Dartmouth College

Mathematics 101 Homework 5 (due Wednesday, October 31)

- 1. For $n \geq 3$, characterize the center of the symmetric group S_n .
- 2. Show that for $n \ge 5$, the only normal subgroups of S_n are $\{e\}$, A_n , and S_n . Use this to give an alternate proof to Lang's that S_n is not solvable for $n \ge 5$. This fact is key in showing that the general polynomial of degree $n \ge 5$ is not solvable by radicals.
- 3. For p and q distinct primes, show that any group of order p^2q is solvable.
- 4. Semidirect products. We shall show in class that $Aut(\mathbb{Z}_n) \cong \mathbb{Z}_n^{\times}$.
 - (a) Suppose that H_1 , H_2 and K are groups, $\sigma : H_1 \to H_2$ is an isomorphism, and $\psi : H_2 \to Aut(K)$ a homomorphism, so that $\varphi = \psi \circ \sigma : H_1 \to Aut(K)$ is also a homomorphism. Show that $K \rtimes_{\varphi} H_1 \cong K \rtimes_{\psi} H_2$.
 - (b) Suppose that H and K are groups and φ, ψ : H → Aut(K) are monomorphisms with the same image in Aut(K). Show that there exists a σ ∈ Aut(H) such that ψ = φ ∘ σ.
 - (c) Suppose that H and K are groups, $\varphi, \psi : H \to Aut(K)$ are monomorphisms, and Aut(K) is finite and cyclic. Show that φ and ψ have the same image in Aut(K).
 - (d) Let p < q be primes with $p \mid (q-1)$. Let H and K be cyclic groups of order p and q respectively. Let $\varphi, \psi : H \to Aut(K)$ be nontrivial homomorphisms. Observing that Aut(K) is cyclic, show that $K \rtimes_{\varphi} H \cong K \rtimes_{\psi} H$.
- 5. Let p < q be primes, and let G be a group of order pq. We know from class that $G \cong \mathbb{Z}_q \rtimes_{\varphi} \mathbb{Z}_p$ for some $\varphi : \mathbb{Z}_p \to Aut(\mathbb{Z}_q)$. By analyzing all possible φ , find (up to isomorphism) all groups of order pq. If p = 2, describe them without using semidirect products.