# Dartmouth College 

Mathematics 101
Homework 5 (due Wednesday, October 31)

1. For $n \geq 3$, characterize the center of the symmetric group $S_{n}$.
2. Show that for $n \geq 5$, the only normal subgroups of $S_{n}$ are $\{e\}, A_{n}$, and $S_{n}$. Use this to give an alternate proof to Lang's that $S_{n}$ is not solvable for $n \geq 5$. This fact is key in showing that the general polynomial of degree $n \geq 5$ is not solvable by radicals.
3. For $p$ and $q$ distinct primes, show that any group of order $p^{2} q$ is solvable.
4. Semidirect products. We shall show in class that $\operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong \mathbb{Z}_{n}^{\times}$.
(a) Suppose that $H_{1}, H_{2}$ and $K$ are groups, $\sigma: H_{1} \rightarrow H_{2}$ is an isomorphism, and $\psi: H_{2} \rightarrow \operatorname{Aut}(K)$ a homomorphism, so that $\varphi=\psi \circ \sigma: H_{1} \rightarrow \operatorname{Aut}(K)$ is also a homomorphism. Show that $K \rtimes_{\varphi} H_{1} \cong K \rtimes_{\psi} H_{2}$.
(b) Suppose that $H$ and $K$ are groups and $\varphi, \psi: H \rightarrow A u t(K)$ are monomorphisms with the same image in $\operatorname{Aut}(K)$. Show that there exists a $\sigma \in \operatorname{Aut}(H)$ such that $\psi=\varphi \circ \sigma$.
(c) Suppose that $H$ and $K$ are groups, $\varphi, \psi: H \rightarrow A u t(K)$ are monomorphisms, and $\operatorname{Aut}(K)$ is finite and cyclic. Show that $\varphi$ and $\psi$ have the same image in $\operatorname{Aut}(K)$.
(d) Let $p<q$ be primes with $p \mid(q-1)$. Let $H$ and $K$ be cyclic groups of order $p$ and $q$ respectively. Let $\varphi, \psi: H \rightarrow \operatorname{Aut}(K)$ be nontrivial homomorphisms. Observing that $\operatorname{Aut}(K)$ is cyclic, show that $K \rtimes_{\varphi} H \cong K \rtimes_{\psi} H$.
5. Let $p<q$ be primes, and let $G$ be a group of order $p q$. We know from class that $G \cong \mathbb{Z}_{q} \rtimes_{\varphi} \mathbb{Z}_{p}$ for some $\varphi: \mathbb{Z}_{p} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{q}\right)$. By analyzing all possible $\varphi$, find (up to isomorphism) all groups of order $p q$. If $p=2$, describe them without using semidirect products.
