Problem W2.1. Let $\phi: V \to W$ be an F-linear map, and let $\phi^*: W^* \to V^*$ be the dual map, defined via pullback. Show that

$$\text{img } \phi^* = \text{ann}(\ker \phi).$$

Solution. We give a direct proof with two containments to show off the key ideas here. For the containment (\subseteq), if $f \in \text{img } \phi^*$, then there exists $g \in W^*$ such that $f = g\phi$; if $x \in \ker \phi$ then $f(x) = g(\phi(x)) = 0$, so $f \in \text{ann}(\ker \phi)$.

Now the other containment (\supseteq). Let $f \in \text{ann}(\ker \phi) \subseteq V^*$; we seek $g \in W^*$ such that $f = g\phi = \phi^* g \in \text{img } \phi^*$. For $y \in \text{img } \phi$, choose $x \in V$ such that $\phi(x) = y$ and define $g(y) = f(x)$; this is well-defined, because if $x' \in V$ also has $\phi(x') = y$, then $x - x' \in \ker \phi$ and thus $f(x) = f(x' + (x - x')) = f(x') + f(x - x') = f(x')$ since $f \in \text{ann}(\ker \phi)$. Therefore $f(x) = g(\phi(x))$ for all $x \in V$ by construction. We extend g to all of W by choosing a complement X to $\ker \phi$ in W, so $W = \text{img } \phi \oplus X$, and extending by zero to X. Thus $g \in W^*$ and we already showed that $f = g\phi$.

Problem W2.2. Let V be a finite-dimensional vector space over a field F, and let W_1, W_2 be subspaces.

(a) Prove that $W_1 = W_2$ if and only if $\text{ann}(W_1) = \text{ann}(W_2)$.

(b) Show $\text{ann}(W_1 + W_2) = \text{ann}(W_1) \cap \text{ann}(W_2)$ and $\text{ann}(W_1 \cap W_2) = \text{ann}(W_1) + \text{ann}(W_2)$.

For a heightened sense of self-satisfaction, you could make it clear in your argument where you actually use that V is finite-dimensional. Which of the statements are still true when V is infinite-dimensional?

Solution. For (a), the implication (\Rightarrow) is immediate, so we prove (\Leftarrow). From $\text{ann}(W_1) = \text{ann}(W_2)$ we get $\text{ann}(\text{ann}(W_1)) = \text{ann}(\text{ann}(W_2))$. By daily homework 5.1, we have $\text{ann}(\text{ann}(W)) = \text{ev}(W)$ for a subspace W where $\text{ev}: V \xrightarrow{\sim} V^*$ is the evaluation isomorphism (here is where we use that V is finite-dimensional!), so we have $\text{ev}(W_1) = \text{ev}(W_2)$. Since ev is an isomorphism, this gives $W_1 = W_2$. The equality 5.1 uses the finite-dimensionality in a key respect (otherwise, we only get a containment), so this argument does not work in the infinite-dimensional case. Here is an argument that does, via contrapositive: start with a basis of $W_1 \cap W_2$ and extend to a basis β_1 of W_1. If $W_1 \neq W_2$, there exists $w_2 \notin W_1$ so $\beta_1 \cap \{w_2\}$ is linearly independent, and we can extend this to a basis β for V. We define $f(x) = 0$ for $x \in \beta_1$, $f(w_2) = 1$, and extend f by zero on the remaining elements of β. Then $f \in \text{ann}(W_1)$ but $f \notin \text{ann}(W_2)$, so $\text{ann}(W_1) \neq \text{ann}(W_2)$.

For (b), we begin with the first statement. For (\supseteq), if $f \in \text{ann}(W_1 + W_2)$ then for all $w_1 \in W_1$ we have $f(w_1) = f(w_1 + 0) = 0$ and similarly with w_2 so $f \in \text{ann}(W_1) \cap \text{ann}(W_2)$. Conversely, if $f \in \text{ann}(W_1) \cap \text{ann}(W_2)$, then $f(w_1 + w_2) = f(w_1) + f(w_2) = 0$ for all $w_1 \in W_1$ and $w_2 \in W_2$, so $f \in \text{ann}(W_1 + W_2)$. This statement uses nothing about finite dimensionality. For the second statement, by (a) it is sufficient to prove the equality after applying annihilators, so we can prove

$$\text{ev}(W_1 \cap W_2) = \text{ann}(\text{ann}(W_1 \cap W_2)) = \text{ann}(\text{ann}(W_1) + \text{ann}(W_2)).$$

The latter, by (a) but plugging in $\text{ann}(W_i)$ for W_i, is

$$\text{ann}(\text{ann}(W_1) + \text{ann}(W_2)) = \text{ann}(\text{ann}(W_1)) \cap \text{ann}(\text{ann}(W_2)) = \text{ev}(W_1) \cap \text{ev}(W_2).$$

So we need to assert that the evaluation map preserves intersections, and this is a general property of injective maps (check!). It is also possible to prove the second statement directly, the hard part is to show the inclusion (\subseteq), and for that part here is a sketch: with $f \in \text{ann}(W_1 \cap W_2)$ and divide up f into f_1 on W_1 and f_2 on a complement of $W_1 \cap W_2$ in W_2, extending by zero. This alternate proof does not use finite-dimensionality (even though the proof above does!).
Problem W2.3. Let V, W be F-vector spaces, let $v_1, \ldots, v_n \in V$ be linearly independent, and let $w_1, \ldots, w_n \in W$ be arbitrary. Suppose that
\[
\sum_{i=1}^n v_i \otimes w_i = 0 \in V \otimes_F W.
\]
Show that $w_i = 0$ for all $i = 1, \ldots, n$. Conclude that $v \in V$ and $w \in W$ have $v \otimes w = 0$ if and only if $v = 0$ or $w = 0$.

Solution. For a proof using the universal property (in terms of bilinear forms), see Theorem 14.5 in Roman.

Here is a direct argument. We may replace V with $\text{span}(\beta)$ where $\beta = \{v_1, \ldots, v_n\}$ and W similarly, so we may assume that V, W are finite-dimensional. By this reduction, we may also assume that β is a basis for V. Choose a basis γ for W. Then under the “crutch” isomorphism, we have
\[
h : V \otimes_F W \sim \rightarrow \text{Mat}_{n \times m}(F)
\]
extended by linearity (multiplying $n \times 1$ by $1 \times m$ to get $n \times m$). Under the coordinate isomorphism $V \rightarrow F^n$ by $v \mapsto [v]_\beta$ we have $[v_i]_\beta = e_i$ the standard basis elements of F^n. In the crutch map h, multiplying by these standard basis elements just records them in the corresponding row: that is to say, $h(\sum_{i=1}^n v_i \otimes w_i)$ is the $n \times m$-matrix whose n rows are given by $[w_i]_\gamma^T$. We are given that this matrix is zero! So all the rows are zero, so $[w_i]_\gamma = 0$ for all i and so $w_i = 0$ for all i.

The second statement is just writing out the special case $n = 1$: if $v = 0$ we are done, otherwise v is linearly independent and applying the first statement gives $w = 0$.

Problem W2.4. In class, we showed that the tensor product is characterized by a universal property. Perhaps the simplest situation of a universal property is the following.

Let X, Y be sets. The cartesian product $X \times Y$ has its two projection maps:
\[
\begin{array}{ccc}
X \times Y & \sim \rightarrow & X \\
\pi_X & & \pi_Y \\
\downarrow & & \downarrow \\
Y & & Y
\end{array}
\]

Show that the product $X \times Y$ is universal in this respect: for every set Z and maps
\[
\begin{array}{ccc}
Z & \sim \rightarrow & X \\
f_X & & f_Y \\
\downarrow & & \downarrow \\
Y & & Y
\end{array}
\]
of sets, there exists a unique map $h : Z \rightarrow X \times Y$ such that the diagram
\[
\begin{array}{ccc}
Z & \sim \rightarrow & X \times Y \\
h & & \pi_X \\
\downarrow & & \downarrow \\
X & & Y
\end{array}
\]
commutes.

Solution. Let Z be a set with maps as above. We define $h : Z \rightarrow X \times Y$ by $h(z) = (f_X(z), f_Y(z))$. Then $\pi_X(h(z)) = f_X(z)$ and similarly with Y, so the diagram commutes. The map h is unique, because if h' fits in the diagram with $h'(z) = (x, y)$, then $f_X(z) = \pi_X(h'(z)) = x$ and similarly $y = f_Y(z)$.

Problem W2.5. Let F be a field, let V be a finite-dimensional F-vector space, and let $T : V \times V \rightarrow F$ be a nondegenerate symmetric bilinear form. Let $W \subseteq V$ be a subspace.
Define
$$W^\perp = \{ v \in V : T(v, W) = 0 \} = \{ v \in V : T(v, w) = 0 \text{ for all } w \in W \}.$$

(a) Show that the map
$$V \to V^*, \quad v \mapsto T_v = T(v, -)$$
maps W^\perp isomorphically to $\text{ann}(W)$.

(b) Deduce that $\dim V = \dim W + \dim W^\perp$.

(c) Suppose that $T|_{W \times W}$ is nondegenerate (accordingly, we say that W is a nondegenerate subspace under T). Show that $V = W \oplus W^\perp$. In this case, we say W^\perp is the orthogonal complement of the nondegenerate subspace W.

(d) Define the orthogonal projection onto W (as a linear operator on V). Let $V = \mathbb{R}^3$ have the standard inner product and let
$$W = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0 \}.$$
Compute the matrix of the orthogonal projection onto W with respect to the standard basis.

Solution. For part (a), the map $V \to V^*$ is linear, injective by definition that the pairing is nondegenerate, so it is an isomorphism. So it is enough to show that the image of W^\perp is $\text{ann}(W)$. But $v \in W^\perp$ if and only if $T(v, w) = T_v(w) = 0$ for all $w \in W$ if and only if $T_v \in \text{ann}(W)$.

For part (b), we showed in class that $\dim \text{ann}(W) = V - \dim W$, so by (a) $\dim W^\perp = V - \dim W$ as well.

For part (c), we always have $W + W^\perp \subseteq V$. The sum is direct because if $w \in W \cap W^\perp$ then $T(w, w') = 0$ for all $w' \in W$, so since $T|_{W \times W}$ is nondegenerate, we must have $w = 0$. The containment $W \oplus W^\perp = V$ is an equality by dimensions: $\dim (W \oplus W^\perp) = \dim W + \dim W^\perp = \dim V$ by (b).

For (d), the answer is
$$\frac{1}{2} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$ One efficient way to get this is to take the basis $(1, -1, 0), (0, 1, -1)$ for W, extend to a basis β of V by adding $(1, 1, 1) \in W^\perp$, so $A = [\phi]_\beta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$; to get the matrix in the standard basis, conjugate by the change of basis matrix
$$P = [\text{id}]_\beta^\beta = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$
to get
$$[\phi]_\beta = P A P^{-1} = [\text{id}]_\beta^\beta [\phi]_\beta [\text{id}]_\beta^\beta.$$

3