Theorem 1 (Folland Theorem 2.28). Suppose that $f$ is a bounded real-valued function on $[a, b]$.

1. If $f$ is Riemann integrable, then $f$ is Lebesgue measurable (and therefore integrable). Furthermore

$$
\begin{equation*}
\mathcal{R} \int_{a}^{b} f=\int_{[a, b]} f(x) d m(x) . \tag{1}
\end{equation*}
$$

(Henceforth, we will dispense with the notations in (1) and write simply $\int_{a}^{b} f(x) d x$.)
2. Also, $f$ is Riemann integrable if and only if the set of discontinuities of $f$ has measure zero.

Proof. Let $\mathcal{P}=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}$ be a partition of $[a, b]$ and define

$$
l_{\mathcal{P}}:=\sum_{i=1}^{n} m_{i} \mathbb{I}_{\left(t_{i-1}, t_{i}\right]} \quad \text { and } \quad u_{\mathcal{P}}:=\sum_{i=1}^{n} M_{i} \mathbb{I}_{\left(t_{i-1}, t_{i}\right]},
$$

where

$$
m_{i}:=\inf \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\} \quad \text { and } \quad M_{i}:=\sup \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\}
$$

Notice that

$$
\int l_{\mathcal{P}}=L(f, \mathcal{P}) \quad \text { and } \quad \int u_{\mathcal{P}}=U(f, \mathcal{P})
$$

We can choose sequences of partitions $\left\{\mathcal{Q}_{k}\right\}$ and $\left\{\mathcal{R}_{k}\right\}$ such that

$$
\begin{equation*}
\lim _{k} L\left(f, \mathcal{Q}_{k}\right)=\mathcal{R} \underline{\int}_{a}^{b} f \quad \text { and } \quad \lim _{k} U\left(f, \mathcal{R}_{k}\right)=\mathcal{R} \bar{\int}_{a}^{b} f \tag{2}
\end{equation*}
$$

Let $\mathcal{P}_{k}=\left\{a=t_{0}<\cdots<t_{n}=b\right\}$ be a partition which is refinement of the partitions $\mathcal{Q}_{k}$ and $\mathcal{R}_{k}$ as well as $\mathcal{P}_{k-1}$, and which also has the property that $\left\|\mathcal{P}_{k}\right\|:=\max \left(t_{i}-t_{i-1}\right)<\frac{1}{k}$. Since $\mathcal{P}_{k}$ is a refinement of both $\mathcal{Q}_{k}$ and $\mathcal{R}_{k}$, (2) holds with $\mathcal{Q}_{k}$ and $\mathcal{R}_{k}$ each replaced by $\mathcal{P}_{k}$. Since $\mathcal{P}_{k+1}$ is a refinement of $\mathcal{P}_{k}$, it follows that

$$
l_{\mathcal{P}_{k+1}} \geq l_{\mathcal{P}_{k}} \quad \text { and } \quad u_{\mathcal{P}_{k+1}} \leq u_{\mathcal{P}_{k}}
$$

Therefore we obtain bounded measurable functions $l$ and $u$ on $[a, b]$ by

$$
l:=\sup _{k} l_{\mathcal{P}_{k}}=\lim _{k} l_{\mathcal{P}_{k}} \quad \text { and } \quad u:=\inf _{k} u_{\mathcal{P}_{k}}=\lim _{k} u_{\mathcal{P}_{k}} .
$$

Clearly

$$
l \leq f \leq u
$$

Since bounded functions are Lebesque integrable on $[a, b]$ and since $u=$ $\lim _{k} u_{\mathcal{P}_{k}}$ and $l=\lim _{k} l_{\mathcal{P}_{k}}$, the Lebesgue Dominated Convergence Theorem implies that

$$
\int l=\mathcal{R} \int_{a}^{b} f \quad \text { and } \quad \int u=\mathcal{R} \bar{\int}_{a}^{b} f
$$

Now if $f$ is Riemann integrable, the upper and lower integrals coincide and we have

$$
\int(u-l)=0 .
$$

Since $u-l \geq 0$, this implies that $l=f=u$ a.e. Since Lebesque measure is complete, $f$ is measurable, and

$$
\mathcal{R} \int_{a}^{b} f=\int f
$$

This proves the first part.
To prove the second assertion, first observe that if $x \in[a, b]$ and if $0<$ $\delta<\delta^{\prime}$, then

$$
\sup \{f(y):|y-x| \leq \delta\} \leq \sup \left\{f(y):|y-x| \leq \delta^{\prime}\right\}
$$

It follows that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \sup \{f(y):|y-x| \leq \delta\}=\inf _{\delta>0} \sup \{f(y):|y-x| \leq \delta\} \tag{3}
\end{equation*}
$$

Thus we get a well defined function $H$ on $[a, b]$ by setting $H(x)$ equal to (3). Similarly, we can define $h$ on $[a, b]$ by

$$
\begin{equation*}
h(x):=\lim _{\delta \rightarrow 0} \inf \{f(y):|y-x| \leq \delta\}=\sup _{\delta>0} \inf \{f(y):|y-x| \leq \delta\} \tag{4}
\end{equation*}
$$

We clearly have $h(x) \leq f(x) \leq H(x)$ for all $x \in[a, b]$.

Suppose that $f$ is continuous at $x$. Then given $\epsilon>0$ there is a $\delta>0$ such that whenever $|y-x| \leq \delta$ we have $|f(y)-f(x)|<\epsilon$. This is the same as

$$
\begin{equation*}
f(x)-\epsilon<f(y)<f(x)+\epsilon \tag{5}
\end{equation*}
$$

It follows from (3) and (5) that $H(x)<f(x)+\epsilon$. Since $\epsilon$ is arbitrary, we must have $H(x) \leq f(x)$. Thus $H(x)=f(x)$ in the event that $f$ is continuous at $x$. Similarly, combining (3) and (4) shows that $h(x)>f(x)-\epsilon$ for any $\epsilon>0$. Thus forces $h(x)=f(x)$ when $f$ is continuous at $x$. In particular, $H(x)=h(x)$ if $f$ is continuous at $x$.

Now suppose that $H(x)=h(x)$. Note that the common value must be $f(x)$. Thus given $\epsilon>0$, there is - in view of (3) and (4) - a $\delta>0$ such that

$$
\begin{gather*}
f(x)+\epsilon=H(x)+\epsilon>\sup \{f(y):|y-x| \leq \delta\} \quad \text { and }  \tag{6}\\
f(x)-\epsilon=h(x)-\epsilon<\inf \{f(y):|y-x| \leq \delta\} . \tag{7}
\end{gather*}
$$

Thus if $|y-x|<\delta$, then we have

$$
f(x)-\epsilon<f(y)<f(x)+\epsilon \quad \text { or } \quad|f(y)-f(x)|<\epsilon
$$

This shows that $f$ is continuous at $x$ if and only if $H(x)=h(x) .{ }^{1}$
If $\mathcal{P}=\left\{a=t_{0}<\cdots<t_{n}=b\right\}$ is any partition of $[a, b]$ and if $x \notin \mathcal{P}$, then there is a $\delta>0$ such that $\{y:|y-x| \leq \delta\} \cap \mathcal{P}=\emptyset$. In particular, $\{y:|y-x| \leq \delta\} \subset\left(t_{i-1}, t_{i}\right)$ for some $i$, and

$$
M_{i} \geq \sup \{f(y):|y-x| \leq \delta\}
$$

It follows that $u_{\mathcal{P}}(x) \geq H(x)$ for all $x \notin \mathcal{P}$. Now let

$$
N:=\bigcup_{k} \mathcal{P}_{k}
$$

Then $N$ is countable, and therefore has Lebesque measure 0 . Furthermore if $x \notin N$, then

$$
u(x):=\inf u_{\mathcal{P}_{k}}(x) \geq H(x) .
$$

On the other hand, given $x \notin N$ and $\epsilon>0$, there is a $\delta>0$ such that

$$
H(x)+\epsilon>\sup \{f(y):|y-x| \leq \delta\}
$$

[^0]Pick $k$ such that $\frac{1}{k}<\delta$. Since $x \notin \mathcal{P}_{k}, x \in\left(t_{i-1}, t_{i}\right)$ for some subinterval in $\mathcal{P}_{k}$. Since $\left\|\mathcal{P}_{k}\right\|<\frac{1}{k}, M_{i} \leq \sup \{f(y):|y-x| \leq \delta\}$ and

$$
H(x)+\epsilon>u_{\mathcal{P}_{k}}(x) \geq u(x) .
$$

Since $\epsilon$ was arbitrary, we conclude that $H(x)=u(x)$ for all $x \notin N$. In particular, $H$ is measurable and

$$
\int H=\mathcal{R} \bar{\int}_{a}^{b} f
$$

A similar argument implies that $h(x)=l(x)$ for all $x \notin N$. Thus $h$ is measurable and ${ }^{2}$

$$
\int h=\mathcal{R} \int_{a}^{b} f
$$

Now if $f$ is continuous almost everywhere, it follows that $H=h$ a.e. Thus the upper and lower Riemann integrals must be equal and $f$ is Riemann integrable. On the other hand, if $f$ is Riemann integrable, the upper and lower integrals are equal and

$$
\int(H-h)=0
$$

Since $H-h \geq 0$, we must have $H=h$ a.e. It follows that $f$ is continuous almost everywhere.

[^1]
[^0]:    ${ }^{1}$ This is the first of Folland's suggested "Lemmas".

[^1]:    ${ }^{2}$ This is essentially Folland's Lemma (b).

