MATH 101: GRADUATE LINEAR ALGEBRA

WEEKLY HOMEWORK #3 SOLUTIONS

Problem W3.1. Let V, W be finite-dimensional inner product spaces.

(a) Let $\phi: V \rightarrow V$ be a self-adjoint linear operator. Recall that $\psi: V \rightarrow V$ is positive semidefinite if $\langle \psi(x), x \rangle \geq 0$ whenever $x \neq 0$. Show that ϕ is positive semidefinite if and only if all the eigenvalues of ϕ are nonnegative.

(b) Now let $\phi: V \rightarrow W$ be linear. Show that $\phi^* \phi$ and $\phi \phi^*$ are positive semidefinite.

(c) Show that $\text{rk}(\phi^* \phi) = \text{rk}(\phi \phi^*) = \text{rk}(\phi)$.

Solution. For (a), since V is self-adjoint, there is an orthonormal basis $\beta = \{v_i\}_i$ of V of eigenvectors for V with corresponding eigenvalues λ_i. If ϕ is positive semidefinite, then

$$\langle \phi(v_i), v_i \rangle = \lambda_i \|v_i\|^2 \geq 0$$

so $\lambda_i \geq 0$ for all i; conversely, if $\lambda_i \geq 0$ for all i, then for all $x = \sum_i a_i v_i \in V$ we have

$$\langle \phi(x), x \rangle = \sum_{i,j} a_i \overline{a_j} \lambda_i \langle v_i, v_j \rangle = \sum_i \lambda_i |a_i|^2 \geq 0$$

for all i, the latter because $\{v_i\}_i$ is orthonormal so $\langle v_i, v_j \rangle = \delta_{ij}$.

For (b), we noted in class that $\phi^* \phi$ and $\phi \phi^*$ are self-adjoint. We have

$$\langle \phi^* \phi(x), x \rangle = \langle \phi(x), \phi(x) \rangle \geq 0$$

for all $x \in V$, so $\phi^* \phi$ is positive semidefinite; a similar argument works for $\phi \phi^*$.

For (c), we keep the notation from (b) that $\phi: V \rightarrow W$ is linear. We already showed in daily homework 8.1 that $\ker \phi^* \phi = \ker \phi$; rank-nullity applies, so $\text{rk}(\phi^* \phi) = \text{rk}(\phi)$. We also showed in class that $\text{rk}(\phi) = \text{rk}(\phi^*)$ (strictly speaking, only for the dual not the adjoint, but these are related by a change-of-basis); so applying the previous with ϕ^* in place of ϕ gives the other equality.

Problem W3.2. Let $V = \mathbb{R}^n$ be the standard inner product space. Let

$$S = \{x \in V : \|x\|^2 = 1\}$$

be the $(n-1)$-dimensional sphere in V.

(a) Suppose that $x, y \in S$ have $\langle x, y \rangle = 0$. Show that $\cos(t)x + \sin(t)y$ lies on S for all $t \in \mathbb{R}$.

(b) Let $\phi: V \rightarrow V$ be a self-adjoint linear map. By vector calculus, the function $x \mapsto \langle x, \phi(x) \rangle$ achieves a maximum at some point $p \in S$: briefly explain why. Let $y \in S$ satisfy $\langle p, y \rangle = 0$. Consider the function

$$f(t) = \langle \cos(t)p + \sin(t)y, \phi(\cos(t)p + \sin(t)y) \rangle.$$

Show that $\langle p, \phi(y) \rangle = 0$.

(c) Let $W = \text{span}\{p\}$. Show that W^\perp is ϕ-invariant and then conclude that W is ϕ-invariant. Conclude that p is an eigenvector!

(d) Parlay the argument of (c) into an inductive proof that V has an orthonormal basis of vectors that are eigenvectors for ϕ.

[Note: This argument inductively gives a different “physical” or “geometric” proof that ϕ has an orthonormal basis of eigenvectors: we find an eigenvector by maximizing ϕ on the sphere!]

Solution. For (a), we see that since x and y are perpendicular, so are their scalar multiples, hence by Pythagoras

$$\| \cos(t)x + \sin(t)y \|^2 = |\cos(t)|^2 \|x\|^2 + |\sin(t)|^2 \|y\|^2 = |\cos(t)|^2 + |\sin(t)|^2 = 1.$$
For (b), the maximum exists by the extreme value theorem, because \(f \) is continuous and \(S \) is closed and bounded. We have

\[
f(t) = \langle \cos(t)p + \sin(t)y, \phi(\cos(t)p + \sin(t)y) \rangle \\
= \cos^2(t) \langle p, \phi(p) \rangle + \cos(t) \sin(t) \langle p, \phi(y) \rangle + \langle y, \phi(p) \rangle + \sin^2(t) \langle y, \phi(y) \rangle
\]

so that

\[
f'(t) = -2 \cos(t) \sin(t) \langle p, \phi(p) \rangle + \\
(\cos^2(t) - \sin^2(t)) \langle p, \phi(y) \rangle + 2 \cos(t) \sin(t) \langle y, \phi(y) \rangle
\]

and

\[
f'(0) = \langle p, \phi(y) \rangle + \langle y, \phi(p) \rangle = 0
\]

because \(p \) is a maximum obtained at \(t = 0 \) and so is a critical point of the differentiable function \(f \). If \(\phi = \phi^* \), then

\[
\langle y, \phi(p) \rangle = \langle \phi^*(y), p \rangle = \langle \phi(y), p \rangle = \langle p, \phi(y) \rangle
\]

since our base field is real, and therefore \(\langle p, \phi(y) \rangle = 0 \).

For part (c), if \(x \in W^\perp \) then \(\langle p, x \rangle = 0 \) which by (b) implies \(\langle p, \phi(x) \rangle = 0 \) so \(\phi(x) \in W^\perp \) as claimed. Therefore \(W^\perp \) is \(\phi \)-invariant, and since \(V = W \oplus W^\perp \), \(W \) is also \(\phi \)-invariant (explicitly, if \(z \in W \) then \(\langle y, \phi(z) \rangle = 0 \) for all \(y \in W^\perp \) so \(\phi(z) \in (W^\perp)^\perp = W \). Since \(W \) is one-dimensional, we have \(\phi(p) = cp \) for some \(c \in \mathbb{R} \), which is to say, \(p \) is an eigenvector!

To prove (d), we note that the result holds trivially for the case \(n = 1 \); for general \(n \), choose \(p \in S \) and by (c) we have \(p \) is an eigenvector with eigenvalue \(c \). Restricting \(\phi \) to \(W^\perp \), which gives an operator since \(W^\perp \) is \(\phi \)-invariant, we have an \(n-1 \)-dimensional space so by induction, there exists a basis for \(W^\perp \) which consists of eigenvectors for \(\phi \). Since \(V = W \oplus W^\perp \), the union of this basis with \(p \) gives such a basis for \(V \); in this basis, \(\phi \) is diagonal.

Problem W3.3. In each part, let \(\phi: V \to V \) be the projection on the subspace \(W_1 \) along the subspace \(W_2 \), where \(V = W_1 \oplus W_2 \).

(a) Show that \(\phi \) is an orthogonal projection (i.e., \(W_2 = W_1^\perp \)) if and only if \(\|\phi(x)\| \leq \|x\| \) for all \(x \in V \).

*Hint: Let \(w_1 \in W_1 \) and \(w_2 \in W_2 \) be nonzero and \(c \in \mathbb{R} \), and let \(w = cw_1 + w_2 \). Show that
\[
2c \text{Re} \langle w_1, w_2 \rangle + \|w_2\|^2 \geq 0.
\]

If \(\langle w_1, w_2 \rangle \neq 0 \), derive a contradiction by a choice of \(c \); conclude that \(\langle w_1, w_2 \rangle = 0 \) for all \(w_1, w_2 \).

(b) What can you conclude if \(\phi \) is unitary? [So don’t confuse a projection that is orthogonal with an orthogonal projection!]

(c) Suppose that \(\phi \) is normal (over \(\mathbb{C} \)). Prove that \(\phi \) is an orthogonal projection.

Solution. For (a), we first prove \(\Rightarrow \). Let \(y \in V \) and write \(W = W_1 \). Since \(V = W \oplus W^\perp \) by previous homework, we can write uniquely \(y = u + z \), where \(u \in W \) and \(z \in W^\perp \), so then \(\phi(y) = u \). We compute that

\[
\|\phi(y)\|^2 = \langle \phi(y), \phi(y) \rangle = \langle u, u \rangle
\]

and

\[
\|y\|^2 = \langle y, y \rangle = \langle u + z, u + z \rangle = \langle u, u \rangle + \langle u, z \rangle + \langle z, u \rangle + \langle z, z \rangle.
\]

Since \(u \in W \) and \(z \in W^\perp \), \(\langle u, z \rangle = \langle z, u \rangle = 0 \). Therefore

\[
\|\phi(y)\|^2 = \|u\|^2 \leq \|u\|^2 + \|z\|^2 = \|y\|^2,
\]

the latter by the Pythagorean theorem. OK, we have used that twice now, so here’s the proof: in general, we have

\[
\|x \pm y\|^2 = \langle x \pm y, x \pm y \rangle \\
= \langle x, x \rangle \pm \langle x, y \rangle \pm \langle y, x \rangle + \langle y, y \rangle \\
= \|x\|^2 \pm \langle x, y \rangle + \langle y, x \rangle + \|y\|^2 \\
= \|x\|^2 \pm 2 \text{Re} \langle x, y \rangle + \|y\|^2
\]
so \(x, y \) are orthogonal if and only if \(\langle x, y \rangle = 0 \) if and only if
\[
\|x + y\|^2 = \|x\|^2 + \|y\|^2.
\]

Continuing with (a), we prove \((=)\). If \(\phi \) is the zero or identity operator, then the result is trivial. So suppose \(\phi \) is projection on \(W_1 \) along \(W_2 \), and let \(w_1 \in W_1 \) and \(w_2 \in W_2 \) be nonzero vectors, and let
\[
w = cw_1 + w_2 \quad \text{and} \quad c \in \mathbb{R}.
\]
Then
\[
\|cw_1\|^2 = \|\phi(w)\|^2 \leq \|w\|^2 = \langle w, w \rangle = \langle cw_1 + w_2, cw_1 + w_2 \rangle = \|cw_1\|^2 + 2c \Re \langle w_1, w_2 \rangle + \|w_2\|^2
\]
so
\[
0 \leq 2c \Re \langle w_1, w_2 \rangle + \|w_2\|^2.
\]
Assume for purposes of contradiction that \(\langle w_1, w_2 \rangle \neq 0 \). If \(\Re \langle w_1, w_2 \rangle = 0 \) then we are over \(F = \mathbb{C} \), replace \(w_2 \) by \(iw_2 \) so that \(\Re \langle w_1, iw_2 \rangle = -\Im \langle w_1, w_2 \rangle \neq 0 \). Then choose \(c < -\|w_2\|^2/\Re \langle w_1, w_2 \rangle \), and we have a contradiction. So \(\langle w_1, w_2 \rangle = 0 \) for all \(w_1, w_2 \), so \(\phi \) is an orthogonal projection.

For (b), if \(\phi \) is unitary, then \(\phi \) is invariant! So then \(\ker \phi = \{0\} = W_2 \) so \(W_1 = V \) and \(\phi \) is the identity.

Finally, part (c). Since \(\phi \) is a projection, it has only eigenvalues 0 and 1: if \(\phi \) is the projection on \(W_1 \) along \(W_2 \), then \(\phi(w_1) = w_1 \) for all \(w_1 \in W_1 \) and \(\phi(w_2) = 0 \) for all \(w_2 \in W_2 \). Since \(\phi \) is normal, there exists an orthonormal basis of eigenvectors of \(\phi \), so in particular there exists an orthonormal basis for \(W_1, W_2 \), respectively. But \(W_1 \) is orthogonal to \(W_2 \), so \(\phi \) is an orthogonal projection.

Problem W3.4. Let \(\phi, \psi : V \to V \) be normal operators on a finite-dimensional complex inner product space \(V \). Suppose that \(\phi \psi = \psi \phi \). Prove that there exists an orthonormal basis for \(V \) consisting of (simultaneous) eigenvectors for \(\phi \) and \(\psi \).

Solution. It is probably cleanest to work by induction on \(n = \dim V \). (Strictly speaking, we just need a notational device to keep track of eigenvalues, so this will generalize to a certain extent.)

Let \(\lambda \) be an eigenvalue of \(\phi \) (exists since \(\phi \) is normal) with eigenspace
\[
W = E_\lambda = \{ x \in V : \phi(x) = \lambda x \}
\]
for \(\phi \). Then visibly \(\phi(W) \subseteq W \): recall we say that \(W \) is \(\phi \)-invariant. But the commutativity condition also implies that \(W \) is \(\psi \)-invariant: if \(x \in W \) then
\[
\phi(\psi(x)) = \psi(\phi(x)) = \psi(\lambda x) = \lambda \psi(x)
\]
so we can consider \(\psi|_W : W \to W \) the restriction. Then \(\psi|_W \) is still normal, so there exists an orthonormal basis \(\beta_W = \{ w_1, \ldots, w_k \} \) of eigenvectors of \(\psi|_W \) for \(W \) (with some eigenvalues we do not know). But then of course \(\beta_W \) is also an orthonormal basis of eigenvectors for \(\phi|_W \), because they came from the eigenspace \(W = E_\lambda \). So we have a simultaneous basis of eigenvectors.

If \(W = V \), we are done; otherwise, we write \(V = W \oplus W^\perp \). As we have checked before, since \(W \) is \(\phi \)-invariant, so too is \(W^\perp \) and the same with \(\psi \), so by induction we find a simultaneous basis of eigenvectors for \(W^\perp \), and we add the eigenvectors in the previous paragraph to obtain a simultaneous basis of eigenvectors for \(V \).