Math 102 Foundations of Smooth Manifolds Fall 2011 Assignment 2 (Revised Oct. 7) Due October 12, 2011

- 1. (Lee 1-6) By identifying \mathbb{R}^2 with \mathbb{C} in the usual way, we can think of the unit circle as a subset of the complex plane. An *angle function* on a subset $U \subset S^1$ is a continuous function $\theta : U \to \mathbb{R}$ such that $e^{i\theta(p)} = p$ for all $p \in U$. Show that there exists an angle function θ on an open subset $U \subset S^1$ if and only if $U \neq S^1$. For any such angle function, show that (U, θ) is a smooth coordinate chart for S^1 with its standard smooth structure.
- 2. Use the previous result to show that S^1 is a Lie group.
- 3. (Lee 1-7) For $n \in \mathbb{N}$ we let \mathbb{CP}^n be the collection of 1-dimensional subspaces of the complex vector space \mathbb{C}^{n+1} . And let \sim be the equivalence relation on $\mathbb{C}^{n+1} \setminus \{(0, \ldots, 0)\}$ defined by $z \sim w$ if and only if there is a complex number $\lambda \in \mathbb{C}^*$ such that $z = \lambda w$. Let $\pi : \mathbb{C}^{n+1} \setminus \{(0, \ldots, 0)\} \to \mathbb{CP}^n$ be the quotient map. Show that \mathbb{CP}^n with the quotient topology is a compact 2n-dimensional topological manifold and demonstrate how to place a smooth structure on it in a manner that is analogous to what we did in the case of \mathbb{RP}^n .
- 4. Bootby III.5.7
- 5. Boothby IV.2.5
- 6. Boothby IV.2.6