
More Model Theory Notes
Miscellaneous information, loosely organized.

1. Kinds of Models

A countable homogeneous model M is one such that, for any partial elementary map
f : A → M with A ⊆ M finite, and any a ∈ M , f extends to a partial elementary map
A ∪ {a} → M . As a consequence, any partial elementary map to M is extendible to an
automorphism of M. Atomic models (see below) are homogeneous.

A prime model of T is one that elementarily embeds into every other model of T of the same
cardinality. Any theory with fewer than continuum-many types has a prime model, and if a
theory has a prime model, it is unique up to isomorphism. Prime models are homogeneous.
On the other end, a model is universal if every other model of its size elementarily embeds
into it.

Recall a type is a set of formulas with the same tuple of free variables; generally to be
called a type we require consistency. The type of an element or tuple from a model is all
the formulas it satisfies. One might think of the type of an element as a sort of identity
card for automorphisms: automorphisms of a model preserve types. A complete type is the
analogue of a complete theory, one where every formula of the appropriate free variables or
its negation appears. Types of elements and tuples are always complete. A type is principal
if there is one formula in the type that implies all the rest; principal complete types are
often called isolated. A trivial example of an isolated type is that generated by the formula
x = c where c is any constant in the language, or x = t(c̄) where t is any composition of
appropriate-arity functions and c̄ is a tuple of constants. In the language of algebraically
closed fields, the formula p(x) = 0, for p a polynomial with coefficients in Q, isolates a type
– complete types may hold of multiple elements.
Omitting types theorem (Henkin, Keisler). If T is a countable, complete theory and
Γ(x̄) is a type that is not principal with respect to T , then T has a model that omits Γ (i.e.,
does not realize it).

An atomic model is an extreme example of this: it omits all non-principal types. If
the types of elements of models of a theory T are always principal (a.k.a. isolated), T is
ℵ0-categorical, and conversely (Ryll-Nardjewski). If M and N are both countable atomic
models of T they must be isomorphic. If the complete theory T has infinite models, then
a countable model of T is prime if and only if it is atomic. The prime to atomic direction
boils down to the omitting types theorem: a model can’t embed into anything that realizes
more types that it does. The atomic to prime direction is a little more complicated. Note
that the restriction to countability is important throughout this paragraph!

At the opposite end is a saturated model: a countable model M of a complete theory T
is saturated if everyM-consistent 1-type Γ(x) with parameters from M is realized inM. A
complete theory T has a countably saturated model if and only if for every n ∈ N, T has
countably many n-types. If M and N are both countable saturated models of T they must
be isomorphic (this holds also for larger cardinalities). A corollary to those two results is
that any complete theory with only countably many nonisomorphic countable models must
have a countable saturated model. In contrast to the prime/atomic connection, universal
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models are not necessarily saturated. Saturated models are those that are universal and
homogeneous.

Examples: an atomic model may be built from any other model by extending the language
and theory to name each element of the original model by a constant. Any model of a
categorical theory is prime, atomic, and saturated. Viewing R and the field of algebraic
numbers over Q as models of RCF (see below), R is saturated and the algebraic numbers
are atomic.

RCF is the theory of real closed fields, in the language of fields. It contains all the field
axioms, as well as the following:

• For each n, the formula ∀x1 . . . xn(x2
1 + · · · + x2

n 6= −1), distinguishing positive and
negative values.
• Closure under square root: ∀x∃y(x = y2 ∨ −x = y2).
• For each odd n, the formula ∀x1 . . . xn∃y(yn +x1y

n−1 + · · ·+xn−1y+xn = 0), closure
in the sense of every odd-degree polynomial having a real root.

More on all of this in §3.

2. Size of Models

Löwenheim-Skolem Theorem. if a countable theory T has an infinite model, then it has
models of all infinite cardinalities.

This is usually split into “downward” Löwenheim-Skolem, that every consistent theory in
a countable language has a countable or finite model, and ”upward”, that if a theory has
a model of infinite cardinality κ, then it has models of every cardinality ≥ κ. In fact the
downward version generalizes to say every consistent theory has a model of cardinality at
most that of the language. The two together give the more general full result that any T
with an infinite model has models of all infinite cardinalities greater than or equal to that of
its language.

The proof of the downward version in the countable case is a Henkin construction, where
the language is expanded by countably many constants called witnesses and the theory by
formulas giving specific witnesses for existential formulas: ∃vϕ(v) → ϕ(b) for appropriate
b. Care is taken to maintain consistency throughout. Then, in a step reminiscent of the
application of Zorn’s lemma to find a maximal algebraic closure of a field, we find a maximally
consistent expansion of our original theory. “Maximal” here means complete. We can
explicitly build a model for this expansion, letting its elements be the witnesses (modded
out by equivalence); this model with the constants removed from the language (the names
for the elements erased) is a model of our original theory. This is exactly the proof that
consistency implies satisfiability in the completeness theorem, also.

Upward Löwenheim-Skolem is more straightforward. Just as in the proof that nonstan-
dard models exist, we add a collection of sentences that collectively are only satisfiable by
a “bigger” model (one that is larger cardinality, rather than one that has nonstandard el-
ements) but for which finite subsets are satisfiable within a model of the original theory.
Compactness does the rest. This time we add as many constants as the cardinality we want,
and sentences that say each pair of distinct constants are nonequal.
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3. Number of Models

The theory of dense linear orders without endpoints is countably categorial: Q is it.
However, if you add in an infinite set of constants ci, i ∈ N, and axioms saying ci < ci+1 for
each i, you get a theory T (an Ehrenfeucht theory) that is still complete, but not categorical.
In fact, T has exactly three nonisomorphic models. In the first (call it A), the sequence ci
is cofinal in the model: it has no upper bound. In the second (call it B), the sequence has
an upper bound but not a least upper bound (it “converges to an irrational”). In the third
(call it C), the sequence has a least upper bound (it “converges to a rational”). We can’t
get at the distinction in a first-order way: we can’t quantify over all the constants, and so
we have no way to specify anything other than the sets {ci}, (−∞, ci), (ci,∞), and sets we
build from those via unions, intersections, and complements.

However, “upper bound of the ci” is a perfectly good type; it is just that it is a necessarily
infinite set of first-order formulas. However, “least upper bound of the c1” is not a type
because it is not expressible in a first-order way.

Model A is atomic and prime, realizing only the finite types x < c1, x = ci, and ci <
x < ci+1. Model B is saturated. Model C is not atomic or prime, and also not saturated,
since with a parameter b for the element to which the ci converge, we get the unrealized type
{ci < x < b : i ∈ N}. However, it is universal; model B may be embedded elementarily in
pieces, the part below the upper bound below b and the part above the upper bound above
b, skipping some interval [b, d] in between. Model C fails homogeneity; we should have an
automorphism from b (though without the name b)) onto any other point greater than all the
ci, but that cannot be done without either failing bijectivity or reversing order with another
upper bound, which is not allowed in an automorphism.

Similar tricks may be played to get theories with exactly 4, 5, 6, . . . non-isomorphic models.
However, exactly two nonisomorphic models is impossible (Vaught): if T has only countably
many countable models, one must be saturated. Any complete theory with a countable
saturated model also has a countable atomic model. If the saturated and atomic models
are the same, then T is countably categorical. If not, the saturated model M realizes some
non-principal type, tp(b̄) for some b̄ a tuple from M . Expand L by adding constants for
each of the elements of b̄, and expand T to T ′ = Th(M) in the new language. The sketch
continues by using saturation ofM to show T ′ can have only one model up to isomorphism,
and then use the non-categoricity of T to get non-categoricity of T ′ via Ryll-Nardjewski, for
a contradiction.

There is a relationship between categoricity and completeness:
 Los-Vaught Theorem. Let T be a countable theory with no finite models. If T is κ-
categorical for some infinite κ, then T is complete.

Exercise: prove this, using Löwenheim-Skolem.

4. Elimination of Quantifiers

A theory T in a language L admits elimination of quantifiers (has quantifier elimination
or some conglomerate) if for every L-formula ϕ(x̄) there is a quantifier-free formula ψ(x̄)
such that T |= ϕ↔ ψ. Note the equivalence is over T .
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Example 1. In Th(R), ϕ(a, b, c) := ∃x(ax2 + bx + c = 0) is equivalent, by the quadratic
formula, to the quantifier free formula

[(
a 6= 0 & b2 − 4ac > 0

)
∨ (a = 0 & (c = 0 ∨ b 6= 0))

]
.

This is not true in Th(Q).
Example 2. Th(Q) (as a dense linear order) admits elimination of quantifiers. In fact we
can semi-explicitly construct a quantifier-free equivalent for any given formula over Th(Q).
If the original formula has free variables x1, . . . , xn, the quantifier-free version will be a
disjunction of conjunctions of atomic formulas of the form xi = xj and xi < xj for i, j ≤ n.
Example 3. RCF does not admit quantifier elimination. In RCF, the < ordering is defin-
able, but requires quantifiers. This is actually the whole problem, in the sense that if we put
RCF in the language of ordered fields, it does admit elimination of quantifiers.
Example 4. More theories with quantifier elimination: vector spaces over a fieldK, atomless
Boolean algebras, algebraically closed fields. More theories without quantifier elimination:
number theory, ZFC.

Why do this? Quantifier-free formulas are easier. For example, in (N,+, ·, <), the
quantifier-free formulas are polynomial equations and inequalities. However, if we allow
a single existential quantifier, we can define all c.e. sets. Quantifier elimination has connec-
tions to embeddings, decidability proofs, and structure classification.

If L is a recursive language (that is, there is a recursive coding of L that allows opera-
tions like forming conjunctions and substituting terms for free variables to be recursive), the
decision problem for an L-theory T is finding an algorithm to determine whether T |= ϕ
for L-sentences ϕ, or showing there is no such algorithm. If the r.e. theory T has quantifier
elimination and the elimination function is recursive, then T is decidable, by cobbling to-
gether the elimination functions with the function that tells us whether each quantifier-free
sentence is provable or refutable form T (by finding a proof or a refutation). In fact, most
of the languages we care about are recursive, and most theories that admit elimination of
quantifiers do so in a way that gives a recursive elimination function.

A theory T is model complete if whenever M ⊆ N are both models of T , M � N (the
inclusion is an elementary embedding). Equivalently, every embedding between models of
T is elementary. Model completeness for T is equivalent to all L-formulas being equivalent
over T to universal formulas, and so is implied by elimination of quantifiers.

Quantifier elimination allows a simple description of all the complete extensions of a the-
ory, by reducing them to just the quantifier-free formulas. Because of this, it eases the
classification of models up to elementary equivalence.

Elimination of quantifiers is a place where we see the interaction between syntax and
semantics, or in other words between formulas and models. If T has elimination of quantifiers
andM,N ,B are substructures of models of T such thatM embeds in N by f and in B by
g, where these embeddings are not necessarily elementary, then there is a substructure D of
a model of T such that N and B embed into D via some maps h1, h2, respectively, and the
following diagram commutes.
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Less purely model-theoretic is the following:
Suppose for all quantifier-free ϕ(v̄, w) and allM,N |= T sharing some common substruc-

ture A, if ā ∈ A and b ∈ M are such that M |= ϕ(ā, b), there is some c ∈ N such that
N |= ϕ(ā, c). Then T admits elimination of quantifiers.

5. Skolemization

Skolem’s goal was to prove we don’t need uncountability (he proved the existence of a
countable model of ZFC). His method was to add functions to a language L, based on a
theory T , such that any substructure of a modelM of T that is closed under those functions
is an elementary substructure of M. Then, prove a countable such substructure exists.
These functions are now called Skolem functions and have other uses than proving existence
of countable models.
Definition. A Skolem function for an L-formula ϕ(v, w̄) is a function fϕ such that T |=
∀w̄((∃vϕ(v, w̄) → ϕ(fϕ(w̄), w̄)). T has built-in Skolem functions if for every ϕ there is such
an fϕ in T . We may also call such a T a Skolem theory.

As Hodges says, “in a state of nature there are very few Skolem theories.” However, they
live “over” all our ordinary theories.
Definition. An expansion of a model M |= T to a model M′ |= T ′, T ⊆ T ′, adds no new
elements and does not change interpretations of elements of T , but adds interpretations for
the functions, relations, and constants of T ′ − T . If we ignore those interpretations in M′

we get back toM, and call it a reduct ofM′. A conservative extension of the L-theory T is
an L′-theory T ′, T ⊆ T ′ and L ⊆ L′, such that every M |= T has an expansion to a model
M′ |= T ′.

Theorem. Every theory T has a conservative extension T ′ with built-in Skolem functions.
Further, we can choose the language L′ of T ′ such that |L′| = min{|L|,ℵ0}.

We call T ′ a Skolemization of T , or sometimes the (iterated) Skolem expansion.
Proof. We build a sequence of languages L = L0 ⊆ L1 ⊆ . . ., and Li theories Ti such that
T = T0 ⊆ T1 ⊆ . . ..

Given Li, let Li+1 = Li ∪ {fϕ : ϕ(v, w1, . . . , wn) an L-function, n ≥ 1}, where fϕ is an n-
ary function symbol. For each Li-formula ϕ(v, w̄), let Ψϕ be the sentence ∀w̄((∃vϕ(v, w̄) →
ϕ(fϕ(w̄), w̄)), and let Ti+1 = Ti ∪ {Ψϕ : ϕ an Li-formula}.

Now suppose M |= Ti. To interpret the function symbols of Li+1 − Li, let c be some
fixed element of M. If ϕ(v, w̄) is an Li-formula, with w̄ an n-tuple, we can find a function
g : Mn → M such that if ā ∈ Mn and Xā := {b ∈ M : M |= ϕ(b, ā)} is nonempty, then
g(ā) ∈ Xā, and if Xā = ∅, then g(ā) = c. We may then interpret fϕ as g and haveM |= Ψϕ.

Let L′ =
⋃

i Li and T ′ =
⋃

i Ti. If ϕ(v, w̄) is an L′-formula, it is an Li-formula for some
i, and hence Ψϕ is a sentence of Ti+1 and T ′ has built-in Skolem functions. Iteration of the
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model expansion shows for any M |= T was can interpret the symbols of L′ − L to make
M |= T ′. �

The Skolemization of T is model-complete, as defined in §4. Existential quantifiers may be
replaced by Skolem functions, making every L′-formula T ′-equivalent to a universal formula.

By adding something slightly stronger than Skolem functions we can get the following:
Theorem. Every theory T has a conservative extension T ′ which admits elimination of
quantifiers.
Proof (sketch). For each formula ϕ(x̄) of L, add a new relation symbol (a Skolem relation)
Rϕ(x̄) to L′ and the axiom ∀x̄(ϕ(x̄) ↔ Rϕ(x̄)) to T ′. Show that models can be expanded
to interpret the Skolem relations. Finally, take any ϕ′(x̄) in L′, replace the Skolem relations
with the formulas they match to get a formula ϕ(x̄) of L, and note that it is T ′-equivalent
to Rϕ(x̄) in L′, so T ′ admits elimination of quantifiers. �
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