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Some Set Theory

1 Some Set Theory

In mathematics we think of a set as a collection of mathematical objects. The objects in a set
are not ordered, so it does not make sense to talk about where an object is in a set, or how
many times it occurs. All that matters is whether or not the object is in the set.

Common examples of sets that you may already be familiar with are

• the natural numbers N = {1, 2, 3, . . . },

• the integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }, and

• the real numbers R.

Notice that all of the natural numbers are integers, and all of the integers are real numbers.
These kinds of relationships between sets are crucial to the study of algebra, so we begin by
defining some notation and conventions about sets and how they relate to one another.

1.1 Notation

Let S be a set.

Definition 1.1. If x is an object in S, we write x ∈ S and say that x is an element of S. If
x is not an element of S, we write x /∈ S.

Further, we say that two sets S and S′ are equal, and we write S = S′, if they have exactly
the same elements.

Example 1.2. Let S be the set of integers with absolute value less than 4. In roster
notation, we can write this set as

S = {−3,−2,−1, 0, 1, 2, 3}.

Alternately, we can use set-builder notation to more concisely describe S, using the
property satisfied by its elements:

S = {x ∈ Z : |x| < 4}.

The symbol : in this notation means “such that,” i.e., “the set of elements x in Z such
that |x| < 4.”

Notice that in the example above, all of the elements of S are contained in the larger set Z.
We formalize this phenomenon as follows.

Definition 1.3. A subset A of a set S is a set such that every element of A is an element
of S. That is, if a ∈ A is an element of A, then a ∈ S. In this case, we write A ⊆ S. We say
that A is a proper subset of S if A ⊆ S and A ̸= S, and we write A ⊊ S.1

So S ⊊ Z in Example 1.2. We also have N ⊊ Z ⊊ R.

1Some authors use the notation A ⊂ S to mean that A is a proper subset of S, but others use A ⊂ S to
simply mean A is a subset of S, where A may or may not equal S. Beware!
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It is now clear that some sets are larger than others. How can we compare the sizes of sets?
This is a fairly deep question in general.

Definition 1.4. We say that a set S is a finite set if it contains a finite number of elements.
This number is called the cardinality of the set and is written |S|. Otherwise, if S contains
infinitely many elements, we say that S is an infinite set.

One special example is the empty set, the set with no elements. It has cardinality zero and
is denoted by ∅ or {}.

Proposition 1.5. Let A, B, and C be sets.

1. ∅ ⊆ A and A ⊆ A.

2. If A ⊆ B and B ⊆ C, then A ⊆ C.

Proof. Exercise.

The objects in a set do not have to be numbers. They can even be other sets!

Example 1.6. Consider the set

E = {∅, {∅} , {∅, {∅}}} .

The elements of E are

• ∅ ∈ E,

• {∅} ∈ E, and

• {∅, {∅}} ∈ E.

Since E has 3 elements, the cardinality is |E| = 3. Exercise for the reader: write out
all of the subsets of E.

There is much more that can be said about cardinality in a real analysis or measure theory
course, such as Math 73.

1.2 Unions, Intersections, and Differences

How do we compare two sets that are not necessarily subsets of one another? Say that

A = {2, 4, 5, 7} ⊆ Z

and
B = {1, 4, 5, 6} ⊆ Z.

A is not a subset of B, and B is not a subset of A, but they do share elements in common.
Unions, intersections, and differences allow us to construct new sets from A and B that can
help us understand more about them.

Definition 1.7. Let S be a set, and let A ⊆ S be a subset. The complement of A (in S) is
the set

Ac = {x ∈ S : x /∈ A}.
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If B ⊆ S is some other set, the difference of A and B, denoted A \B or A−B, is the set

A \B = {x ∈ A : x /∈ B}.

It is important to note that the complement of a set A is implicitly referencing some larger
set S. In fact, in the definition above, Ac = S \ A can be written as a set difference for
clarity.

Definition 1.8. Let S be a set, A ⊆ S, and B ⊆ S. The union of A and B is the set

A ∪B = {x ∈ S : x ∈ A or x ∈ B}.

The intersection of A and B is the set

A ∩B = {x ∈ S : x ∈ A and x ∈ B}.

We say that A and B are disjoint if A ∩B = ∅.

The figure depicts these sets using a Venn diagram.

A B

︸ ︷︷ ︸
A ∪B

A ∩BA \B B \A

S

Proposition 1.9. Let S be a set, A ⊆ S, B ⊆ S, and C ⊆ S. Then

1. ∅ ∪A = A and ∅ ∩A = ∅.

2. A ∩B ⊆ A ⊆ A ∪B.

3. A ∪B = B ∪A and A ∩B = B ∩A (commutativity).

4. A ∪ (B ∪ C) = (A ∪B) ∪ C and A ∩ (B ∩ C) = (A ∩B) ∩ C (associativity).

5. A ∪A = A ∩A = A.

6. If A ⊆ B then A ∪ C ⊆ B ∪ C and A ∩ C ⊆ B ∩ C.

7. A \B = A ∩Bc.

8. A = (A \B) ∪ (A ∩B).

9. B = (B \A) ∪ (A ∩B).
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10. (Ac)c = A.

11. (A ∩B)c = Ac ∪Bc.

12. (A ∪B)c = Ac ∩Bc.

Proof. Exercise (Hint: the statement A = B is equivalent to A ⊆ B and B ⊆ A).

The last two statements of Proposition 1.9 are known as De Morgan’s laws for sets.

Example 1.10. Here are some common sets, written in set-builder notation.

1. The rational numbers
Q =

{a

b
: a, b ∈ Z, b ̸= 0

}
.

2. The complex numbers

C = {a+ bi : a, b ∈ R, i2 = −1}.

3. The real Hamiltonian quaternions

H = {a+ bi+ cj + dk : a, b, c, d ∈ R, i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j}.

Example 1.11. Let S denote the set of squares, R the set of rectangles, P the set of
regular polygons, and S the set of shapes. Then S ⊊ R, S ⊊ P , R ⊊ S, and P ⊊ S.
What is R ∩ P?

Here is another important set to consider.

Definition 1.12. Let S be a set. The power set of S, written P(S), is the set of all subsets
of S.

For example, to answer the question posed at the end of Example 1.6, the power set of E
is

P(E) = {∅, {∅}, {{∅}}, {{∅, {∅}}}, {∅, {∅}}, {∅, {∅, {∅}}}, {{∅}, {∅, {∅}}}, E}.

Remember that any set has the empty set and itself as subsets!

We will finish with one more important definition.

Definition 1.13. Let A and B be sets. The cartesian product of A and B, denoted A×B,
is the set of ordered pairs of elements from A and B. That is, in set-builder notation,

A×B = {(a, b) : a ∈ A, b ∈ B}.

For example, the familiar Cartesian plane from calculus, denoted R2, is the set

R× R = {(x, y) : x, y ∈ R}.
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2 Maps and Relations

Let A and B be sets. A mapping f from A to B, denoted f : A → B or A
f→ B, is an

assignment of an element f(a) ∈ B to each a ∈ A. It must be well-defined, which means
that if a1, a2 ∈ A and a1 = a2, then we must have f(a1) = f(a2) (you may have seen the
“vertical line test” in calculus, which tests well-definedness). A mapping may also be called
a map or function, and we call the set A the domain of f , and the set B the codomain.
The image of f , written im(f) or f(A), is the subset of B consisting of all of the outputs of
f . That is,

im(f) = {f(a) ∈ B : a ∈ A}.

For some subset S ⊆ A of the domain A of f , the image of S under f is

f(S) = {f(s) ∈ B : s ∈ S} ⊆ im(f).

If S = A, then the image of A under f is precisely the image of f . On the other hand, for
each subset C ⊆ B the preimage or inverse image of C under f is the set

f−1(C) = {a ∈ A : f(a) ∈ C}.

If C consists of a single element, say C = {b}, then we call the preimage of {b} under f the
fiber of f over b.2

Example 2.1. The mapping f : R → R defined by f(x) = x2 is the familiar parabola.
Note that authors sometimes write x 7→ x2 instead of f(x) = x2 to define a mapping
on elements.

Example 2.2. Let A be the set of students enrolled in Math 71, and define a mapping

g : A → Z

as follows: if a ∈ A denotes a student, then g(a) is the student’s age (in years).

We will explore the mappings in these examples further in the next section.

2.1 Injections, Surjections, and Bijections

We begin by defining some possible properties of mappings.

Definition 2.3. A mapping f : A → B is injective or one-to-one if distinct inputs are
mapped to distinct outputs. That is, if a1, a2 ∈ A and a1 ̸= a2 then f(a1) ̸= f(a2). Or,
equivalently, if a1, a2 ∈ A and f(a1) = f(a2) then a1 = a2.3

In Example 2.1, f is not injective: −1 ̸= 1 but f(−1) = f(1) = 1. In Example 2.2, the
function g is injective if no two students have the same age, and otherwise not injective. In
our case, g is probably not injective.

2Note that a fiber of f over b ∈ B may contain more than one element of A (or no elements of A), so f−1

is not necessarily a mapping.
3The latter definition of injective is much easier to prove in general.
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Definition 2.4. A mapping f : A → B is surjective or onto if every element of B is the
output of some element of A. That is, for all b ∈ B there exists a ∈ A such that f(a) = b.
Equivalently, this means that B ⊆ im(f) (note that im(f) ⊆ B for any mapping).

In Example 2.1, f is not surjective since there is no x ∈ R such that f(x) = x2 = −1 ∈ R.
The function g from Example 2.2 certainly isn’t surjective either, since it is impossible for a
student to have age, say, −100.

That being said, changing the domain or codomain of a mapping that is not injective (or
not surjective) can create a new mapping that is injective (or surjective). We denote the
restriction of a function f : A → B to a subset S ⊆ A of its domain as f |S : S → B.
Exercise for the reader: show that although the function f : R → R defined by f(x) = x2 from
Example 2.1 is neither injective nor surjective, the restriction f |[0,2] : [0, 2] → R is injective
(but not surjective). Further, by shrinking the codomain to match the image, we can get a
function f̂ : [0, 2] → [0, 4] with f̂(x) = x2 that is both injective and surjective.

x

y
f : R → R

x

y
f̂ : [0, 2] → [0, 4]

Definition 2.5. A mapping f : A → B is bijective or invertible if it is both injective and
surjective.

So the mapping f̂ described above is bijective.

Bijective mappings are sometimes called invertible because they indeed have inverses. If
f : A → B is bijective, then B = im(f) (surjectivity) so every element of B has the form f(a)
for some a ∈ A, and moreover, this a is unique (injectivity). So we can define a new function
f−1 : B → A such that f(a) 7→ a. That is, if f(a) = b, then f−1(b) = a. For example, the
bijective function f̂ has inverse f̂−1 : [0, 4] → [0, 2] defined by f̂−1(y) =

√
y.

2.2 Relations, Equivalence Relations and Equivalence Classes

We can also think of mappings within the more general language of relations.

Definition 2.6. Let A and B be (nonempty) sets. A binary relation R from A to B is a set
of ordered pairs R ⊆ A×B. A binary relation on A is a binary relation from A to itself.

We will write a ∼ b and say a is related to b if (a, b) ∈ R for some a ∈ A and b ∈ B, with R

a binary relation from A to B.
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Example 2.7. Let f : A → B be a mapping. Then we can define a binary relation
from A to B by the rule that a ∼ b if b = f(a). Equivalently,

R = {(a, b) ∈ A×B : b = f(a)}.

If A = R, B = R, and f(x) = x3 for all x ∈ R, then we have

R = {(x, y) ∈ R2 : y = x3},

which is the familiar graph below.

x

y
f(x) = x3

In fact, we could redefine a mapping f : A → B as a binary relation f from A to B such
that

A = {a ∈ A : (a, b) ∈ f for some b ∈ B}

and for any (a, b1), (a, b2) ∈ f , b1 = b2. That is, every element of A is related to at least one
element of B, and every element of A is related to at most one element of B.

Finally, we give some desirable properties that a binary relation on a set A could have.

Definition 2.8. Let R be a binary relation on A. Then we say R is

1. reflexive if a ∼ a for all a ∈ A,

2. symmetric if a ∼ b implies b ∼ a for all a, b ∈ A, and

3. transitive if a ∼ b and b ∼ c implies a ∼ c for all a, b, c ∈ A.

If R is reflexive, symmetric, and transitive, then we say that R is an equivalence relation.

Example 2.9. Let n ∈ N. We can define a binary relation on the set of integers Z as

R = {(a, b) ∈ Z× Z : n | (b− a)},

where n | (b − a) means “n divides b − a,” or in other words, there exists q ∈ Z such
that b− a = qn.

Exercise for the reader: check that this is an equivalence relation.
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The equivalence relation in Example 2.9 is so important in algebra and number theory that
we give it its own definition.

Definition 2.10. Let n ∈ N and a, b ∈ Z. If n | (b− a), we write

a ≡ b mod n

and say that a is congruent to b mod n.

We claim that the statement a ≡ b mod n is closely related to the remainders of a and b upon
division by n. Let r be the remainder from dividing a by n, and let r′ be the remainder for b,
so that in particular we know that 0 ⩽ r < n and 0 ⩽ r′ < n, and there are integers q, q′ such
that

a = qn+ r and b = q′n+ r′.

Assume that n | (b− a), then n divides

q′n+ r′ − (qn+ r) = (q − q′)n+ (r′ − r),

so that n divides r′ − r. But 0 ⩽ |r′ − r| < n, so r− r′ = 0, and therefore r = r′. We conclude
that the remainders of a and b upon division by n are equal.

On the other hand, assume r = r′ in the representation of a and b above, then

b− a = q′n+ r′ − (qn+ r) = (q − q′)n+ (r′ − r) = (q − q′)n,

so certainly n | (b− a).

So we have shown that two integers being congruent mod n is equivalent to two integers having
the same remainder upon division by n, by proving that the first statement implies the second,
and then that the second statement implies the first.4 Moreover, if a = qn+ r, then certainly
n | (a − r) so that an integer is congruent to its remainder mod n. We may deduce that all
integers a ∈ Z can be classified via this equivalence relation by which of the possible remainders
{0, 1, . . . , n− 1} a is congruent to mod n. This idea motivates the following definition.

Definition 2.11. Let R be an equivalence relation on A. The equivalence class of a ∈ A is
the set

{x ∈ A : x ∼ a},

and we say that any element of the equivalence class of a is equivalent to a. If C is an
equivalence class, then any element of C is called a representative of the class.

So in the case of Example 2.9, denote the equivalence class of some a ∈ Z with respect
to the equivalence relation by a. Then a consists of integers that differ from a by some
integer multiple of n, and there are exactly n different equivalence classes, up to choice of
representative: 0, 1, . . . , n− 1. We say that the equivalence class of a ∈ Z with respect to the
equivalence relation in Example 2.9 is a congruence class or residue class of a mod n. The
set of congruence classes of integers mod n is called the integers mod n and is denoted by
Z/nZ.

4This is a proof writing strategy that algebra students will use over and over again. We will discuss logic
and proof writing more in Section 3.
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3 Logic

Mathematical proofs are written in the language of logic. In order to write, read, and
understand proofs, it is essential to understand their basic structure, and to avoid the pitfalls
of logical fallacies.

3.1 Propositions

We begin with a simple definition.

Definition 3.1. A proposition is a sentence that is either true or false.

In order to make sense, propositions must clearly define each concept they contain. Opinions
or vague statements about the future, such as “artificial intelligence will destroy the world,”
are not propositions.

Example 3.2. Examples of propositions:

1. 34− 65 = 8.

2. 34− 65 = −31.

3. The moon is made of cheese.

4. The Math 71 x-hour is at 3:30pm on Fridays.

To analyze propositions more abstractly, one can use a truth table, which displays some set
of combinations of propositions in a tabular format. Here is a simple truth table representing
the possible combinations of truth and falsehood of two propositions, which we denote by P
and Q:

P Q

T T
T F
F T
F F

We can use truth tables to define the logical operations of AND, OR, and NOT.

Definition 3.3. Let P and Q be propositions. The conjunction (AND, ∧) of P and Q,
the disjunction (OR, ∨) of P and Q, and the negation (NOT, ¬) of P are defined by the
following truth tables.

P Q P ∧Q

T T T
T F F
F T F
F F F

P Q P ∨Q

T T T
T F T
F T T
F F F

P ¬P
T F
F T

Observe that disjunction (OR) refers to the inclusive or, which is sometimes called and/or in
English, as opposed to the exclusive or which refers to “this or that but not both.” Exercise
to the reader: write the truth table for exclusive or.
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We can use these logical operations to compute the truth value of propositions built out of
other propositions in a more straightforward way.

Example 3.4. Let P , Q, and R be the following propositions:

P : Dartmouth College is located in Hanover, New Hampshire.

Q: Dartmouth is a town in Massachusetts.

R: Dartmouth has eight letters.

P is certainly true, and R is false. It turns out that Q is also true. Using this, we can
compute the following:

P ∧Q P ∨Q P ∧R ¬R (¬R) ∧ P ¬(R ∨ P ) (¬P ) ∨ (((¬R) ∨ P ) ∧Q)

T T F T T F T

Exercise for the reader: does P ∨ (Q ∧R) have the same truth value as (P ∨Q) ∧R?

The process of proving a theorem involves evaluating how propositions lead to other propositions.

Definition 3.5. Let P and Q be propositions. The conditional connective (=⇒) and
biconditional connective (⇐⇒) are defined by the following truth tables.

P Q P =⇒ Q

T T T
T F F
F T T
F F T

P Q P ⇐⇒ Q

T T T
T F F
F T F
F F T

So, as the truth table shows, P ⇐⇒ Q is true precisely when P and Q have the same truth
states.

The truth table for the conditional connective P =⇒ Q seems a little more strange at first.
The first row is reasonable: certainly Q is true if P is true if both P and Q were already
true. In the second row, we see that it is impossible for a true statement to imply a false one.
P =⇒ Q being false means that there is no way to assume P , and conclude Q. The third and
fourth rows are perhaps the most strange: why are F =⇒ T and F =⇒ F considered true?
Say that we assume 0 = 1. Then this implies that 0 · 0 = 0 · 1, so that 0 = 0. We have shown
that a false statement P (0 = 1) can imply a true statement Q (0 = 0), so logically speaking
P =⇒ Q is true. On the other hand, assuming that 0 = 1, we have 1+0 = 1+1, so that 1 = 2,
another false statement.5 Therefore one could say that a false proposition implies everything.
You can learn more about these kinds of issues in a logic or mathematical philosophy course.
Hopefully we will not be assuming false statements in Math 71 :)

There are various ways that the conditional and biconditional connectives are written in words.
For example, P =⇒ Q can be written as any of the following:

• P implies Q,

• if P then Q,
5Or further, see this story about the mathematician and philosopher Bertrand Russell.
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• P only if Q,

• P is sufficient for Q, or

• Q is necessary for P .

On the other hand, P ⇐⇒ Q can be written as any of the following:

• P if and only if Q,

• P iff Q,

• P and Q are equivalent, or

• P is necessary and sufficient for Q.

It is an important skill in mathematics to be able to clearly and concisely describe any
mathematical statements you are making. This comes with practice!

3.2 Proofs and Methods of Proof

Mathematics is built on theorems.

Definition 3.6. A theorem is a justified assertion that a statement of the form P =⇒ Q is
true. A proof is an argument that serves as justification for a theorem.

One can think about a theorem as being in the first row of the truth table for P =⇒ Q. That
is, if P is true, then Q is also true.

Here is a small example.

Theorem 3.7. The sum of two odd integers is even.

First, recall that everything in a proposition must be clearly defined. What does it mean
mathematically for an integer to be odd or even? Let us make this precise.

Definition 3.8. Let x be an integer. Then x is odd if it can be written in the form 2n + 1
for some n ∈ Z. On the other hand, x is even if it can be written in the form 2m for some
m ∈ Z.

How can we write Theorem 3.7 in the form P =⇒ Q? This involves separating our assumption
from what we are trying to prove. In this case, P is “a and b are odd integers,” with odd defined
as in Definition 3.8. We are trying to prove that their sum is even, so Q is “a + b is even,”
with even defined in Definition 3.8.

Here is a proof of Theorem 3.7.

Proof. Let a, b ∈ Z be odd. Then there exist integers n,m ∈ Z such that

a = 2n+ 1 and b = 2m+ 1.

Using the properties of the integers, we compute

a+ b = (2n+ 1) + (2m+ 1) = 2(n+m) + 2 = 2(n+m+ 1).

Since n and m are integers, n+m+ 1 is an integer. So by definition, a+ b is even.
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Here is a question: if P =⇒ Q, does Q =⇒ P? The answer is no in general. For example, if
it is raining, then I wear a jacket. But if I am wearing a jacket, that does not imply that it is
raining (I might just be cold, or maybe it is snowing!). However, there is another construction
that is logically equivalent to P =⇒ Q that is used continually in mathematics.

Definition 3.9. The converse of P =⇒ Q is Q =⇒ P . The contrapositive of P =⇒ Q is
¬Q =⇒ ¬P .

Theorem 3.10. The contrapositive of an implication is logically equivalent to the original
implication.

Proof. Exercise (Hint: compute the truth tables to see that they are identical).

The contrapositive is a powerful tool in mathematics. Depending on P and Q, it may be easier
to prove ¬Q =⇒ ¬P than P =⇒ Q in some cases. Since the two are logically equivalent,
proving ¬Q =⇒ ¬P is necessary and sufficient to prove P =⇒ Q. This method is called proof
by contrapositive.

Example 3.11. Let a, b ∈ Z. Consider the following statement:

“If a+ b is odd, then exactly one of a or b is odd.”

If we write this statement in the form P =⇒ Q, P is “a+ b is odd for a, b ∈ Z” and Q
is “exactly one of a or b is odd.” Then the contrapositive of the statement is:

“If the integers a and b are either both even or both odd, then a+ b is even.”

Thus, we can prove the statement P =⇒ Q in Example 3.11 by proving its contrapositive.
Since the hypothesis ¬Q is “the integers a and b are either both even or both odd,” when we
prove this statement it makes sense to consider these two cases separately. This is often called
a proof by cases.6

Proof. Let a and b be integers, and assume that a and b are either both even or both odd.

Case 1: Assume a and b are both even, then by definition there exist n,m ∈ Z such that
a = 2n and b = 2m. Then a+ b = 2n+ 2m = 2(n+m) is even by definition.

Case 2: Assume a and b are both odd, then by definition there exist k, ℓ ∈ Z such that
a = 2k+1 and b = 2ℓ+1. Then a+ b = (2k+1)+(2ℓ+1) = 2(k+ ℓ+1) is even by definition.

In both cases a+ b is even, so we are done.

Computing negations of propositions can be complicated, if the propositions are themselves
built from combinations of other propositions. The general De Morgan’s laws for logic are
helpful here.

Theorem 3.12. De Morgan’s laws Let P and Q be propositions. Then

1. ¬(P ∧Q) ⇐⇒ ¬P ∨ ¬Q, and

2. ¬(P ∨Q) ⇐⇒ ¬P ∧ ¬Q.

Proof. Exercise.

6Note that it is essential to consider all possible cases in your argument.
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Compare Theorem 3.12 to the De Morgan’s laws for sets from Proposition 1.9.

3.3 Quantifiers

When performing more complicated proofs, it can be cumbersome to write out everything in
full sentences. In fact, writing proofs concisely and using symbols such as =⇒ and ⇐⇒ tend
to make a proof more clear to the reader. Quantifiers are symbols that can be used to further
clarify proofs.

Definition 3.13. The universal quantifier ∀ means “for all.” The existential quantifier
∃ means “there exists.”

For instance, we can rewrite the definition of a surjective mapping f : A → B as: ∀b ∈ B,
∃a ∈ A such that f(a) = b. Here are a few more examples.

English Logic
Every cloud has a silver lining. ∀ clouds, ∃ a silver lining.
For every pair of positive real numbers, there
is an integer whose product with the first is
greater than the second.

∀x, y ∈ R>0, ∃n ∈ Z such that nx > y.

Every positive integer can be written as the
sum of the squares of four integers.

∀n ∈ N, ∃a, b, c, d ∈ Z such that n = a2 +
b2 + c2 + d2.

In some cases, the English version of a statement might be more clear than the version written
with quantifiers. Regardless of how you choose to write your proofs on problem sets, the most
important thing is that the reader can understand your proof fully from what is written (or
typed) on the page.
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