COMPLEX ANALYSIS ASSIGNMENT 1 Sometime, 2008

1. Let $\gamma : [a,b] \to \mathbb{C}$ be a path and $\Omega = \mathbb{C} \setminus \gamma^*$. In class we proved that the function $Ind_{\gamma} : \Omega \to \mathbb{C}$ defined by

$$z \mapsto \frac{1}{2\pi i} \int_{\gamma} \frac{1}{w-z} dw$$

is integer-valued and concluded that it is constant on the conected components of Ω . To do this, however, requires that Ind_{γ} be continuous. Prove this by appealing directly to the definition of continuity.

2. Suppose that $\gamma : [a, b] \to \mathbb{C}$ is a closed path with $0 \notin \gamma^*$. Prove that $\int_{\gamma} z^n dz = 0$ for $n = -2, -3, \ldots$

Hint: Find antiderivatives.

3. Let $\Omega \subseteq \mathbb{R}^2$ be an open subset of the plane. Recall from multivariable calculus that the line integral of a vector field $\vec{F} : \Omega \to \mathbb{R}^2$ along a curve $\gamma : [a, b] \to \Omega$ is defined to be

$$\int_{\gamma} F_1 dx + F_2 dy := \int_a^b \langle \vec{F}(\gamma(t), \gamma'(t)) \rangle dt = \int_a^b (F_1(\gamma(t))\gamma_1'(t) + F_2(\gamma(t))\gamma_2'(t)) dt.$$

Let γ be the positively oriented circle of radius 1 centered at 0.

- (a) Let \vec{R} be the vector field on $\mathbb{R}^2 \setminus \{0\}$ given by $\vec{R}(x, y) = (\frac{x}{r^2}, \frac{y}{r^2})$ where r is the radial distance fom the origin. Prove that the integral of \vec{R} along γ is zero.
- (b) Let \vec{C} be the vector field on $\mathbb{R}^2 \setminus \{0\}$ given by $\vec{C}(x,y) = (\frac{-y}{r^2}, \frac{x}{r^2})$. Prove that the integral of \vec{C} along γ is 2π .
- (c) The real and imaginary parts of Ind_γ(0) can be expressed in terms of line integrals of vector fields along γ. What are these vector fields?
 Hint: Write ∫_γ ¹/_zdz as ∫₀¹ ¹/_{γ(t)} γ'(t)dt and break down into real and imaginary parts.
- (d) Explain geometrically why $Ind_{\gamma}(0)$ is nonzero.