Math 102
 Foundations of Smooth Manifolds
 Fall 2011
 Assignment 2 (Revised Oct. 7) Due October 12, 2011

1. (Lee 1-6) By identifying \mathbb{R}^{2} with \mathbb{C} in the usual way, we can think of the unit circle as a subset of the complex plane. An angle function on a subset $U \subset S^{1}$ is a continuous function $\theta: U \rightarrow \mathbb{R}$ such that $e^{i \theta(p)}=p$ for all $p \in U$. Show that there exists an angle function θ on an open subset $U \subset S^{1}$ if and only if $U \neq S^{1}$. For any such angle function, show that (U, θ) is a smooth coordinate chart for S^{1} with its standard smooth structure.
2. Use the previous result to show that S^{1} is a Lie group.
3. (Lee 1-7) For $n \in \mathbb{N}$ we let $\mathbb{C P}^{n}$ be the collection of 1-dimensional subspaces of the complex vector space \mathbb{C}^{n+1}. And let \sim be the equivalence relation on $\mathbb{C}^{n+1} \backslash\{(0, \ldots, 0)\}$ defined by $z \sim w$ if and only if there is a complex number $\lambda \in \mathbb{C}^{*}$ such that $z=\lambda w$. Let $\pi: \mathbb{C}^{n+1} \backslash\{(0, \ldots, 0)\} \rightarrow \mathbb{C P}^{n}$ be the quotient map. Show that $\mathbb{C P}^{n}$ with the quotient topology is a compact $2 n$-dimensional topological manifold and demonstrate how to place a smooth structure on it in a manner that is analogous to what we did in the case of $\mathbb{R} \mathbb{P}^{n}$.
4. Bootby III.5.7
5. Boothby IV.2.5
6. Boothby IV.2.6
