THE APPEL-HUMBERT THEOREM

ERAN ASSAF

Abstract

This is a proof of the theorem, as can be found in [2], using some of the more modern exposition and notation, as can be found in [1.

1. Proof

1.1. Introduction. The goal of this short note is to present a proof of the following theorem:

Theorem 1.1.1 (Appel-Humbert, [2, p. 20]). Let $X=\mathbb{C}^{n} / \Lambda$ be a complex torus. Then any line bundle \mathscr{L} on X is of the form $\mathscr{L}(\psi, \alpha)$ where ψ is a Riemann form, and α is a semi-character with respect to ψ. Furthermore, ψ, α are uniquely determined.

The proof is based on Mumford.
1.2. Notation and definitions. Throughout, we let V be a finite dimensional complex vector space of dimension n, and $\Lambda \subseteq V$ is a lattice, i.e. a subgroup of rank $2 n$ such that $\Lambda \otimes \mathbb{R} \cong V$ under the canonical map $\alpha \otimes \lambda \mapsto \alpha \lambda$.

Definition 1.2.1. A complex torus is a complex Lie group isomorphic to $X=V / \Lambda$.
Definition 1.2.2. A Riemann form on V with respect to Λ is a Hermitian form $\psi: V \times V \rightarrow \mathbb{C}$ such that $\operatorname{Im} \psi(\Lambda \times \Lambda) \subseteq \mathbb{Z}$

Definition 1.2.3. A semi-character with respect to a Riemann form ψ is a map

$$
\alpha: \Lambda \rightarrow U_{1}(\mathbb{R})=\{z \in \mathbb{C}:|z|=1\}
$$

such that

$$
\alpha\left(\lambda_{1}+\lambda_{2}\right)=\alpha\left(\lambda_{1}\right) \alpha\left(\lambda_{2}\right) e^{\pi i \operatorname{Im} \psi\left(\lambda_{1}, \lambda_{2}\right)}
$$

Remark 1.2.4. These could be obtained if one tries to find linear solutions when solving for the factor of automorphy given ψ.

Definition 1.2.5. The factor of automorphy corresponding to the pair (ψ, α) consisting of a Riemann form and a semi-character is the element $j_{(\psi, \alpha)} \in H^{1}\left(\Lambda, \mathscr{O}^{\times}(V)\right)$ represented by the cocycle

$$
j_{(\psi, \alpha)}(\lambda)(v)=\alpha(\lambda) e^{\pi \psi(v, \lambda)+\frac{\pi}{2} \psi(\lambda, \lambda)}
$$

Remark 1.2.6. Note that $j_{(\psi, \alpha)}$ is indeed a cocycle, i.e. it satisfies

$$
j\left(\lambda_{1}+\lambda_{2}\right)=\lambda_{2}\left(j\left(\lambda_{1}\right)\right) \cdot j\left(\lambda_{1}\right)
$$

which explicitly is

$$
j\left(\lambda_{1}+\lambda_{2}\right)(v)=\underset{1}{j\left(\lambda_{1}\right)}\left(\lambda_{2}+v\right) \cdot j\left(\lambda_{2}\right)(v)
$$

1.3. Outline of the proof. We are going to proceed in the following steps:
(1) Establish a canonical isomorphism $\operatorname{Pic}(X) \cong H^{1}\left(X, \mathscr{O}_{X}^{\times}\right) \cong H^{1}\left(\Lambda, \mathscr{O}^{\times}(V)\right)$. Thus, for any $(\psi, \alpha), j_{(\psi, \alpha)}$ defines a line bundle, which we denote by $\mathscr{L}(\psi, \alpha)$.
(2) Show commutativity of the diagram

so that the image of any line bundle in $H^{2}(\Lambda, \mathbb{Z}) \cong \bigwedge^{2} \operatorname{Hom}(\Lambda, \mathbb{Z})$ gives us an alternating form ψ.
(3) Show that the image of a line bundle in $H^{2}(\Lambda, \mathbb{Z})$ is a Riemann form.
(4) Looking at the commutative diagram with exact rows

we prove that λ is an isomorphism. By the above, ν is also an isomorphism, hence the result.

1.4. Step 1 - factors of automorphy.

Proposition 1.4.1. There exist a canonical isomorphism $H^{1}\left(X, \mathscr{O}_{X}^{\times}\right) \cong H^{1}\left(\Lambda, \mathscr{O}^{\times}(V)\right)$.
Proof. Let $\pi: V \rightarrow X$ be the natural projection, and let \mathscr{L} be a line bundle on X. Because V is simply connected, every line bundle on it is trivial, and therefore $\pi^{\star} \mathscr{L} \cong V \times \mathbb{C}$. Let T_{λ} be translation by λ map on V given by $T_{\lambda}(x)=x+\lambda$. Then

$$
T_{\lambda}^{\star} \pi^{\star} \mathscr{L}=\left(\pi \circ T_{\lambda}\right)^{\star} \mathscr{L}=\pi^{\star} \mathscr{L}
$$

But by the definition of the pullback of a line bundle, we have

$$
\left(T_{\lambda}^{\star}\left(\pi^{\star} \mathscr{L}\right)\right)_{v}=\left(\pi^{\star} \mathscr{L}\right)_{v+\lambda}
$$

so under the isomorphism with the trivial bundle $T_{\lambda}^{\star}(v, z)=(v+\lambda, J(z))$, but $J(z)$ is an automorphism of \mathbb{C}, i.e. it must be of the form $z \mapsto j(\lambda)(v) \cdot z$ for some $j(\lambda)(v) \in \mathbb{C}^{\times}$. Therefore $j(\lambda): V \rightarrow \mathbb{C}^{\times}$is an element of $\mathscr{O}^{\times}(V)$. Moreover, as $T_{\lambda_{1}+\lambda_{2}}=T_{\lambda_{1}} \circ T_{\lambda_{2}}$, we see that

$$
j\left(\lambda_{1}+\lambda_{2}\right)(v)=j\left(\lambda_{1}\right)\left(\lambda_{2}+v\right) \cdot j\left(\lambda_{2}\right)(v)
$$

so that in fact j is a cocycle, i.e. $j \in Z^{1}\left(\Lambda, \mathscr{O}^{\times}(V)\right)$.
If we alter the trivialization, multiplying by some $f \in \mathscr{O}^{\times}(V)$, then j will be replaced by the cohomologous cocycle

$$
j^{\prime}(\lambda)(v)=j(\lambda)(v) \cdot f(v+\lambda) / f(v)
$$

so that we have defined a map $H^{1}\left(X, \mathscr{O}_{X}^{\times}\right) \rightarrow H^{1}\left(\Lambda, \mathscr{O}^{\times}(V)\right)$. Conversely, just define the line bundle as the quotient of the trivial bundle by the relation $(v, z) \sim(v+\lambda, j(\lambda)(v) \cdot z)$.

1.5. Step 2-the alternating form.

Proposition 1.5.1 ([2, p. 18]). The Chern class of the line bundle corresponding to $j \in$ $Z^{1}\left(\Lambda, \mathscr{O}^{\times}(V)\right)$ is the alternating 2 -form on Λ with values in \mathbb{Z} given by

$$
E\left(\lambda_{1}, \lambda_{2}\right)=f_{\lambda_{2}}\left(v+\lambda_{1}\right)+f_{\lambda_{1}}(v)-f_{\lambda_{1}}\left(v+\lambda_{2}\right)-f_{\lambda_{2}}(v)
$$

where $j(\lambda)(v)=e^{2 \pi i f_{\lambda}(v)}$.
Proof. We get from the exponential sequence

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathscr{O}(V) \rightarrow \mathscr{O}^{\times}(V) \rightarrow 0
$$

the following diagram

This diagram commutes, because the isomorphism is compatible with the connecting morphisms. (Check!)

Write $j(\lambda)(v)=e^{2 \pi i f_{\lambda}(v)}$, then by definition of δ, we have

$$
\delta([j])\left(\lambda_{1}, \lambda_{2}\right)=f_{\lambda_{1}}\left(v+\lambda_{1}\right)-f_{\lambda_{1}+\lambda_{2}}(v)+f_{\lambda_{1}}(v) \in \mathbb{Z}
$$

The proof will be complete with the following Lemma.
Lemma 1.5.2 ([2, p. 16]). The map $A: Z^{2}(\Lambda, \mathbb{Z}) \rightarrow \bigwedge^{2} \operatorname{Hom}(\Lambda, \mathbb{Z})$ defined by

$$
A(F)\left(\lambda_{1}, \lambda_{2}\right)=F\left(\lambda_{1}, \lambda_{2}\right)-F\left(\lambda_{2}, \lambda_{1}\right)
$$

induces an isomorphism $H^{2}(\Lambda, \mathbb{Z}) \cong \Lambda^{2} \operatorname{Hom}(\Lambda, \mathbb{Z})$.
Moreover, for any $\xi, \eta \in \operatorname{Hom}(\Lambda, \mathbb{Z})=H^{1}(\Lambda, \mathbb{Z})$, we have $A(\xi \cup \eta)=\xi \wedge \eta$.
Proof. Exercise.
Remark 1.5.3. The last line is needed so that the two isomorphisms we have with $H^{2}(X, \mathbb{Z})$ will coincide.
1.6. Step 3 - Riemann form. The goal of this step is to prove the following proposition.

Proposition 1.6.1 ([2, p. 18]). If we extend E from previous proposition \mathbb{R}-linearly to a $\operatorname{map} E: V \times V \rightarrow \mathbb{R}$, then $E(i x, i y)=E(x, y)$.

In order to prove this proposition, we first need to prove some auxiliary results on the structure of cohomology of X. Let $T=\operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$ be the complex cotangent space to X at 0 . We have a natural map $\mathscr{O}_{X} \otimes_{\mathbb{C}} \bigwedge^{p} T \rightarrow \Omega^{p}$ sending $\alpha \in \bigwedge^{p} T$ to the form ω_{α} defined by $\left(\omega_{\alpha}\right)_{x}=d T_{-x}^{\star}(\alpha)$, i.e. $\left(\omega_{\alpha}\right)_{x}\left(v_{1}, v_{2}\right)=\alpha\left(d T_{-x}\left(v_{1}\right), d T_{-x}\left(v_{2}\right)\right)$. This is an isomorphism (check!) so that Ω^{p} is globally generated, and we get $H^{q}\left(X, \Omega^{p}\right) \cong H^{q}\left(X, \mathscr{O}_{X}\right) \otimes \Lambda^{p} T$. We will prove

Theorem 1.6.2 ([2, p. 4]). Let $\bar{T}=\operatorname{Hom}_{\mathbb{C}-a n t i l i n e a r}(V, \mathbb{C})$, then there are natural isomorphisms

$$
H^{q}\left(X, \mathscr{O}_{X}\right) \cong \bigwedge^{q} \bar{T}
$$

for all q, hence

$$
H^{q}\left(X, \Omega^{p}\right) \cong \bigwedge^{p} T \otimes \bigwedge^{q} \bar{T}
$$

Proof. Denote by $\Omega^{p, q}$ the sheaf of C^{∞} complex-valued differential forms of type (p, q) on X, and let $\bar{\partial}$ be the component of the exterior derivative mapping $\Omega^{p, q}$ to $\Omega^{p, q+1}$ (derivation by $\bar{z})$. The Dolbeaut resolution

$$
0 \rightarrow \mathscr{O}_{X} \rightarrow \Omega^{0,0} \rightarrow \Omega^{0,1} \rightarrow \Omega^{0,2} \rightarrow \ldots
$$

defines isomorphisms

$$
H^{q}\left(X, \mathscr{O}_{X}\right) \cong \frac{Z_{\bar{\partial}}^{0, q}(X)}{\bar{\partial}\left(\Omega^{0, q-1}(X)\right)}
$$

where $Z_{\bar{\partial}}^{0, q}(X)$ are the $\bar{\partial}$-closed forms of type $(0, q)$. We have an isomorphism

$$
\phi_{p, q}: \Omega^{0,0} \otimes_{\mathbb{C}}\left(\bigwedge^{p} T \otimes \bigwedge^{q} \bar{T}\right) \rightarrow \Omega^{p, q}
$$

taking $\sum f_{i} \otimes \alpha_{i}$ to $\sum f_{i} \omega_{\alpha_{i}}$ where ω_{α} is the translation-invariant (p, q)-form with value α at 0 . Let us show that these ω_{α} are all closed. Since $\omega_{\alpha \wedge \beta}=\omega_{\alpha} \wedge \omega_{\beta}$, it is enough to consider degrees $(1,0)$ and $(0,1)$. Since $\pi: V \rightarrow X$ is a local isomorphism, it is enough to check that $d\left(\pi^{\star}\left(\omega_{\alpha}\right)\right)=0$. Since $\alpha \in T \oplus \bar{T}$, we see that $\pi^{\star}\left(\omega_{\alpha}\right)=d \alpha$, hence $d\left(\pi^{\star} \omega_{\alpha}\right)=d^{2} \alpha=0$.

The map $\phi_{0, q}$ gives an isomorphism

$$
\Omega^{0,0}(X) \otimes_{\mathbb{C}} \bigwedge^{q} \bar{T} \rightarrow \Omega^{0, q}(X)
$$

Defining a differential $\bar{\partial}$ on $\Omega^{0,0}(X) \otimes_{\mathbb{C}} \bigwedge^{q} \bar{T}$ by $\bar{\partial}(f \otimes \alpha)=\bar{\partial} f \wedge \alpha$, then because the ω_{α} are closed, the complexes $\Omega^{0,0}(X) \otimes_{\mathbb{C}} \Lambda^{\bullet} \bar{T}$ and $\Omega^{0, \bullet}(X)$ are isomorphic.

Therefore $H^{q}\left(X, \mathscr{O}_{X}\right) \cong H^{q}\left(\Omega^{0,0}(X) \otimes_{\mathbb{C}} \Lambda^{\bullet} \bar{T}\right)$.
Finally, we will show that the inclusion $i: \Lambda^{\bullet} \bar{T} \rightarrow \Omega^{0,0}(X) \otimes_{\mathbb{C}} \Lambda^{\bullet} \bar{T}$ induces an isomorphism on the cohomology, i.e. $\bigwedge^{q} \bar{T} \cong H^{q}\left(\Omega^{0,0}(X) \otimes_{\mathbb{C}} \bigwedge^{\bullet} \bar{T}\right)$.

Let μ be the measure on X induced by the Euclidean measure on V, normalized so that $\mu(X)=1$. It induces a map $\mu_{\wedge^{\bullet}} \bar{T}:=\mu \otimes 1_{\Lambda^{\bullet}}: \Omega^{0,0}(X) \otimes \Lambda^{\bullet} \bar{T} \rightarrow \Lambda^{\bullet} \bar{T}$, which is $\Lambda^{\bullet} \bar{T}$-linear and such that $\mu_{\Lambda \cdot \bar{T}} \circ i=1_{\Lambda \cdot \bar{T}}$.

We will show that $i \circ \mu_{\wedge^{\bullet}} \bar{T}$ is homotopic to the identity, hence the result.
For that purpose, we will need to introduce several maps.
First, if $\lambda \in \Lambda^{\star}=\operatorname{Hom}(\Lambda, \mathbb{Z})$, then λ extends to an \mathbb{R}-linear map $\lambda: V \rightarrow \mathbb{R}$ and the function $x \mapsto e^{2 \pi i \lambda(x)}$ on V is Λ-invariant, hence factors through π as $e_{\lambda} \circ \pi$, for some $e_{\lambda}: X \rightarrow \mathbb{C}$. For any $f \otimes \alpha \in \Omega^{0,0}(X) \otimes_{\mathbb{C}} \Lambda^{\bullet} \bar{T}$, we may define the Fourier coefficients

$$
a_{\lambda}(f \otimes \alpha)=\underset{4}{\mu\left(e_{-\lambda} \cdot f\right) \cdot \alpha \in \bigwedge_{4} \bar{T}}
$$

so that

$$
f=\sum_{\lambda \in \Lambda^{\star}} e_{\lambda} \otimes a_{\lambda}(f)
$$

Next, let $\bar{C}: \Lambda^{\star}=\operatorname{Hom}(\Lambda, \mathbb{Z}) \rightarrow \bar{T}$ be the composition

$$
\Lambda^{\star} \rightarrow \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R}) \subseteq \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C}) \cong T \oplus \bar{T} \rightarrow \bar{T}
$$

For every $0 \neq \lambda \in \Lambda^{\star}$, define an element $\lambda^{\star} \in \operatorname{Hom}_{\mathbb{C}}(\bar{T}, \mathbb{C})$ by

$$
\lambda^{\star}(x)=\frac{\langle x, \bar{C}(\lambda)\rangle}{2 \pi i|\bar{C}(\lambda)|^{2}}
$$

Then λ^{\star} induces a map $\lambda^{\star}: \bigwedge^{p} \bar{T} \rightarrow \bigwedge^{p-1} \bar{T}$ (inner multiplication / contraction by λ^{\star}) via

$$
\lambda^{\star}\left(\alpha_{1} \wedge \ldots \wedge \alpha_{p}\right)=\sum_{k=1}^{p}(-1)^{p-k} \lambda^{\star}\left(\alpha_{k}\right) \cdot \alpha_{1} \wedge \ldots \wedge \widehat{\alpha}_{k} \wedge \ldots \wedge \alpha_{p}
$$

Now, for any $\omega \in \Omega^{0,0}(X) \otimes \bigwedge^{p} \bar{T}$ we define $k(\omega) \in \Omega^{0,0}(X) \otimes \bigwedge^{p-1} \bar{T}$ by

$$
k(\omega)=\sum_{0 \neq \lambda \in \Lambda^{\star}}(-1)^{p-1} e_{\lambda} \otimes \lambda^{\star}\left(a_{\lambda}(\omega)\right)
$$

This indeed defines an element (check the rate of decay of the coefficients!) uniquely by Fourier analysis, and we claim

$$
\bar{\partial} k+k \bar{\partial}=1_{\Omega^{0,0}(X) \otimes \Lambda^{\bullet} \bar{T}}-i \circ \mu_{\Lambda^{\bullet} \bar{T}}
$$

This is verified by computing Fourier coefficients on both sides - here it is for $\lambda \neq 0$:

$$
\begin{aligned}
a_{\lambda}(\bar{\partial} k \omega+k \bar{\partial} \omega) & =(-1)^{p}\left(2 \pi i a_{\lambda}(k \omega) \wedge \bar{C}(\lambda)+\lambda^{\star}\left(a_{\lambda}(\bar{\partial} \omega)\right)\right) \\
& =2 \pi i\left(\lambda^{\star}\left(a_{\lambda}(\omega)\right) \wedge \bar{C}(\lambda)+\lambda^{\star}\left(a_{\lambda}(\omega) \wedge \bar{C}(\lambda)\right)\right) \\
& =a_{\lambda}(\omega)
\end{aligned}
$$

where we used that $a_{\lambda}(\bar{\partial} \omega)=(-1)^{p} 2 \pi i\left(a_{\lambda}(\omega) \wedge \bar{C}(\lambda)\right)$ and $2 \pi i \lambda^{\star}(\bar{C}(\lambda))=1$.
The proof of theorem actually gives us more corollaries.
Corollary 1.6.3. The following diagram commutes:

Corollary 1.6.4. The natural map induced by cup product

$$
\bigwedge^{q} H^{1}\left(X, \mathscr{O}_{X}\right) \rightarrow H^{q}\left(X, \mathscr{O}_{X}\right)
$$

is an isomorphism.

A similar computation with the cohomology of the de-Rham complex

$$
0 \rightarrow \mathbb{C} \rightarrow \Omega^{0} \rightarrow \Omega^{1} \rightarrow \ldots
$$

shows that $H^{n}(X, \mathbb{C}) \cong \bigwedge^{n} \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})$, in a way that cup products are compatible with exterior products. Also, since $\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})=T \oplus \bar{T}$, this shows the Hodge decomposition:

$$
H^{n}(X, \mathbb{C}) \cong \bigoplus_{p+q=n} H^{q}\left(X, \Omega^{p}\right)
$$

Next, we would like to establish a certain compatibility between the maps we have:
Proposition 1.6.5. The following diagram commutes:

Proof. Let $p_{0,1}: \Omega^{1}=\Omega^{1,0} \oplus \Omega^{0,1} \rightarrow \Omega^{0,1}$ be the natural projection. Then the following diagram is commutative:

Passing to cohomology, we obtain the commutative diagram

establishing commutativity of the right square.
For the left square, note that the isomorphism on the left is given as follows - for $a \in$ $H^{1}(X, \mathbb{Z})$, if $\phi: S^{1} \rightarrow X$ is a loop in X representing $[\phi] \in \pi_{1}(X)$, then $\phi^{\star}(a) \in H^{1}\left(S^{1}, \mathbb{Z}\right) \cong \mathbb{Z}$. Let us denote the canonical isomorphism on the right by $\epsilon: H^{1}\left(S^{1}, \mathbb{Z}\right) \rightarrow \mathbb{Z}$. This way, one obtains $\tilde{a}: \pi_{1}(X) \rightarrow \mathbb{Z}$ defined by

$$
\tilde{a}([\phi])=\epsilon\left(\phi^{\star}(a)\right)
$$

In particular, for $\lambda \in \Lambda$, let $\phi_{\lambda}: S^{1} \rightarrow X$ be the loop

$$
\phi_{\lambda}(t)=\pi(t \lambda) \quad t \in S^{1}=\mathbb{R} / \mathbb{Z}
$$

Then a determines $\tilde{a} \in \Lambda^{\star}$ by $\tilde{a}(\lambda)=\epsilon\left(\phi_{\lambda}^{\star}(a)\right)$. Consider $\alpha(a) \in H^{1}(X, \mathbb{C})$. There is a unique $b \in T \oplus \bar{T}$ s.t. if $\omega_{b} \in H^{0}\left(X, \operatorname{ker}\left(\Omega^{1} \rightarrow \Omega^{2}\right)\right)$ is the invariant 1-form on X with value b at
$0, \delta(\omega(b))=\alpha(a)$. (By definition of the middle isomorphism). We pull back to S^{1} to get $\delta\left(\phi_{\lambda}^{\star}\left(\omega_{b}\right)\right)=\phi_{\lambda}^{\star}(\alpha(a))=\alpha\left(\phi_{\lambda}^{\star}(a)\right)$. In S^{1}, we have $\epsilon(\delta(\eta))=\int_{S^{1}} \eta$, hence

$$
\begin{aligned}
\tilde{a}(\lambda) & =\epsilon\left(\phi_{\lambda}^{\star}(a)\right) \\
& =\epsilon\left(\delta\left(\phi_{\lambda}^{\star}\left(\omega_{b}\right)\right)\right) \\
& =\int_{S^{1}} \phi_{\lambda}^{\star}\left(\omega_{b}\right) \\
& =\int_{0}^{\lambda} \pi^{\star}\left(\omega_{b}\right) \\
& =b(\lambda)
\end{aligned}
$$

so that \tilde{a} is simply the restriction of b to Λ.
Furthermore, compatibility with cup products gives us the following:
Corollary 1.6.6. The following diagram commutes

We can now prove proposition 1.6.1.
Proof. (of proposition 1.6.1). Consider the commutative diagram

Since E is in the image of the leftmost map, by the exactness of the exponential sequence, $(j \circ i)(E)=0$. Since $i(E)$ is the \mathbb{R}-linear extension of E, we denote it again by E, and write $E=E_{1}+E_{2}+E_{3}$, with $E_{1} \in \bigwedge^{2} T, E_{2} \in \bigwedge^{2} \bar{T}$ and $E_{3} \in T \oplus \bar{T}$. Since E is real, it is fixed by conjugation, and it follows that $E_{1}=\overline{E_{2}}$. Now, j is the projection onto the second factor, so that $j(E)=E_{2}$. But $j(E)=0$, hence $E=E_{3}$. Therefore

$$
E(i x, i y)=i \cdot(-i) \cdot E(x, y)=E(x, y)
$$

1.7. Step 4 - Finish the proof.

Proof. (of Theorem 1.1.1). Let ψ be a Riemann form, α a semi-character with respect to ψ, and $j_{(\psi, \alpha)} \in H^{1}\left(\Lambda, \mathscr{O}^{\times}(V)\right)$ the corresponding factor of automorphy. Denote by $\mathscr{L}(\psi, \alpha) \in$ $H^{1}\left(X, \mathscr{O}_{X}^{\times}\right)$the corresponding line bundle.

Note that $\mathscr{L}\left(\psi_{1}, \alpha_{1}\right) \otimes \mathscr{L}\left(\psi_{2}, \alpha_{2}\right)$ will have factor of automorphy $j_{\left(\psi_{1}, \alpha_{1}\right)} \cdot j_{\left(\psi_{2}, \alpha_{2}\right)}$, and finally that

$$
j_{\left(\psi_{1}, \alpha_{1}\right)} \cdot j_{\left(\psi_{2}, \alpha_{2}\right)}=j_{\left(\psi_{1}+\psi_{2}, \alpha_{1} \alpha_{2}\right)}
$$

Therefore, if we denote by \mathscr{G} the group of pairs $\{(\psi, \alpha)\}$ such that ψ is a Riemann form for Λ and α a semi-character with respect to ψ, with multiplication defined by

$$
\left(\psi_{1}, \alpha_{1}\right) \cdot\left(\psi_{2}, \alpha_{2}\right)=\left(\psi_{1}+\psi_{2}, \alpha_{1} \alpha_{2}\right)
$$

then the $\operatorname{map} \beta: \mathscr{G} \rightarrow \operatorname{Pic} X$ is a group homomorphism. If we denote by $\mathscr{G}_{1}=\operatorname{Hom}\left(\Lambda, U_{1}(\mathbb{R})\right)=$ $\{(0, \alpha) \in \mathscr{G}\}$ the subgroup of semi-characters with respect to the zero Riemann form, and by \mathscr{G}_{2} the group of Riemann forms with respect to Λ, then we have a commutative diagram with exact rows \downarrow

Indeed, for $\psi \in \mathscr{G}_{2}$, let $\gamma(\psi)=\left.\operatorname{Im} \psi\right|_{\Lambda}$. Since ψ is Hermitian, $\gamma(\psi)(i x, i y)=\gamma(\psi)(x, y)$ and as ψ is a Riemann form, we see that $\gamma(\psi) \in \bigwedge^{2} \operatorname{Hom}(\Lambda, \mathbb{Z}) \cong H^{2}(X, \mathbb{Z})$. Further, from the proof of proposition 1.6.1, we see that $j(\gamma(\psi))=0$, hence $\gamma(\psi) \in \operatorname{ker}\left(H^{2}(X, \mathbb{Z}) \rightarrow H^{2}\left(X, \mathscr{O}_{X}\right)\right)$.

By proposition 1.6.1, for any element $E \in \operatorname{ker}\left(H^{2}(X, \mathbb{Z}) \rightarrow H^{2}\left(X, \mathscr{O}_{X}\right)\right)$, we have $E(i x, i y)=$ $E(x, y)$, hence the form $\psi(x, y)=E(i x, y)+i E(x, y)$ is Hermitian, so $\psi \in \mathscr{G}_{2}$, and the map γ is surjective, hence an isomorphism.

Thus, to show that the middle map is an isomorphism, it is enough to show that β is an isomorphism. Let $\alpha \in \operatorname{Hom}\left(\Lambda, U_{1}(\mathbb{R})\right)$ be such that $\beta(\alpha)=\mathscr{O}_{X}$. Note that the factor of automorphy is then $j_{(0, \alpha)}(v)=\alpha(\lambda)$. Since this is the trivial line bundle, there exists $g \in \mathscr{O}^{\times}(V)$ such that

$$
\alpha(\lambda)=\frac{g(v+\lambda)}{g(v)}
$$

Let K be the fundamental parallelogram for X, so that $K+\Lambda=V$ and K is compact. Then we see that

$$
|g(v)|=|g(k+\lambda)|=|\alpha(\lambda) g(k)| \leq \sup _{K}|g(k)|
$$

because $|\alpha(\lambda)|=1$. But then g is bounded, hence constant, and we see that $\alpha(\lambda)=1$, hence β is injective.

Consider the commutative diagram

By proposition 1.6.5, the map $H^{1}(X, \mathbb{C}) \rightarrow H^{1}\left(X, \mathscr{O}_{X}\right)$ is surjective. Therefore, since the exponential maps on the right are surjective, for any line bundle $\mathscr{L} \in \operatorname{Pic}^{0} X$, there exists some factor of automorphy $j \in H^{1}(\Lambda, \mathbb{C})$ giving rise to it. But that means that $j(\lambda)(v)=$ $\alpha(\lambda)$ for all v, for some $\alpha \in \operatorname{Hom}\left(\Lambda, \mathbb{C}^{\times}\right)$. Write $\alpha(\lambda)=e^{2 \pi \gamma_{\lambda}}$, then

$$
\gamma_{\lambda_{1}+\lambda_{2}}-\gamma_{\lambda_{1}}-\gamma_{\lambda_{2}} \in i \mathbb{Z}
$$

[^0]Then $\operatorname{Re} \gamma_{\lambda}$ is additive and can be extended to an \mathbb{R}-linear map $l: V \rightarrow \mathbb{R}$. Let $L: V \rightarrow \mathbb{C}$ be defined by $L(v)=l(v)-i l(i v)$, so that L is \mathbb{C}-linear and $\operatorname{Re} L=l$. Now, the function $f(v)=e^{-2 \pi L(v)}$ lies in $\mathscr{O}^{\times}(V)$, hence the factor of automorphy $j(\lambda)(v)=\alpha(\lambda) \cdot \frac{f(v+\lambda)}{f(v)}$ is cohomologous to α. But

$$
\alpha(\lambda) \cdot \frac{f(v+\lambda)}{f(v)}=\alpha(\lambda) \cdot \frac{e^{-2 \pi L(v+\lambda)}}{e^{-2 \pi L(v)}}=e^{2 \pi \gamma_{\lambda}} \cdot e^{-2 \pi L(\lambda)}=e^{2 \pi\left(\gamma_{\lambda}-L(\lambda)\right)}
$$

Note that by choice of L, we have

$$
\operatorname{Re}\left(\gamma_{\lambda}-L(\lambda)\right)=0
$$

so that $j(\lambda)(v) \in U_{1}(\mathbb{R})$, showing that β is surjective, and finishing the proof.

References

[1] Eyal Zvi Goren. Lectures on Hilbert modular varieties and modular forms. Number 14. American Mathematical Soc., 2002.
[2] David Mumford, Chidambaran Padmanabhan Ramanujam, and Iïž Uïži I Manin. Abelian varieties, volume 108. Oxford university press Oxford, 1974.

[^0]: ${ }^{1}$ Actually we haven't shown that $\mathscr{G} \rightarrow \mathscr{G}_{2}$ is surjective, but this is a fun exercise. Hint: Look for linear solutions for the exponents.

