Complex Analysis Assignment 1 Sometime, 2008

1. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a path and $\Omega=\mathbb{C} \backslash \gamma^{*}$. In class we proved that the function Ind $_{\gamma}: \Omega \rightarrow \mathbb{C}$ defined by

$$
z \mapsto \frac{1}{2 \pi i} \int_{\gamma} \frac{1}{w-z} d w
$$

is integer-valued and concluded that it is constant on the conected components of Ω. To do this, however, requires that $I n d_{\gamma}$ be continuous. Prove this by appealing directly to the definition of continuity.
2. Suppose that $\gamma:[a, b] \rightarrow \mathbb{C}$ is a closed path with $0 \notin \gamma^{*}$. Prove that $\int_{\gamma} z^{n} d z=0$ for $n=-2,-3, \ldots$

Hint: Find antiderivatives.
3. Let $\Omega \subseteq \mathbb{R}^{2}$ be an open subset of the plane. Recall from multivariable calculus that the line integral of a vector field $\vec{F}: \Omega \rightarrow \mathbb{R}^{2}$ along a curve $\gamma:[a, b] \rightarrow \Omega$ is defined to be

$$
\int_{\gamma} F_{1} d x+F_{2} d y:=\int_{a}^{b}\left\langle\vec{F}\left(\gamma(t), \gamma^{\prime}(t)\right\rangle d t=\int_{a}^{b}\left(F_{1}(\gamma(t)) \gamma_{1}^{\prime}(t)+F_{2}(\gamma(t)) \gamma_{2}^{\prime}(t)\right) d t .\right.
$$

Let γ be the positively oriented circle of radius 1 centered at 0 .
(a) Let \vec{R} be the the vector field on $\mathbb{R}^{2} \backslash\{0\}$ given by $\vec{R}(x, y)=\left(\frac{x}{r^{2}}, \frac{y}{r^{2}}\right)$ where r is the radial distance fom the origin. Prove that the integral of \vec{R} along γ is zero.
(b) Let \vec{C} be the vector field on $\mathbb{R}^{2} \backslash\{0\}$ given by $\vec{C}(x, y)=\left(\frac{-y}{r^{2}}, \frac{x}{r^{2}}\right)$. Prove that the integral of \vec{C} along γ is 2π.
(c) The real and imaginary parts of $\operatorname{Ind} d_{\gamma}(0)$ can be expressed in terms of line integrals of vector fields along γ. What are these vector fields?
Hint: Write $\int_{\gamma} \frac{1}{z} d z$ as $\int_{0}^{1} \frac{1}{\gamma(t)} \gamma^{\prime}(t) d t$ and break down into real and imaginary parts.
(d) Explain geometrically why $\operatorname{Ind}_{\gamma}(0)$ is nonzero.

