Math 73/103: Measure Theory and Complex Analysis Fall 2018 - Homework 2

1. Page 32 of Rudin, problem \#6. (Note that we have already shown that \mathcal{M} is a σ-algebra so there is no need to show it again.)
2. Page 32 of Rudin, problem \#7.
3. Page 32 of Rudin, problem \#10.
4. Page 32 of Rudin, problem \#12. (This is easy if f is bounded.)
5. Suppose that Y is a topological space and that \mathcal{M} is a σ-algebra in Y containing all the Borel sets. Suppose in addition, μ is a measure on (Y, \mathcal{M}) such that for all $E \in \mathcal{M}$ we have

$$
\begin{equation*}
\mu(E)=\inf \{\mu(V): V \text { is open and } E \subset V\} . \tag{1}
\end{equation*}
$$

Suppose also that

$$
\begin{equation*}
Y=\bigcup_{n=1}^{\infty} Y_{n} \quad \text { with } \mu\left(Y_{n}\right)<\infty \text { for all } n \geq 1 \tag{2}
\end{equation*}
$$

One says that μ is a σ-finite outer regular measure on (Y, \mathcal{M}).
(a) Show that Lebesgue measure m is a σ-finite outer regular measure on $(\mathbb{R}, \mathcal{M})$.
(b) Suppose E is a μ-measurable subset of Y.
(i) Given $\varepsilon>0$, show that there is an open set $V \subset Y$ and a closed set $F \subset Y$ such that $F \subset E \subset V$ and $\mu(V \backslash F)<\varepsilon$.
(ii) Show that there is a G_{δ}-set $G \subset Y$ and a F_{σ}-set $A \subset Y$ such that $A \subset E \subset G$ and $\mu(G \backslash A)=0$.
(c) Argue that $(\mathbb{R}, \mathcal{M}, m)$ is the completion of the restriction of Lebesgue measure to the Borel sets in \mathbb{R}.
6. Let m be Lebesgue measure on \mathbb{R} and suppose that E is a set of finite measure. Given $\varepsilon>0$, show that there is a finite disjoint union F of open intervals such that $m(E \triangle F)<\varepsilon$ where $E \Delta F:=(E \backslash F) \cup(F \backslash E)$ is the symmetric difference. (This illustrates the first of Littlewood's three principles: "Every Lebesgue measurable set is nearly a disjoint union of open intervals".)
7. Let (X, \mathcal{M}, μ) be a measure space, and let $\left(X, \mathcal{M}_{0}, \mu_{0}\right)$ be its completion.
(a) Let $f: X \rightarrow \mathbb{C}$ be a μ_{0}-measurable function and assume that $g: X \rightarrow \mathbb{C}$ is a μ-measurable function such that $f=g$ a.e. $\left[\mu_{0}\right]$. Is there necessarily a μ-null set N such that $f(x)=g(x)$ for all $x \notin N$?
(b) If $f: X \rightarrow \mathbb{C}$ is μ_{0}-measurable, show that there is a μ-measurable function $g: X \rightarrow \mathbb{C}$ such that $f=g$ a.e. $\left[\mu_{0}\right]$.
(c) What does this result say about Lebesgue measurable functions and Borel functions on \mathbb{R} ? (Compare with problem \#14 on page 59 of Rudin.)

