhan Ramanujam, and Iiž Uiži I Manin. Abelian varieties, volume 108. Oxford university press Oxford, 1974.