Homework for Math 103
 Assignment Two
 Due Monday, October 20, 2008

1. Recall from calculus that if $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers, then $\sum_{n=1}^{\infty}=\sup _{n} s_{n}$, where $s_{n}:=a_{1}+\cdots+a_{n}$. (Note that the value ∞ is allowed.)
(a) Show that $\sum_{n=1}^{\infty} a_{n}=\sup \left\{\sum_{k \in F} a_{k}: F\right.$ is a finte subset of $\left.\mathbf{Z}^{+}=1,2,3, \ldots\right\}$.
(The point of this part of the problem is that if I is any set - countable or not - and if $a_{i} \geq 0$ for all $i \in I$, then we can define

$$
\sum_{i \in I} a_{i}:=\sup \left\{\sum_{i \in F} a_{i}: F \text { is a finite subset of } I\right\},
$$

and our new definition coincides with the usual one from calculus when both make sense.)
(b) Let X be a set and $f: X \rightarrow[0, \infty)$ a function. For each $E \subset X$, define

$$
\nu(E):=\sum_{x \in E} f(x)
$$

Show that ν is a measure on $(X, \mathcal{P}(X))$.
(Some special cases are of note: if $f(x)=1$ for all $x \in X$, then ν is called counting measure on X. If $f(x)=0$ for all $x \neq x_{0}$ and $f\left(x_{0}\right)=1$, then ν is called the Dirac delta measure at x_{0}. If $\sum_{x \in X} f(x)=1$, then f is a discrete probability distribution on X, and $\nu(E)$ is the probability of the event E for this distribution.)
(c) Let X, f and ν be as in part (b). Show that if $\nu(E)<\infty$, then $\{x \in E: f(x)>0\}$ is countable. (Hint: if $\{x \in E: f(x)>0\}$ is uncountable, then at least one of the sets $\left\{x \in E: f(x)>\frac{1}{m}\right\}$ must be infinite.)
(The result in part (c) shows that discrete probability distributions "live on" countable sample spaces.)
2. Suppose that \mathscr{M} is an infinite sigma algebra in a set X. Show that $\operatorname{card}(\mathscr{M}) \geq \mathfrak{c}$, were \mathfrak{c} is the cardinality of the continuium (see $\S 0.3$ in the text). (Hint: if \mathscr{M} is countable, then each $x \in X$ is contained in a smallest measurable set $A(x) \in \mathscr{M}$.)
3. Show that every σ-finite measure is semifinite. (This is problem $\# 13$ in $\S 1.3$ of the text.)
4. Suppose that μ is a semifinite measure and that $\mu(E)=\infty$. Show that for any $C>0$, there is a $F \subset E$ such that $C<\mu(F)<\infty$. (This is problem \#14 in $\S 1.3$ of the text.)
5. Prove Proposition 1.20 in the text. (This is Littlewood's First Principle. Recall that every open set in \mathbf{R} is a disjoint union of open intervals and use Theorem 27 from lecture.)
6. Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be given by

$$
F(x)= \begin{cases}0 & \text { if } x \leq 0 \\ x & \text { if } 0<x<1 \\ 2 & \text { if } 1 \leq x<2, \text { and } \\ 3 & \text { if } 2 \leq x\end{cases}
$$

Let μ be the Lebesgue-Stieltjes measure associated to F. Find the measure of the following sets: $[0,1],(0,1)$, $(1,2)$ and $[1,2]$ as well as the singletons $\{0\}$ and $\{1\}$. Of course, I expect you to justify your assertions.

