
How Many Borel Sets are There?

Object. This series of exercises is designed to lead to the conclusion that if BR is the σ-

algebra of Borel sets in R, then

Card(BR) = c := Card(R).

This is the conclusion of problem 4. As a bonus, we also get some insight into the “structure”

of BR via problem 2. This just scratches the surface. If you still have an itch after all this,

you want to talk to a set theorist. This treatment is based on the discussion surrounding

[1, Proposition 1.23] and [2, Chap. V §10 #31].

For these problems, you will definitely want to have a close look at [1, §0.4] on well
ordered sets. Note that by [1, Proposition 0.18], there is an uncountable well ordered set
Ω such that for all x ∈ Ω, Ix := { y ∈ Ω : y < x } is countable. The elements of Ω are
called countable ordinals. We let 1 := inf Ω. If x ∈ Ω, then x + 1 := inf{ y ∈ Ω : y > x } is
called the immediate successor of x. If there is a z ∈ Ω such that z + 1 = x, then z is called
the immediate predecessor of x. If x has no immediate predecessor, then x is called a limit

ordinal.1

1. Show that Card(Ω) ≤ c. (This follows from [1, Propositions 0.17 and 0.18]. Alternatively,
you can use transfinite induction to construct an injective function f : Ω → R.)2

ANS: Actually, this follows almost immediately from Folland’s Proposition 0.17. By the Well
Ordering Principle (Theorem 0.3 in Folland), we can assume that R is well ordered. Then, with this
order, R cannot be isomorphic to an initial segment of Ω because R is uncountable and every initial
segment in Ω is countable. Therefore Ω is either isomorphic to R or order isomorphic to an initial
segment in R. In either case, Card(Ω) ≤ Card(R) := c.

2. If X is a set, let P(X) be the set of subsets of X — i.e., P(X) is the power set of
X. Let E ⊂ P(X). The object of this problem is to give a “concrete” description of the
σ-algebra M (E ) generated by E . (Of course, we are aiming at describing the Borel sets in
R which are generated by the collection E of open intervals.) For convenience, we assume
that ∅ ∈ E .

1The set of countable ordinals has a rich structure. We let 2 := 1 + 1, and so on. The set {n ∈ N } ⊂ Ω
is countable, and so has a supremum ω (see [1, Proposition 0.19]). Then there are ordinals ω + 1, ω + 2, . . . ,
2ω, 2ω + 1,. . . , ω2, ω2 + 1, . . . , ωω, and so on.

2The issue of whether or not Card(Ω) = c is the continuium hypothesis, and so is independent of the usual
(ZFC) axioms of set theory.
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Let

E
c := {Ec : E ∈ E } and Eσ = {

∞
⋃

i=1

Ei : Ei ∈ E }.

(Note, I just mean that Eσ is the set of sets formed from countable unions of elements of E .
Since ∅ ∈ E , E ⊂ Eσ.)

We let F1 := E ∪ E c. If x ∈ Ω, and if x has an immediate predecessor y, then we set

Fx := (Fy)σ ∪
(

(Fy)σ

)c
.

If x is a limit ordinal, then we set

Fx :=
⋃

y<x

Fy.

We aim to show that
M (E ) =

⋃

x∈Ω

Fx (†)

(a) Observe that F1 ⊂ M (E ).

(b) Show that if Fy ⊂ M (E ) for all y < x, then Fx ⊂ M (E ). Then use transfinite
induction to conclude that Fx ⊂ M (E ) for all x ∈ Ω.

(c) Show that the right-hand side of (†) is closed under countable unions.

(d) Conclude that
⋃

x∈Ω Fx is a σ-algebra, and that (†) holds.

ANS: Since M (E ) is a σ-algebra — and hence is closed under countable unions and complementa-
tion — it is clear that F1 ⊂ M (E ). Thus if A = {x ∈ Ω : Fx ⊂ M (E ) }, we certainly have 1 ∈ A.
Now suppose that y ∈ A for all y < x. If x = z + 1, then because M (E ) is a σ-algebra,

Fx = (Fz)σ ∪
(

(Fz)σ
)c

⊂ M (E ).

But if x is a limit ordinal, then trivially,

Fx =
⋃

y<x

Fy ⊂ M (E ).

Then it follows by transfinite induction (Folland, Proposition 0.15) that A = Ω. Therefore
⋂

x∈Ω
Fx ⊂

M (E ).
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Now I claim that
⋃

x∈Ω
Fx is a σ-algebra. Since it clearly contains ∅ and is closed under

complementation, it suffices to see that it is closed under countable unions. So, suppose that
{Ej }

∞

j=1 ⊂
⋃

x∈Ω
Fx. Say, Ej ∈ Fxj

. Since {xj } is countable, there is an x ∈ Ω such that

xj ≤ x for all j by Folland’s Proposition 0.19.3 Then, since Ω has no largest element,

∞
⋃

j=1

Ej ⊂ (Fx)σ ⊂ Fx+1 ⊂
⋃

x∈Ω

Fx.

This shows that
⋃

x∈Ω
Fx is a σ-algebra containing E . Hence

M (E ) ⊂
⋃

x∈Ω

Fx ⊂ M (E ).

Thus, (†) follows, and this completes the proof.

3. Recall that if A and B are sets, then
∏

a∈A B is simply the set of functions from A

to B. For reasons that are unclear to me, this set is usually written BA. Notice that
∏

∞

i=1 B =
∏

i∈N
B is just the collection of sequences in B. Notice also that Card(BA)

depends only on Card(A) and Card(B).

(a) Check that
∞
∏

i=1

(

∞
∏

j=1

B
)

=
∏

(i,j)∈N×N

B. (∗)

Thus the cardinality of either side of (∗) is the same as
∏

∞

i=1 B.

(b) Use these observations together with the fact that Card
(
∏

∞

i=1{ 0, 1 }
)

= c := Card(R)
(which follows from [1, Proposition 0.12]) to show that

Card
(

∞
∏

i=1

R
)

= c.

(c) Show that if Card(E ) = c, then Card(Eσ) = c.

ANS: The proof of (a) is immediate from the fact that Card(N × N) = Card(N). For (b), just
note that

Card
(

∞
∏

j=1

R

)

= Card
(

∞
∏

j=1

(

∞
∏

i=1

{ 0, 1 }
))

,

which by part (a) has the same cardinality as
∏

∞

i=1
{ 0, 1 }. This proves (b).

3This is the property of Ω that is crucial here! Especially notice that N does not have this property. This
is why we need countable ordinals to describe M (E )
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For (c), we have E ⊂ Eσ, so Card(E) ≤ Card(Eσ). But we have an obvious map of
∏

∞

j=1
E onto

Eσ. Thus Card(Eσ) ≤ Card
(
∏

∞

j=1
E

)

= Card
(
∏

∞

j=1
R

)

, and the latter is bounded by c in view of
part (b). This completes the proof.

4. Let BR be the σ-algebra of Borel sets in R. In [1, Proposition 0.14(b)], it is shown that
if Card(A) ≤ c and if Card(Yx) ≤ c for all x ∈ A, then

⋃

x∈A Yx has cardinality bounded by
c. By following the given steps, use this observation, as well as problems 2 and 3, to show
that

Card(BR) = c. (‡)

(a) Let E be the collection of open intervals (including the empty set) in R. Then
Card(E ) = c.

(b) BR = M (E ).

(c) Define Fx as in problem 2. Use transfinite induction and problem 3 to prove that
Card(Fx) = c for all x ∈ Ω.

(d) Use problem 2 to conclude that M (E ) = BR has the cardinality claimed in (‡).4

ANS: Parts (a) and (b) are immediate. For c, start by letting A = {x ∈ Ω : Card(Fx) = c }. It
follows from Problem 3(c), that 1 ∈ A. Now suppose that y ∈ A for all y < x. If x = z + 1, then
Fx ∈ A by Problem 3(c) again. If x is a limit ordinal, then x ∈ A by the observation the countable
union of sets of cardinality c has cardinality c. Thus A = Ω by transfinite induction.

Now problem 2 implies that BR =
⋃

x∈Ω
Fx. Since each Fx has cardinality c and since Ω has

cardinality at most c, the union has cardinality at most c (Folland’s Proposition 0.14(b)). This
completes the proof.
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4It is my understanding that the classes Fx are all distinct; that is, Fx ( Fy if x < y in Ω. But I
don’t have a reference or a proof at hand.
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