
THE APPEL-HUMBERT THEOREM

ERAN ASSAF

Abstract. This is a proof of the theorem, as can be found in [2], using some of the more
modern exposition and notation, as can be found in [1].

1. Proof

1.1. Introduction. The goal of this short note is to present a proof of the following theorem:

Theorem 1.1.1 (Appel-Humbert, [2, p. 20]). Let X = Cn/Λ be a complex torus. Then
any line bundle L on X is of the form L (ψ, α) where ψ is a Riemann form, and α is a
semi-character with respect to ψ. Furthermore, ψ, α are uniquely determined.

The proof is based on Mumford.

1.2. Notation and definitions. Throughout, we let V be a finite dimensional complex
vector space of dimension n, and Λ ⊆ V is a lattice, i.e. a subgroup of rank 2n such that
Λ⊗ R ∼= V under the canonical map α⊗ λ 7→ αλ.

Definition 1.2.1. A complex torus is a complex Lie group isomorphic to X = V/Λ.

Definition 1.2.2. A Riemann form on V with respect to Λ is a Hermitian form
ψ : V × V → C such that Imψ(Λ× Λ) ⊆ Z

Definition 1.2.3. A semi-character with respect to a Riemann form ψ is a map

α : Λ→ U1(R) = {z ∈ C : |z| = 1}
such that

α(λ1 + λ2) = α(λ1)α(λ2)eπi Imψ(λ1,λ2)

Remark 1.2.4. These could be obtained if one tries to find linear solutions when solving for
the factor of automorphy given ψ.

Definition 1.2.5. The factor of automorphy corresponding to the pair (ψ, α) consisting of
a Riemann form and a semi-character is the element j(ψ,α) ∈ H1(Λ,O×(V )) represented by
the cocycle

j(ψ,α)(λ)(v) = α(λ)eπψ(v,λ)+π
2
ψ(λ,λ)

Remark 1.2.6. Note that j(ψ,α) is indeed a cocycle, i.e. it satisfies

j(λ1 + λ2) = λ2(j(λ1)) · j(λ1)

which explicitly is
j(λ1 + λ2)(v) = j(λ1)(λ2 + v) · j(λ2)(v)
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1.3. Outline of the proof. We are going to proceed in the following steps:

(1) Establish a canonical isomorphism Pic(X) ∼= H1(X,O×X) ∼= H1(Λ,O×(V )). Thus, for
any (ψ, α), j(ψ,α) defines a line bundle, which we denote by L (ψ, α).

(2) Show commutativity of the diagram

H1(Λ,O×(V )) //

∼=
��

H2(Λ,Z)

∼=
��

H1(X,O×X) // H2(X,Z)

so that the image of any line bundle in H2(Λ,Z) ∼=
∧2 Hom(Λ,Z) gives us an alter-

nating form ψ.
(3) Show that the image of a line bundle in H2(Λ,Z) is a Riemann form.
(4) Looking at the commutative diagram with exact rows

0 // Hom(Λ, U1(R)) //

λ
��

{(ψ, α)} //

��

Riemann forms //

ν

��

0

0 // Pic0X // PicX // ker(H2(X,Z)→ H2(X,OX)) // 0

we prove that λ is an isomorphism. By the above, ν is also an isomorphism, hence
the result.

1.4. Step 1 - factors of automorphy.

Proposition 1.4.1. There exist a canonical isomorphism H1(X,O×X) ∼= H1(Λ,O×(V )).

Proof. Let π : V → X be the natural projection, and let L be a line bundle on X. Because
V is simply connected, every line bundle on it is trivial, and therefore π?L ∼= V × C. Let
Tλ be translation by λ map on V given by Tλ(x) = x+ λ. Then

T ?λπ
?L = (π ◦ Tλ)?L = π?L

But by the definition of the pullback of a line bundle, we have

(T ?λ (π?L ))v = (π?L )v+λ

so under the isomorphism with the trivial bundle T ?λ (v, z) = (v + λ, J(z)), but J(z) is an
automorphism of C, i.e. it must be of the form z 7→ j(λ)(v) · z for some j(λ)(v) ∈ C×.
Therefore j(λ) : V → C× is an element of O×(V ). Moreover, as Tλ1+λ2 = Tλ1 ◦ Tλ2 , we see
that

j(λ1 + λ2)(v) = j(λ1)(λ2 + v) · j(λ2)(v)

so that in fact j is a cocycle, i.e. j ∈ Z1(Λ,O×(V )).
If we alter the trivialization, multiplying by some f ∈ O×(V ), then j will be replaced by

the cohomologous cocycle

j′(λ)(v) = j(λ)(v) · f(v + λ)/f(v)

so that we have defined a map H1(X,O×X)→ H1(Λ,O×(V )). Conversely, just define the line
bundle as the quotient of the trivial bundle by the relation (v, z) ∼ (v + λ, j(λ)(v) · z). �
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1.5. Step 2 - the alternating form.

Proposition 1.5.1 ([2, p. 18]). The Chern class of the line bundle corresponding to j ∈
Z1(Λ,O×(V )) is the alternating 2-form on Λ with values in Z given by

E(λ1, λ2) = fλ2(v + λ1) + fλ1(v)− fλ1(v + λ2)− fλ2(v)

where j(λ)(v) = e2πifλ(v).

Proof. We get from the exponential sequence

0→ Z→ O(V )→ O×(V )→ 0

the following diagram

H1(Λ,O×(V ))
δ //

∼=
��

H2(Λ,Z)

∼=
��

H1(X,O×X) // H2(X,Z)

This diagram commutes, because the isomorphism is compatible with the connecting mor-
phisms. (Check!)

Write j(λ)(v) = e2πifλ(v), then by definition of δ, we have

δ([j])(λ1, λ2) = fλ1(v + λ1)− fλ1+λ2(v) + fλ1(v) ∈ Z

The proof will be complete with the following Lemma. �

Lemma 1.5.2 ([2, p. 16]). The map A : Z2(Λ,Z)→
∧2 Hom(Λ,Z) defined by

A(F )(λ1, λ2) = F (λ1, λ2)− F (λ2, λ1)

induces an isomorphism H2(Λ,Z) ∼=
∧2 Hom(Λ,Z).

Moreover, for any ξ, η ∈ Hom(Λ,Z) = H1(Λ,Z), we have A(ξ ∪ η) = ξ ∧ η.

Proof. Exercise. �

Remark 1.5.3. The last line is needed so that the two isomorphisms we have with H2(X,Z)
will coincide.

1.6. Step 3 - Riemann form. The goal of this step is to prove the following proposition.

Proposition 1.6.1 ([2, p. 18]). If we extend E from previous proposition R-linearly to a
map E : V × V → R, then E(ix, iy) = E(x, y).

In order to prove this proposition, we first need to prove some auxiliary results on the
structure of cohomology of X. Let T = HomC(V,C) be the complex cotangent space to X
at 0. We have a natural map OX ⊗C

∧p T → Ωp sending α ∈
∧p T to the form ωα defined by

(ωα)x = dT ?−x(α), i.e. (ωα)x(v1, v2) = α(dT−x(v1), dT−x(v2)). This is an isomorphism (check!)
so that Ωp is globally generated, and we get Hq(X,Ωp) ∼= Hq(X,OX)⊗ ΛpT . We will prove
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Theorem 1.6.2 ([2, p. 4]). Let T = HomC−antilinear(V,C), then there are natural isomor-
phisms

Hq(X,OX) ∼=
q∧
T

for all q, hence

Hq(X,Ωp) ∼=
p∧
T ⊗

q∧
T

Proof. Denote by Ωp,q the sheaf of C∞ complex-valued differential forms of type (p, q) on X,
and let ∂ be the component of the exterior derivative mapping Ωp,q to Ωp,q+1 (derivation by
z). The Dolbeaut resolution

0→ OX → Ω0,0 → Ω0,1 → Ω0,2 → . . .

defines isomorphisms

Hq(X,OX) ∼=
Z0,q

∂
(X)

∂(Ω0,q−1(X))

where Z0,q

∂
(X) are the ∂-closed forms of type (0, q). We have an isomorphism

φp,q : Ω0,0 ⊗C

(
p∧
T ⊗

q∧
T

)
→ Ωp,q

taking
∑
fi⊗αi to

∑
fiωαi where ωα is the translation-invariant (p, q)-form with value α at

0. Let us show that these ωα are all closed. Since ωα∧β = ωα ∧ ωβ, it is enough to consider
degrees (1, 0) and (0, 1). Since π : V → X is a local isomorphism, it is enough to check that
d(π?(ωα)) = 0. Since α ∈ T ⊕ T , we see that π?(ωα) = dα, hence d(π?ωα) = d2α = 0.

The map φ0,q gives an isomorphism

Ω0,0(X)⊗C

q∧
T → Ω0,q(X)

Defining a differential ∂ on Ω0,0(X)⊗C
∧q T by ∂(f ⊗α) = ∂f ∧α, then because the ωα are

closed, the complexes Ω0,0(X)⊗C
∧• T and Ω0,•(X) are isomorphic.

Therefore Hq(X,OX) ∼= Hq
(
Ω0,0(X)⊗C

∧• T).
Finally, we will show that the inclusion i :

∧• T → Ω0,0(X) ⊗C
∧• T induces an isomor-

phism on the cohomology, i.e.
∧q T ∼= Hq

(
Ω0,0(X)⊗C

∧• T).
Let µ be the measure on X induced by the Euclidean measure on V , normalized so that

µ(X) = 1. It induces a map µ∧• T := µ⊗1∧• T : Ω0,0(X)⊗
∧• T → ∧• T , which is

∧• T -linear
and such that µ∧• T ◦ i = 1∧• T .

We will show that i ◦ µ∧• T is homotopic to the identity, hence the result.
For that purpose, we will need to introduce several maps.
First, if λ ∈ Λ? = Hom(Λ,Z), then λ extends to an R-linear map λ : V → R and

the function x 7→ e2πiλ(x) on V is Λ-invariant, hence factors through π as eλ ◦ π, for some
eλ : X → C. For any f ⊗ α ∈ Ω0,0(X)⊗C

∧• T , we may define the Fourier coefficients

aλ(f ⊗ α) = µ(e−λ · f) · α ∈
•∧
T
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so that
f =

∑
λ∈Λ?

eλ ⊗ aλ(f)

Next, let C : Λ? = Hom(Λ,Z)→ T be the composition

Λ? → HomR(V,R) ⊆ HomR(V,C) ∼= T ⊕ T → T

For every 0 6= λ ∈ Λ?, define an element λ? ∈ HomC(T ,C) by

λ?(x) =
〈x,C(λ)〉

2πi
∣∣C(λ)

∣∣2
Then λ? induces a map λ? :

∧p T →
∧p−1 T (inner multiplication / contraction by λ?) via

λ?(α1 ∧ . . . ∧ αp) =

p∑
k=1

(−1)p−kλ?(αk) · α1 ∧ . . . ∧ α̂k ∧ . . . ∧ αp

Now, for any ω ∈ Ω0,0(X)⊗
∧p T we define k(ω) ∈ Ω0,0(X)⊗

∧p−1 T by

k(ω) =
∑

0 6=λ∈Λ?

(−1)p−1eλ ⊗ λ?(aλ(ω))

This indeed defines an element (check the rate of decay of the coefficients!) uniquely by
Fourier analysis, and we claim

∂k + k∂ = 1Ω0,0(X)⊗
∧• T − i ◦ µ∧• T

This is verified by computing Fourier coefficients on both sides - here it is for λ 6= 0:

aλ(∂kω + k∂ω) = (−1)p
(
2πiaλ(kω) ∧ C(λ) + λ?(aλ(∂ω))

)
= 2πi

(
λ?(aλ(ω)) ∧ C(λ) + λ?(aλ(ω) ∧ C(λ))

)
= aλ(ω)

where we used that aλ(∂ω) = (−1)p2πi
(
aλ(ω) ∧ C(λ)

)
and 2πiλ?(C(λ)) = 1. �

The proof of theorem actually gives us more corollaries.

Corollary 1.6.3. The following diagram commutes:

Hp(X,OX)×Hq(X,OX)
∪ //

∼=
��

Hp+q(X,OX)

∼=
��∧p T ×

∧q T
∧ //

∧p+q T

Corollary 1.6.4. The natural map induced by cup product
q∧
H1(X,OX)→ Hq(X,OX)

is an isomorphism.
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A similar computation with the cohomology of the de-Rham complex

0→ C→ Ω0 → Ω1 → . . .

shows that Hn(X,C) ∼=
∧n HomR(V,C), in a way that cup products are compatible with

exterior products. Also, since HomR(V,C) = T ⊕ T , this shows the Hodge decomposition:

Hn(X,C) ∼=
⊕
p+q=n

Hq(X,Ωp)

Next, we would like to establish a certain compatibility between the maps we have:

Proposition 1.6.5. The following diagram commutes:

H1(X,Z)
α //

∼=
��

H1(X,C)
β //

∼=
��

H1(X,OX)

∼=
��

Λ? = Hom(Λ,Z)
1⊗ZR // HomR(V,C) = T ⊕ T pr2 // T

Proof. Let p0,1 : Ω1 = Ω1,0 ⊕ Ω0,1 → Ω0,1 be the natural projection. Then the following
diagram is commutative:

0 // C //

��

Ω0 d //

��

ker(Ω1 → Ω2) //

p0,1

��

0

0 // OX
// Ω0,0 // ker(Ω0,1 → Ω0,2) // 0

Passing to cohomology, we obtain the commutative diagram

T ⊕ T //

��

H0(X, ker(Ω1 → Ω2))
δ //

p0,1

��

H1(X,C)

β

��
T // H0(X, ker(Ω0,1 → Ω0,2))

δ // H1(X,OX)

establishing commutativity of the right square.
For the left square, note that the isomorphism on the left is given as follows - for a ∈

H1(X,Z), if φ : S1 → X is a loop inX representing [φ] ∈ π1(X), then φ?(a) ∈ H1(S1,Z) ∼= Z.
Let us denote the canonical isomorphism on the right by ε : H1(S1,Z)→ Z. This way, one
obtains ã : π1(X)→ Z defined by

ã([φ]) = ε(φ?(a))

In particular, for λ ∈ Λ, let φλ : S1 → X be the loop

φλ(t) = π(tλ) t ∈ S1 = R/Z

Then a determines ã ∈ Λ? by ã(λ) = ε(φ?λ(a)). Consider α(a) ∈ H1(X,C). There is a unique
b ∈ T ⊕ T s.t. if ωb ∈ H0(X, ker(Ω1 → Ω2)) is the invariant 1-form on X with value b at

6



0, δ(ω(b)) = α(a). (By definition of the middle isomorphism). We pull back to S1 to get
δ(φ?λ(ωb)) = φ?λ(α(a)) = α(φ?λ(a)). In S1, we have ε(δ(η)) =

∫
S1 η, hence

ã(λ) = ε(φ?λ(a))

= ε(δ(φ?λ(ωb)))

=

∫
S1

φ?λ(ωb)

=

∫ λ

0

π?(ωb)

= b(λ)

so that ã is simply the restriction of b to Λ. �

Furthermore, compatibility with cup products gives us the following:

Corollary 1.6.6. The following diagram commutes

Hn(X,Z) //

∼=
��

Hn(X,C) //

∼=
��

Hn(X,OX)

∼=
��∧n(Λ?)

1⊗ZR //
∧n(T ⊕ T )

pr0,n //
∧n(T )

We can now prove proposition 1.6.1.

Proof. (of proposition 1.6.1). Consider the commutative diagram

H1(X,OX) // H2(X,Z) //

∼=
��

H2(X,C) //

∼=
��

H2(X,OX)

∼=
��∧2 Hom(Λ,Z)

i //
∧2(T ⊕ T )

j //
∧2 T

Since E is in the image of the leftmost map, by the exactness of the exponential sequence,
(j ◦ i)(E) = 0. Since i(E) is the R-linear extension of E, we denote it again by E, and write
E = E1 + E2 + E3, with E1 ∈

∧2 T , E2 ∈
∧2 T and E3 ∈ T ⊕ T . Since E is real, it is fixed

by conjugation, and it follows that E1 = E2. Now, j is the projection onto the second factor,
so that j(E) = E2. But j(E) = 0, hence E = E3. Therefore

E(ix, iy) = i · (−i) · E(x, y) = E(x, y)

�

1.7. Step 4 - Finish the proof.

Proof. (of Theorem 1.1.1). Let ψ be a Riemann form, α a semi-character with respect to ψ,
and j(ψ,α) ∈ H1(Λ,O×(V )) the corresponding factor of automorphy. Denote by L (ψ, α) ∈
H1(X,O×X) the corresponding line bundle.

Note that L (ψ1, α1) ⊗ L (ψ2, α2) will have factor of automorphy j(ψ1,α1) · j(ψ2,α2), and
finally that

j(ψ1,α1) · j(ψ2,α2) = j(ψ1+ψ2,α1α2)
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Therefore, if we denote by G the group of pairs {(ψ, α)} such that ψ is a Riemann form for
Λ and α a semi-character with respect to ψ, with multiplication defined by

(ψ1, α1) · (ψ2, α2) = (ψ1 + ψ2, α1α2)

then the map β : G → PicX is a group homomorphism. If we denote by G1 = Hom(Λ, U1(R)) =
{(0, α) ∈ G } the subgroup of semi-characters with respect to the zero Riemann form, and
by G2 the group of Riemann forms with respect to Λ, then we have a commutative diagram
with exact rows 1

0 // G1

β
��

// G

��

// G2

γ

��

// 0

0 // Pic0X // PicX // ker(H2(X,Z)→ H2(X,OX)) // 0

Indeed, for ψ ∈ G2, let γ(ψ) = Imψ|Λ. Since ψ is Hermitian, γ(ψ)(ix, iy) = γ(ψ)(x, y) and as
ψ is a Riemann form, we see that γ(ψ) ∈

∧2 Hom(Λ,Z) ∼= H2(X,Z). Further, from the proof
of proposition 1.6.1, we see that j(γ(ψ)) = 0, hence γ(ψ) ∈ ker(H2(X,Z)→ H2(X,OX)).

By proposition 1.6.1, for any element E ∈ ker(H2(X,Z)→ H2(X,OX)), we have E(ix, iy) =
E(x, y), hence the form ψ(x, y) = E(ix, y) + iE(x, y) is Hermitian, so ψ ∈ G2, and the map
γ is surjective, hence an isomorphism.

Thus, to show that the middle map is an isomorphism, it is enough to show that β is
an isomorphism. Let α ∈ Hom(Λ, U1(R)) be such that β(α) = OX . Note that the factor
of automorphy is then j(0,α)(v) = α(λ). Since this is the trivial line bundle, there exists
g ∈ O×(V ) such that

α(λ) =
g(v + λ)

g(v)

Let K be the fundamental parallelogram for X, so that K+Λ = V and K is compact. Then
we see that

|g(v)| = |g(k + λ)| = |α(λ)g(k)| ≤ sup
K
|g(k)|

because |α(λ)| = 1. But then g is bounded, hence constant, and we see that α(λ) = 1, hence
β is injective.

Consider the commutative diagram

H1(Λ,C) //

∼=
��

H1(Λ,O(V )) //

∼=
��

ker(H1(Λ,O×(V ))→ H2(Λ,Z))

∼=
��

H1(X,C) // H1(X,OX) // ker(H1(X,O×X)→ H2(X,Z)) = Pic0X

By proposition 1.6.5, the map H1(X,C) → H1(X,OX) is surjective. Therefore, since the
exponential maps on the right are surjective, for any line bundle L ∈ Pic0X, there exists
some factor of automorphy j ∈ H1(Λ,C) giving rise to it. But that means that j(λ)(v) =
α(λ) for all v, for some α ∈ Hom(Λ,C×). Write α(λ) = e2πγλ , then

γλ1+λ2 − γλ1 − γλ2 ∈ iZ
1Actually we haven’t shown that G → G2 is surjective, but this is a fun exercise. Hint: Look for linear

solutions for the exponents.
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Then Re γλ is additive and can be extended to an R-linear map l : V → R. Let L : V → C
be defined by L(v) = l(v) − il(iv), so that L is C-linear and ReL = l. Now, the function
f(v) = e−2πL(v) lies in O×(V ), hence the factor of automorphy j(λ)(v) = α(λ) · f(v+λ)

f(v)
is

cohomologous to α. But

α(λ) · f(v + λ)

f(v)
= α(λ) · e

−2πL(v+λ)

e−2πL(v)
= e2πγλ · e−2πL(λ) = e2π(γλ−L(λ))

Note that by choice of L, we have
Re(γλ − L(λ)) = 0

so that j(λ)(v) ∈ U1(R), showing that β is surjective, and finishing the proof. �
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