Midterm for Math 103 Due Friday, November 14, 2008

Work on one side of $8 \frac{1}{2} \times 11$ inch paper only. Start each problem on a separate page. (This last requirement can be waived for those $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ users whose very short and elegant solutions would result in an uncomfortable waste of paper.)

1. Let X be an uncountable set and let \mathscr{M} be the connection of sets E in X such that either E or E^{c} is at most countable.
(a) Show that \mathscr{M} is a σ-algebra.
(b) Show that

$$
\mu(E):= \begin{cases}1 & \text { if } E \text { is uncountable, and } \\ 0 & \text { otherwise }\end{cases}
$$

is a measure on (X, \mathscr{M})
(c) Describe the \mathscr{M}-measurable functions $f: X \rightarrow \mathbf{R}$ and their integrals.

ANS: The key to this problem is the a pairwise disjoint family $\left\{E_{i}\right\}_{i=1}^{\infty}$ of sets in \mathscr{M} can have at most one uncountable member: if E_{1} is uncountable, then $E_{i} \subset E_{1}^{c}$ for all $i \geq 2$ and the latter is countable. After this, parts (a) and (b) are straightforward. The challenge is write things up neatly and elegantly.

Part (c) is a little trickier. You want to prove that if f is measurable, then there is exactly on $c \in \mathbf{R}$ such that $f^{-1}(c)$ is uncountable. It follows from the observation above, that there can be at most one such point. Let $\left\{U_{n}\right\}$ be a countable basis of open sets for \mathbf{R}. Since exactly one of $f^{-1}\left(U_{n}\right)$ or $f^{-1}\left(U_{n}^{c}\right)$ is uncountable, let

$$
B_{n}= \begin{cases}U_{n} & \text { if } f^{-1}\left(U_{n}\right) \text { is uncountable, and } \\ U_{n}^{c} & \text { if } f^{-1}\left(U_{n}^{c}\right) \text { is uncountable }\end{cases}
$$

Let $A=\bigcap_{n} B_{n}$. Notice that A contains at most one point: if x and y are distinct points in A, then there is a U_{n} which contains x and not y. Thus B_{n} can't contain both x and y. Thus if $f^{-1}(A)$ is uncountable, then we've proved the claim. Now observe that if $f^{-1}(C)$ and $f^{-1}(D)$ are both uncountable, then $f^{-1}(C \cap D)$ must be uncountable: to see this notice that $A \cup B$ is the disjoint union of $A \backslash B, A \cap B$ and $B \backslash A$. Thus

$$
A=\bigcap_{n} B_{n}=\bigcap_{n} F_{n} \quad \text { where } F_{n}=B_{1} \cap \cdots \cap B_{n} .
$$

Now $f^{-1}\left(F_{n+1}\right) \subset f^{-1}\left(F_{n}\right)$ and $\mu(X)=1<\infty$. Thus

$$
\mu\left(f^{-1}(A)\right)=\lim _{n} \mu\left(f^{-1}\left(F_{n}\right)\right)=1 .
$$

Thus, $A \neq \emptyset$ and $f^{-1}(A)$ is uncountable. Hence $A=\{c\}$ and $f(x)=c$ for μ-almost all x. But then

$$
\int_{X} f(x) d \mu(x)=c \cdot \mu(X)=c .
$$

2. Prove the "missing" results:
(a) Lemma 69: If $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of measurable functions which converges to a measurable function f in measure, then every subsequence also converges to f in measure.
(b) Theorem 70: Suppose that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of measurable functions which converges to a measurable function f in measure and that $g \in \mathcal{L}^{1}(X)$ is such that, for each $n,\left|f_{n}(x)\right| \leq g(x)$ for almost all x. Then prove that $f_{n} \rightarrow f$ in $L^{1}(X)$.
(Part (a) is really very straightforward. It is assigned as more of a hint for the second part than for any other reason.)

ANS: For part (a), fix $\epsilon>0$ and let $a_{n}:=E_{n}(\epsilon)=\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}$. Then saying $f_{n} \rightarrow f$ in measure just means $a_{n} \rightarrow 0$. But if $\left\{f_{n_{k}}\right\}$ is a subsequence, then $\left\{a_{n_{k}}\right\}$ is too. But general nonsense says $a_{n_{k}} \rightarrow 0$. Thus $f_{n_{k}} \rightarrow f$ in measure. (This elegant argument is due to Aria Anavi.)

For part (b), suppose $f_{n} \nrightarrow f$ in L^{1}. Then there is an $\epsilon_{0}>0$ and a subsequence, $\left\{f_{n_{k}}\right\}$ such that $\left\|f_{n_{k}}-f\right\|_{1} \geq \epsilon_{0}$ for all k. But $f_{n_{k}} \rightarrow f$ in measure (by part (a)). Thus, it has a subsequence $f_{n_{k_{j}}}$ converging pointwise almost everywhere to f. But then $f_{n_{k_{j}}} \rightarrow f$ in L^{1} by the Dominated Convergence Theorem. But this contradicts the fact that $\left\|f_{n_{k_{j}}}-f\right\|_{1} \geq \epsilon_{0}$ for all j.
3. If $f_{n} \rightarrow f$ pointwise almost everywhere, then must $f_{n} \rightarrow f$ in measure? Does you conclusion change if "almost everywhere" convergence is replace by pointwise convergence everywhere? What if $\mu(X)<\infty$? (Assume that each of f_{n} and f are measurable.)

ANS: This does not hold unless $\mu(X)<\infty$. Consider $f_{n}=\mathbb{1}_{[n, n+1]}$. Then $f_{n} \rightarrow 0$ pointwise (everywhere) on R. However, $E_{n}(\epsilon)=1$ for all n and all $0<\epsilon<1$. Thus, $f_{n} \nrightarrow 0$ in measure. If $\mu(X)<\infty$, then $f_{n} \rightarrow f$ in measure by Egoroff's Theorem.

4. Counterexamples.

(a) Show that both the Monotone Convergence Theorem and Fatou's Lemma are false without the assumption that the f_{n} are nonnegative (at least almost everywhere).
(b) Show that Egoroff's Theorem fails if we drop that assumption that $\mu(X)<\infty$.

ANS: For part (a), letting $f_{n}(x)=-\frac{1}{n}$ for $x \in \mathbf{R}$ gives counterexamples to both.
For part (b), the example $f_{n}=\mathbb{1}_{[n, n+1]}$ from the previous problem does the trick.
5. Suppose that μ is σ-finite and that $f_{n} \rightarrow f$ almost everywhere. Show that there are sets $\left\{E_{n}\right\}$ such that $E:=\bigcup_{n=1}^{\infty} E_{n}$ is conull ${ }^{1}$ and such that $f_{n} \rightarrow f$ uniformly on each E_{n}. (Compare with \#4(b). Of course, you should assume that each f_{n} and f are measurable.)

ANS: Write $X=\bigcup_{n} X_{n}$ with each X_{n} of finite measure and $X_{n} \subset X_{n+1}$. Then, by Egoroff's Theorem, there is a $E_{n} \subset X_{n}$ such that $f_{n} \rightarrow f$ uniformly on E_{n} and $\mu\left(X_{n} \backslash E_{n}\right)<\frac{1}{n}$. Thus it suffices to see that $E:=\bigcup E_{n}$ is conull. But

$$
\begin{aligned}
\mu(X \backslash E) & =\lim _{n} \mu\left(X_{n} \cap \bigcap E_{m}^{c}\right) \\
& \leq \limsup _{n} \mu\left(X_{n} \cap E_{n}^{c}\right)=\limsup _{n} \mu\left(X_{n} \backslash E_{n}\right) \\
& =0
\end{aligned}
$$

6. Suppose that $f_{n} \searrow f$ in L^{+}. Is it necessarily the case that

$$
\int f_{n}(x) d \mu(x) \rightarrow \int f(x) d \mu(x) ?
$$

What if $\mu(X)<\infty$? What if $\int f(x) d \mu(x)<\infty$? What if $\int f_{1}(x)<\infty$?
ANS: This works only when some $f_{i} \in \mathcal{L}^{1}$. But it is not so easy to find an example when $\mu(X)<\infty$. Several people came up with $f_{n}(x)=\frac{1}{n x}$ on $(0,1)$. If f_{1} has a finite integral, then it is in \mathcal{L}^{1}, and we get convergence by the Dominated Convergence Theorem. Interestingly, if X is compact and the f_{i} are continuous, then the convergence has to be uniform by Dini's Theorem, and the integrals must converge.
7. Suppose that $f \in L^{1}(X)$. Show that for all $\epsilon>0$ there is a $\delta>0$ such that

$$
\int_{E}|f(x)| d \mu(x)<\epsilon
$$

provided $\mu(E)<\delta$. (This is easy if f is bounded.)
ANS: If f is bounded, say $|f(x)| \leq M$ for all x, then $\delta=\frac{\epsilon}{M}$ will do. In general, let

$$
f_{n}(x)= \begin{cases}f(x) & \text { if }|f(x)| \leq n, \text { and } \\ 0 & \text { otherwise } .\end{cases}
$$

[^0]Then $f_{n} \rightarrow f$ in L^{1} by the dominated convergence theorem. Choose n such that $\left\|f_{n}-f\right\|_{1}<\frac{\epsilon}{2}$. Then find $\delta>0$ so that

$$
\int_{E}|f(x)| d \mu(x)<\frac{\epsilon}{2} .
$$

Then

$$
\int_{E}|f(x)| d \mu(x) \leq \int_{E}\left|f(x)-f_{n}(x)\right| d \mu(x)+\int_{E}\left|f_{n}(x)\right| d \mu(x) \leq\left\|f-f_{n}\right\|_{1}+\frac{\epsilon}{2}<\epsilon
$$

8. Let f be a function on $[a, \infty)$ such that f is bounded on bounded subsets. Recall that f is improperly Riemann integrable if f is Riemann integrable on each interval $[a, b]$ and

$$
\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d m(x)
$$

exits (and is finite). Show that if f is nonnegative and Riemann integrable on each $[a, b]$ with $b>a$, then f is improperly Riemann integrable on $[a, \infty)$ if and only if f is Lebesgue integrable on $[a, \infty)$ in which case the value of the Lebesgue integral equals the value of the above limit. What happens when f is not necessarily nonnegative? ("Luke, use the Monotone Convergence Theorem.")

[^0]: ${ }^{1}$ We say that E is conull if $\mu\left(E^{c}\right)=0$.

