THE APPEL-HUMBERT THEOREM

ERAN ASSAF

ABSTRACT. This is a proof of the theorem, as can be found in [2], using some of the more
modern exposition and notation, as can be found in [I].

1. PROOF

1.1. Introduction. The goal of this short note is to present a proof of the following theorem:

Theorem 1.1.1 (Appel-Humbert, [2, p. 20]). Let X = C"/A be a complex torus. Then
any line bundle £ on X is of the form L (i, ) where 1 is a Riemann form, and « is a
semi-character with respect to 1. Furthermore, 1, o are uniquely determined.

The proof is based on Mumford.

1.2. Notation and definitions. Throughout, we let V' be a finite dimensional complex
vector space of dimension n, and A C V is a lattice, i.e. a subgroup of rank 2n such that
A ® R =2 V under the canonical map a ® A — aA.

Definition 1.2.1. A complex torus is a complex Lie group isomorphic to X = V/A.

Definition 1.2.2. A Riemann form on V with respect to A is a Hermitian form
YV xV — C such that Imy)(A x A) CZ

Definition 1.2.3. A semi-character with respect to a Riemann form v is a map
a:AN—=>Ui(R)={z€C:|z| =1}
such that
a(A 4 ) = a(Ag)a(Ay)em M vaA2)

Remark 1.2.4. These could be obtained if one tries to find linear solutions when solving for
the factor of automorphy given .

Definition 1.2.5. The factor of automorphy corresponding to the pair (¢, ) consisting of
a Riemann form and a semi-character is the element jiy o) € H'(A, 0*(V')) represented by
the cocycle

() = Qe E
Remark 1.2.6. Note that jy q) is indeed a cocycle, i.e. it satisfies
JA1 4 A2) = A2(i(A1)) - (M)

which explicitly is

J(AL+ A2)(v) = j()\11)()\2 +v) - j(A2)(v)



1.3. Outline of the proof. We are going to proceed in the following steps:

(1) Establish a canonical isomorphism Pic(X) = HY(X, 0%) = H*(A, 0*(V)). Thus, for
any (¥, @), j(yp,a) defines a line bundle, which we denote by £ (1, a).
(2) Show commutativity of the diagram

HY (A, 0%(V)) — H*(\, Z)

lg lg

H' (X, 0%) — H(X,Z)

so that the image of any line bundle in H2(A,Z) = A*Hom(A,Z) gives us an alter-
nating form 1.

(3) Show that the image of a line bundle in H?(A,Z) is a Riemann form.

(4) Looking at the commutative diagram with exact rows

0 — Hom(A,U;(R)) —= {(¢, ) } Riemann forms —— 0

| | ”

Pic’ X Pic X —— ker(H*(X,Z) — H*(X,0x)) —=0

0

we prove that A is an isomorphism. By the above, v is also an isomorphism, hence
the result.

1.4. Step 1 - factors of automorphy.
Proposition 1.4.1. There exist a canonical isomorphism H' (X, 0%) = HY(A, 0*(V)).

Proof. Let w: V — X be the natural projection, and let . be a line bundle on X. Because
V' is simply connected, every line bundle on it is trivial, and therefore 7. = V x C. Let
T be translation by A map on V given by Th\(z) = x + A. Then
il =(roT\)' L =%
But by the definition of the pullback of a line bundle, we have
(T3(7"2)), = (7L )vsx

so under the isomorphism with the trivial bundle T3 (v, 2) = (v + A, J(2)), but J(z) is an
automorphism of C, i.e. it must be of the form z — j(A)(v) - z for some j(\)(v) € C*.
Therefore j(\) : V' — C* is an element of 6% (V). Moreover, as T\, 1r, = T\, © Th,, we see
that
JA1 4 A2)(v) = j (A1) (A2 +v) - j(A2)(v)

so that in fact j is a cocycle, i.e. j € Z'(A, 0% (V)).

If we alter the trivialization, multiplying by some f € &*(V), then j will be replaced by
the cohomologous cocycle

FN)w) =N @) - flv+A)/f(v)
so that we have defined a map H'(X, 0%) — H*(A, 0*(V)). Conversely, just define the line

bundle as the quotient of the trivial bundle by the relation (v, 2) ~ (v+ A, j(A)(v) - 2). O
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1.5. Step 2 - the alternating form.

Proposition 1.5.1 (|2 p. 18]|). The Chern class of the line bundle corresponding to j €
ZY A, 0*(V)) is the alternating 2-form on A with values in Z given by

E(A1,A2) = fo(v+ M) + o (v) = fa (0 + A2) = fi,(v)
where j(\)(v) = e2™H©),

Proof. We get from the exponential sequence
0=-Z—-0V)—=0*(V)—=0
the following diagram
HY(A, 0%(V)) “— H*(A, Z)
HYX,0%) —— H*(X,Z)

This diagram commutes, because the isomorphism is compatible with the connecting mor-

phisms. (Check!)

Write j()\)(v) = 2™ ) then by definition of §, we have

S([71) (A1, A2) = S (0 + A1) = fan (v) + fau(v) € Z
The proof will be complete with the following Lemma. U
Lemma 1.5.2 ([2, p. 16]). The map A : Z*(A,Z) — N> Hom(A,Z) defined by
A(F)()\l, )\2) = F()\l, /\2) - F()\Q’ )\1)

induces an isomorphism H*(\,Z) = \*>Hom(A, Z).

Moreover, for any &, € Hom(A,Z) = HY(A,Z), we have A(E Un) =& An.
Proof. Exercise. O

Remark 1.5.3. The last line is needed so that the two isomorphisms we have with H?(X,Z)
will coincide.

1.6. Step 3 - Riemann form. The goal of this step is to prove the following proposition.

Proposition 1.6.1 ([2, p. 18]). If we extend E from previous proposition R-linearly to a
map E:V xV — R, then E(iz,iy) = E(z,y).

In order to prove this proposition, we first need to prove some auxiliary results on the
structure of cohomology of X. Let 7' = Homc(V, C) be the complex cotangent space to X
at 0. We have a natural map Ox ®c A\’ T — QF sending o € A" T to the form w, defined by
(Wa)e = dT* (@), 1.e. (wq)e(v1,v2) = a(dT—4(v1),dT—,(ve)). This is an isomorphism (check!)
so that QF is globally generated, and we get H4(X, Q) = HY(X, Ox) ® APT. We will prove
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Theorem 1.6.2 ([2, p. 4]). Let T = Homc_ gnitinear(Vs C), then there are natural isomor-
phisms

1X, Ox) = /\T
for all q, hence

I(X,0P) /\T@/\T

Proof. Denote by (7 the sheaf of C** complex-valued differential forms of type (p,q) on X,
and let 0 be the component of the exterior derivative mapping QP7 to QP! (derivation by
Z). The Dolbeaut resolution

0— Ox — Q" — Q% — Q%

defines isomorphisms
0,q
7
O(Q~1(X))
where Zg’q(X ) are the 0-closed forms of type (0,q). We have an isomorphism

Bpq - Q" @c (/p\T ® /q\T> — QP

taking > fi ® a; to Y fiwa, where w, is the translation-invariant (p, ¢)-form with value « at
0. Let us show that these w, are all closed. Since warp = wq A wg, it is enough to consider
degrees (1,0) and (0, 1). Since w : V — X is a local isomorphism, it is enough to check that
d(7*(wgs)) = 0. Since a € T ® T, we see that 7*(w,) = da, hence d(7*w,) = d*a = 0.

The map ¢¢ 4 gives an isomorphism

1%

HY(X,Ox)

q
QX)) ®c \T = Q(X)

Defining a differential 9 on Q%°(X)®c AT by 0(f ® o) = Of A «, then because the w, are
closed, the complexes Q%°(X) ®c A°T and Q°*(X) are isomorphic.

Therefore HY(X, Ox) = H? (Q"°(X) ®@c A°T).

Finally, we will show that the inclusion i : A*T — Q°°(X) ®c A°T induces an isomor-
phism on the cohomology, i.e. A?T = H? (Q%°(X) ®c A°T).

Let o be the measure on X induced by the Euclidean measure on V', normalized so that
u(X) = 1. Tt induces amap pipe7 := p@1pe7 : QOUX)QA"T — A*T, which is \* T-linear
and such that ppezo0i=1)e7.

We will show that ¢ o pupe7 is homotopic to the identity, hence the result.

For that purpose, we will need to introduce several maps.

First, if A € A* = Hom(A,Z), then A extends to an R-linear map A : V' — R and
the function z — ™) on V is A-invariant, hence factors through 7 as ey o m, for some
ex: X = C. Forany f ® a € Q%(X) ®@c A* T, we may define the Fourier coefficients

a(foa)=pler-f) ae \T
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so that

Next, let C' : A* = Hom(A,Z) — T be the composition
A* — Homg(V,R) C Homg(V,C) =T & T — T
For every 0 # \ € A*, define an element \* € Homg(T, C) by
) - BTN
27 |C( )‘

Then \* induces a map A : AT — A”' T (inner multiplication / contraction by A\*) via

p
Nag Ao Aap) =D (1P M () -an AL AG AL Ay,
k=1

Now, for any w € Q*°(X) @ AP T we define k(w) € Q°(X) @ AP'T by
k(w) = Z (—1)P ey @ M (ar(w))

0ANEA*

This indeed defines an element (check the rate of decay of the coefficients!) uniquely by
Fourier analysis, and we claim

Ok 4+ k0 = lgoo(xyppneT — 10 fipeT
This is verified by computing Fourier coefficients on both sides - here it is for A # 0:
ax(Okw + kdw) = (—1)? (2miay(kw) A C(X) + A (ax(0w)))
= 27i (A (ax(w)) A C(A) + X (ax(w) A C(N)))
= ax(w)
where we used that ay(dw) = (—1)P27i (ax(w) A C(N)) and 2miA*(C(N)) = 1. O

The proof of theorem actually gives us more corollaries.
Corollary 1.6.3. The following diagram commutes:
H?(X,0x) x H1(X, Ox) — HPY(X, O)
/\pT x /\qT A /\p—HIT

Corollary 1.6.4. The natural map induced by cup product

/q\Hl(X, Ox) — HY(X, Ox)

18 an isomorphism.



A similar computation with the cohomology of the de-Rham complex
0-C—Q = —

shows that H"(X,C) = A" Homg(V,C), in a way that cup products are compatible with
exterior products. Also, since Homg(V,C) =T @ T, this shows the Hodge decomposition:

H"(X,C) @H‘IXQP

p+g=n
Next, we would like to establish a certain compatibility between the maps we have:

Proposition 1.6.5. The following diagram commutes:

HY(X,7) o HY(X,C)

lg |- lg

A* = Hom(A, Z) 222 Homg (V,C) = T & T

Proof. Let po; : Q' = QY0 & Q% — Q% be the natural projection. Then the following
diagram is commutative:

0 C Qo < ker(Q! = 02— 0

TR

0 Ox Q00 ker(Q01 — Q02) — 0

Passing to cohomology, we obtain the commutative diagram

TeT —— HO(X, ker(Q! — 02)) 2 HY(X,C)

| S

T HO(X, ker(Q0! — Q02)) 2~ HY(X, O)

establishing commutativity of the right square.

For the left square, note that the isomorphism on the left is given as follows - for a €
HY(X,Z),if ¢ : S — X isaloop in X representing [¢] € m;(X), then ¢*(a) € H'(S',Z) = Z.
Let us denote the canonical isomorphism on the right by € : H'(S',Z) — Z. This way, one
obtains a : m1(X) — Z defined by

a([¢]) = e(¢™(a))
In particular, for A € A, let ¢, : St — X be the loop
oa(t) =7(t)) te S'=R/Z

Then a determines a € A* by a(A) = €(¢3(a)). Consider a(a) € H'(X,C). There is a unique
beTdT st. if wy, € H(X, ker(Q! — Q?)) is the invariant 1-form on X with value b at
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0, 6(w(b)) = afa). (By definition of the middle isomorphism). We pull back to S! to get
0(d3(wp)) = ¢3(a(a)) = a(¢i(a)). In S', we have €(3(n)) = [q n, hence

a(A) = e(d3(a))
= €(6(¢x(wn)))

¢ (wp)

Sl

- [(r

=b(})
so that a is simply the restriction of b to A. 0

Furthermore, compatibility with cup products gives us the following:
Corollary 1.6.6. The following diagram commutes

H"(X,Z) — H"(X,C) — H"(X, Ox)

f

A" (A 5 ANT & T) —22% A(T)

We can now prove proposition [1.6.1]

IR

Proof. (of proposition [1.6.1]). Consider the commutative diagram
Hl(XaﬁX) H2(X7Z) HQ(Xa(C)_)H2(X7ﬁX)

e

A Hom(A,Z) ——— NAT & T) —2—— N°T

IR

Since E is in the image of the leftmost map, by the exactness of the exponential sequence,
(joi)(E) = 0. Since i(F) is the R-linear extension of F, we denote it again by E, and write
E =E, + Ey+ Es, with By € A*T, E, € N°T and Es € T ®T. Since E is real, it is fixed
by conjugation, and it follows that E; = F,. Now, j is the projection onto the second factor,
so that j(F) = Ey. But j(E) =0, hence F = E3. Therefore

1.7. Step 4 - Finish the proof.

Proof. (of Theorem . Let 1 be a Riemann form, a a semi-character with respect to 1,
and jya) € H' (A, 0*(V)) the corresponding factor of automorphy. Denote by £ (1, o) €
H'(X, 0%) the corresponding line bundle.

Note that Z(11, 1) ® L (2, ) will have factor of automorphy jiy, a1) * J(ws,ae), and
finally that

j(i/mal) 'j(wz,om) = j(1/11+1/1276¥16¥2)
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Therefore, if we denote by ¢ the group of pairs {(¢, @)} such that v is a Riemann form for
A and « a semi-character with respect to v, with multiplication defined by

(Y1, 1) - (2, a2) = (Y1 + o, a12)

then the map 5 : 4 — Pic X is a group homomorphism. If we denote by ¢4 = Hom(A, U;(R)) =
{(0, ) € 4} the subgroup of semi-characters with respect to the zero Riemann form, and
by %, the group of Riemann forms with respect to A, then we have a commutative diagram
with exact rows [

0 % % gQ 0

] |

0 — Pic’ X ——= Pic X —— ker(H*(X,Z) — H*(X, Ox)) —= 0

Indeed, for ¢ € %, let v(¢) = Im ). Since ¢ is Hermitian, v(¢)(ix, iy) = v(¢)(x, y) and as
¢ is a Riemann form, we see that v(¢)) € A*Hom(A, Z) = H*(X,Z). Further, from the proof
of proposition we see that j(v(¢))) = 0, hence () € ker(H*(X,Z) — H*(X, Ox)).

By proposition[1.6.1] for any element E € ker(H?*(X,Z) — H*(X, Ox)), we have E(ix, iy) =
E(z,y), hence the form ¢ (z,y) = E(iz,y) + iE(x,y) is Hermitian, so ¢ € %, and the map
v is surjective, hence an isomorphism.

Thus, to show that the middle map is an isomorphism, it is enough to show that [ is
an isomorphism. Let a € Hom(A, U;(R)) be such that f(a) = Ox. Note that the factor
of automorphy is then jq)(v) = a(X). Since this is the trivial line bundle, there exists
g € 0*(V) such that
a(\) = g(v+X)

9(v)
Let K be the fundamental parallelogram for X, so that K + A =V and K is compact. Then
we see that

l9()l = lg(k+ M) = la(Ng(k)] < sup|g (k)]

because |a(\)| = 1. But then g is bounded, hence constant, and we see that a(\) = 1, hence
[ is injective.
Consider the commutative diagram

HY(A,C) ——= HY(A, 0(V)) ker(H' (A, 0*(V)) — H*(\,Z))

L) -

HY(X,C) —— HY(X,0x) —ker(H (X, 0%) — H*X,Z)) = Pic° X

By proposition the map H'(X,C) — H'(X, Ox) is surjective. Therefore, since the
exponential maps on the right are surjective, for any line bundle . € Pic® X, there exists
some factor of automorphy j € H'(A,C) giving rise to it. But that means that j(\)(v) =
a(A) for all v, for some o € Hom(A, C*). Write () = €™, then

Yaitre = VA — Vg € 124

TActually we haven’t shown that 4 — % is surjective, but this is a fun exercise. Hint: Look for linear
solutions for the exponents.
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Then Re~, is additive and can be extended to an R-linear map [ : V — R. Let L : V — C
be defined by L(v) = I(v) — il(iv), so that L is C-linear and Re L = I. Now, the function
F(w) = e 2"L®) Jies in ¢*(V), hence the factor of automorphy j(A\)(v) = a()) - L&) s

f(v)
cohomologous to a. But

=2 L(v+A
()\) . M — Oé()\) . GT(L()) — e27r’y>\ . 6—27rL()\) _ 627r(’7)\—L()\))
e—2rL(v

f(v)
Note that by choice of L, we have
Re(yy = L(A) =0

so that j(A)(v) € U;(R), showing that § is surjective, and finishing the proof. O
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