
Midterm for Math 103

Due Friday, November 14, 2008

Work on one side of 81

2
× 11 inch paper only. Start each problem on a separate page. (This

last requirement can be waived for those LATEX users whose very short and elegant solutions
would result in an uncomfortable waste of paper.)

1. Let X be an uncountable set and let M be the connection of sets E in X such that either
E or Ec is at most countable.

(a) Show that M is a σ-algebra.

(b) Show that

µ(E) :=

{

1 if E is uncountable, and

0 otherwise

is a measure on (X,M )

(c) Describe the M -measurable functions f : X → R and their integrals.

ANS: The key to this problem is the a pairwise disjoint family {Ei }
∞

i=1 of sets in M can have at
most one uncountable member: if E1 is uncountable, then Ei ⊂ Ec

1 for all i ≥ 2 and the latter is
countable. After this, parts (a) and (b) are straightforward. The challenge is write things up neatly
and elegantly.

Part (c) is a little trickier. You want to prove that if f is measurable, then there is exactly on
c ∈ R such that f−1(c) is uncountable. It follows from the observation above, that there can be
at most one such point. Let {Un } be a countable basis of open sets for R. Since exactly one of
f−1(Un) or f−1(U c

n) is uncountable, let

Bn =

{

Un if f−1(Un) is uncountable, and

U c
n if f−1(U c

n) is uncountable.

Let A =
⋂

n Bn. Notice that A contains at most one point: if x and y are distinct points in A, then
there is a Un which contains x and not y. Thus Bn can’t contain both x and y. Thus if f−1(A)
is uncountable, then we’ve proved the claim. Now observe that if f−1(C) and f−1(D) are both
uncountable, then f−1(C ∩ D) must be uncountable: to see this notice that A ∪ B is the disjoint
union of A \ B, A ∩ B and B \ A. Thus

A =
⋂

n

Bn =
⋂

n

Fn where Fn = B1 ∩ · · · ∩ Bn.

Now f−1(Fn+1) ⊂ f−1(Fn) and µ(X) = 1 < ∞. Thus

µ(f−1(A)) = lim
n

µ(f−1(Fn)) = 1.
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Thus, A 6= ∅ and f−1(A) is uncountable. Hence A = { c } and f(x) = c for µ-almost all x. But then

∫

X

f(x) dµ(x) = c · µ(X) = c.

2. Prove the “missing” results:

(a) Lemma 69: If { fn }
∞

n=1 is a sequence of measurable functions which converges to a
measurable function f in measure, then every subsequence also converges to f in
measure.

(b) Theorem 70: Suppose that { fn }
∞

n=1 is a sequence of measurable functions which con-
verges to a measurable function f in measure and that g ∈ L1(X) is such that, for
each n, |fn(x)| ≤ g(x) for almost all x. Then prove that fn → f in L1(X).

(Part (a) is really very straightforward. It is assigned as more of a hint for the second part
than for any other reason.)

ANS: For part (a), fix ǫ > 0 and let an := En(ǫ) = {x : |fn(x) − f(x)| ≥ ǫ }. Then saying fn → f

in measure just means an → 0. But if { fnk
} is a subsequence, then { ank

} is too. But general
nonsense says ank

→ 0. Thus fnk
→ f in measure. (This elegant argument is due to Aria Anavi.)

For part (b), suppose fn 6→ f in L1. Then there is an ǫ0 > 0 and a subsequence, { fnk
} such

that ‖fnk
− f‖1 ≥ ǫ0 for all k. But fnk

→ f in measure (by part (a)). Thus, it has a subsequence
fnkj

converging pointwise almost everywhere to f . But then fnkj
→ f in L1 by the Dominated

Convergence Theorem. But this contradicts the fact that ‖fnkj
− f‖1 ≥ ǫ0 for all j.

3. If fn → f pointwise almost everywhere, then must fn → f in measure? Does you
conclusion change if “almost everywhere” convergence is replace by pointwise convergence
everywhere? What if µ(X) < ∞? (Assume that each of fn and f are measurable.)

ANS: This does not hold unless µ(X) < ∞. Consider fn = 1[n,n+1]. Then fn → 0 pointwise
(everywhere) on R. However, En(ǫ) = 1 for all n and all 0 < ǫ < 1. Thus, fn 6→ 0 in measure. If
µ(X) < ∞, then fn → f in measure by Egoroff’s Theorem.

4. Counterexamples.

(a) Show that both the Monotone Convergence Theorem and Fatou’s Lemma are false
without the assumption that the fn are nonnegative (at least almost everywhere).

(b) Show that Egoroff’s Theorem fails if we drop that assumption that µ(X) < ∞.
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ANS: For part (a), letting fn(x) = − 1
n

for x ∈ R gives counterexamples to both.
For part (b), the example fn = 1[n,n+1] from the previous problem does the trick.

5. Suppose that µ is σ-finite and that fn → f almost everywhere. Show that there are
sets {En } such that E :=

⋃

∞

n=1
En is conull1 and such that fn → f uniformly on each En.

(Compare with #4(b). Of course, you should assume that each fn and f are measurable.)

ANS: Write X =
⋃

n Xn with each Xn of finite measure and Xn ⊂ Xn+1. Then, by Egoroff’s
Theorem, there is a En ⊂ Xn such that fn → f uniformly on En and µ(Xn \ En) < 1

n
. Thus it

suffices to see that E :=
⋃

En is conull. But

µ(X \ E) = lim
n

µ(Xn ∩
⋂

Ec
m)

≤ lim sup
n

µ(Xn ∩ Ec
n) = lim sup

n

µ(Xn \ En)

= 0.

6. Suppose that fn ց f in L+. Is it necessarily the case that

∫

fn(x) dµ(x) →

∫

f(x) dµ(x)?

What if µ(X) < ∞? What if
∫

f(x) dµ(x) < ∞? What if
∫

f1(x) < ∞?

ANS: This works only when some fi ∈ L1. But it is not so easy to find an example when µ(X) < ∞.
Several people came up with fn(x) = 1

nx
on (0, 1). If f1 has a finite integral, then it is in L1, and we

get convergence by the Dominated Convergence Theorem. Interestingly, if X is compact and the fi

are continuous, then the convergence has to be uniform by Dini’s Theorem, and the integrals must
converge.

7. Suppose that f ∈ L1(X). Show that for all ǫ > 0 there is a δ > 0 such that

∫

E

|f(x)| dµ(x) < ǫ

provided µ(E) < δ. (This is easy if f is bounded.)

ANS: If f is bounded, say |f(x)| ≤ M for all x, then δ = ǫ
M

will do. In general, let

fn(x) =

{

f(x) if |f(x)| ≤ n, and

0 otherwise.

1We say that E is conull if µ(Ec) = 0.

–3–



Then fn → f in L1 by the dominated convergence theorem. Choose n such that ‖fn − f‖1 < ǫ
2 .

Then find δ > 0 so that
∫

E

|f(x)| dµ(x) <
ǫ

2
.

Then
∫

E

|f(x)| dµ(x) ≤

∫

E

|f(x) − fn(x)| dµ(x) +

∫

E

|fn(x)| dµ(x) ≤ ‖f − fn‖1 +
ǫ

2
< ǫ.

8. Let f be a function on [a,∞) such that f is bounded on bounded subsets. Recall that f

is improperly Riemann integrable if f is Riemann integrable on each interval [a, b] and

lim
b→∞

∫

b

a

f(x) dm(x)

exits (and is finite). Show that if f is nonnegative and Riemann integrable on each

[a, b] with b > a, then f is improperly Riemann integrable on [a,∞) if and only if f is
Lebesgue integrable on [a,∞) in which case the value of the Lebesgue integral equals the
value of the above limit. What happens when f is not necessarily nonnegative? (“Luke, use
the Monotone Convergence Theorem.”)
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