
Math 73/103: Measure Theory and Complex Analysis
Fall 2019 - Homework 1

1. Show that the countable union of sets of measure zero in R has measure zero.

ANS: Suppose that En has measure zero for n = 1, 2, . . . , and let E =
⋃
En. Let ε > 0. By assumption,

there are intervals In,m such that En ⊂
⋃∞

m=1 In,m and
∑∞

m=1 `(In,m) < ε
2n

. Then E ⊂
⋃∞

n,m=1 In,m and∑∞
n,m=1 `(In,m) <

∑∞
n=1

ε
2n

= ε. This suffices.

2. Suppose f : [a, b] → R is bounded, and let P and Q be subdivisions of [a, b]. Prove that
L(f,P) ≤ U(f,Q), where L(f,P) and U(f,Q) are the lower and upper Riemann sums, respectively,
for f on [a, b].
Hint: The result is trivial if P = Q; now let R = P ∪Q.

ANS: The following are relatively easy to prove for any subdivision P and any subdivision R such that
P ⊂ R: L(f,P) ≤ U(f,P), L(f,P) ≤ L(f,R), and U(f,R) ≤ U(f,P). Thus if P, Q, and R are as in the
problem, then

L(f,P) ≤ L(f,R)

≤ U(f,R)

≤ U(f,Q).

Here are two suggestions for proving that L(f,R) ≥ L(f,P).

Method I—Brute Force: Let P = { a = t0 < · · · < tn = b } and R = { a = s0 < · · · < sm }. Since P ⊂ R,
for any k, there is a unique i such that [sk−1, sk] ⊂ [ti−1, ti]. Furthermore,

ti − ti−1 =
∑

[sk−1,sk]⊂[ti−1,ti]

sk − sk−1. (†)

Thus if
mi := inf

t∈[ti−1,ti]
f(t) and nk = inf

t∈[sk−1,sk]
f(t),

then we have mi ≤ nk whenever [sk−1, sk] ⊂ [ti−1, ti]. Thus

L(f,R) =

m∑
k=1

nk(sk − sk−1)

=

n∑
i=1

( ∑
[sk−1,sk]⊂[ti−1,ti]

nk(sk − sk−1)
)

≥
n∑

i=1

mi

( ∑
[sk−1,sk]⊂[ti−1,ti]

sk − sk−1

)
which, by (†), is

=

n∑
i=1

mi(ti − ti−1)

= L(f,P).
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Method II—Simple: Suppose that R refines P = { a = t0 < · · · < tn = b } by adding a single point s
where tj−1 < s < tj . Define mi as in “Method I” and let

nj1 = inf
t∈[tj−1,s]

f(t) and nj2 = inf
t∈[s,tj ]

f(t),

and note that mj ≤ n1j + n2j . Then

L(f,R) =

j−1∑
i=1

mi(ti − ti−1) + nj1(s− ti−1) + n2j(ti − s) +

n∑
i=j+1

mi(ti − ti−1)

≤
n∑

i=1

mi(ti − ti−1)

= L(f,P).

Now the general result follows from a simple induction.

3. Prove that a bounded function f : [a, b]→ R is Riemann integrable on [a, b] if and only if for all
ε > 0 there is a subdivision P of [a, b] such that

U(f,P)− L(f,P) < ε.

ANS: Note that for any subdivision P, L(f,P) ≤ R
∫ b

a
f and U(f,P) ≥ R

∫ b

a
Suppose that f is Riemann

integrable. Then given ε > 0 there are subdivisions P and Q such that

R
∫ b

a

f − L(f,P) <
ε

2
, and

U(f,Q)−R
∫ b

a

f <
ε

2
.

Now let R = P ∪ Q. Then using the previous problem, we see that the two inequalities above hold with P
and Q replaced by R. In particular, since f is integrable, R

∫ b

a
f = R

∫ b

a
f = R

∫ b

a
f and

U(f,R)− L(f,R) <
ε

2
+R

∫ b

a

f −R
∫ b

a

f +
ε

2
= ε.

Now assume that for all ε > 0 a subdivision P exists as stated in the problem. The previous problem
implies that

R
∫ b

a

f ≤ R
∫ b

a

f.

Let ε > 0 be given, and choose P such that U(f,P)− L(f,P) < ε. Thus

R
∫ b

a

f ≥ L(f,P) > U(f,P)− ε ≥ R
∫ b

a

f − ε.

Thus,

0 ≤ R
∫ b

a

f −R
∫ b

a

f < ε.
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Since ε is arbitrary, it follows that R
∫ b

a
f = R

∫ b

a
f , and f is Riemann integrable on [a, b] as required.

4. (Rudin: page 31 #1) Suppose that (X,M) is a measurable space. Show that ifM is countable,
then M is finite.
Hint: Since M is countable, you can show that ωx =

⋂
{E : E ∈M and x ∈ E } belongs to M.

The sets {ωx }x∈X partition X.

ANS: Notice that if E ∈ M and if x ∈ E, then ωx ⊂ E. On the other hand, if F ∈ M and if x /∈ F ,
then x ∈ ωx \ F , and ωx ⊂ ωx \ F so ωx ∩ F = ∅. Thus if ωx ∩ ωy 6= ∅, then x ∈ ωy and ωx ⊂ ωy. By
symmetry, ωy ⊂ ωx and ωx = ωy. This shows that {ωx }x∈X partitions X. If x ∈ F ∈ M, then ωx ⊂ F
and F =

⋃
x∈F ωx. Thus the elements of M are in one-to-one correspondence with the (distinct) subsets of

{ωx }x∈X . If this set is finite, then so is M. If it is infinite, then it has at least as many subsets as does Z
— and there are uncountably many of these.

5. Let X be an uncountable set and let M be the collection of subsets E of X such that either E
or Ec is countable. Prove that M is a σ-algebra.

ANS: SinceM certainly contains X and is closed under taking complements, the only issue is to show that
M is closed under countable unions. Suppose that {En }∞n=1 ⊂ M. If all the En are countable, then the
countable union E =

⋃
nEn of countable sets is countable and E ∈ M. If Ec

k is countable, then note that
Ec ⊂ Ec

k must also be countable. Thus in all cases, E ∈M and M is a σ-algebra.

6. Recall from calculus that if { an } is a sequence of nonnegative real numbers, then∑∞
n=1 an = supn sn, where sn = a1 + · · ·+ an. (Note the value ∞ is allowed.)

(a) Show that
∑∞

n=1 an = sup{
∑

k∈F ak : F is a finite subset of Z+ = 1, 2, 3, . . . }.
Note: The point of this problem is that if I is a (not necessarily countable) set, and if ai ≥ 0
for all i ∈ I, then we can define

∑
i∈I ai = sup{

∑
k∈F ak : F is a finite subset of I }, and our

new definition coincides with the usual one when both make sense.

ANS: Let I = sup{
∑

k∈F ak : F is a finite subset of Z+ = 1, 2, 3, . . . }. Since F = { 1, . . . , n } is finite,

I ≥ sup{
∑
k∈F

ak : F = { 1, . . . , n } }

= sup sn =

∞∑
n=1

an.

Let ε > 0. Choose a finite set F ⊂ Z+ such that
∑

k∈F ak > I−ε. Let m = maxk∈F k. Then sm ≥
∑

k∈F ak >
I − ε. Thus

∞∑
n=1

an = sup sn ≥ sm > I − ε.

Since ε was arbitary,
∑∞

n=1 an ≥ I. Thus
∑∞

n=1 an = I as claimed.
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(b) Now let X be a set and f : X → [0,∞) a function. For each E ⊂ X, define

ν(E) :=
∑
x∈E

f(x).

Show that ν is a measure on
(
X,P(X)

)
. In lecture, we considered the special cases of counting

measure, where f(x) = 1 for all x ∈ X, and the delta measure at x0, where f(x0) = 1 for some
x0 ∈ X and f(x) = 0 otherwise. Another important example is the case where

∑
x∈X f(x) =

1. Then f is a (discrete) probability distribution on X and ν(E) is the probability of the
event E for this distribution.

ANS: Let {En } be disjoint sets and E =
⋃

nEn. Suppose that ν(E) =∞. Fix M > 0. Choose a finite set
F ⊂ E such that M <

∑
x∈F f(x). Let Fn = {x ∈ F : x ∈ En }. Since all but finitely many Fn are empty,

M <
∑
x∈F

f(x) =
∑
n

∑
x∈Fn

f(x) ≤
∞∑

n=1

ν(En).

Since M is arbitrary,
∑∞

n=1 ν(En) = ∞ = ν(E). So we can assume from here on that ν(E) < ∞. Let ε > 0.
Choose a finite set F ⊂ E such that ν(E)−ε <

∑
x∈F f(x). Let Fn = {x ∈ F : x ∈ En }. Since all but finitely

may Fn are empty,

ν(E)− ε <
∑
x∈F

f(x) =
∑
n

∑
x∈Fn

f(x) ≤
∞∑

n=1

ν(En).

Since ε is arbitrary, ν(E) ≤
∑∞

n=1 ν(En).

Notice that if ν(E) < ∞, the ν(Ek) < ∞ for all k. Let ε > 0. Since
∑

n ν(En) = supn

∑n
k=1 ν(Ek) it will

suffice to show that for any n

ν(E) + ε >

n∑
k=1

ν(Ek).

Choose finite sets Fk ⊂ Ek such that
ν(Ek)− ε

n
<
∑
x∈Fk

f(x).

Put F =
⋃n

k=1 Fk. Note that F is finite, and since the Fk are disjoint,

ν(E) ≥
∑
x∈F

f(x) =

n∑
k=1

∑
x∈Fk

f(x) > −ε+

n∑
k=1

ν(Ek).

That’s it.

(c) Let X, f , and ν be as in part (b). Show that if ν(E) < ∞, then {x ∈ E : f(x) > 0 } is
countable.
Hint: If {x ∈ E : f(x) > 0 } is uncountable, then for some m ∈ Z+, the set

{x ∈ E : f(x) >
1

m
} is infinite.

This last result says that discrete probability distributions “live on” countable sample spaces.
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7. (Rudin: page 31 #3) Prove that if f is a real-valued function on a measurable space (X,M)
such that {x : f(x) ≥ r } is measurable for all rational r, then f is measurable.

ANS: Note that for all a ∈ R we have

{x ∈ X : f(x) > a} =
⋃

r∈Q∩(a,+∞)

{x ∈ X : f(x) ≥ r}

Hence {x ∈ X : f(x) > a} is a countable union of measurable sets and therefore measurable.
As {x ∈ X : f(x) > a} = f−1((a,+∞]) is measurable for all a ∈ R, we know that f is measurable.

8. (Rudin: page 31 #5) Suppose that f, g : (X,M) → [−∞,∞] are measurable functions. Prove
that the sets

{x : f(x) < g(x) } and {x : f(x) = g(x) }

are measurable.
Remark: If h = f −g were defined, then this problem would be much easier (why?). The problem
is that ∞−∞ and −∞+∞ make no sense, so h may not be everywhere defined.

ANS: Since {x : f(x) = g(x) } is the complement of {x : f(x) < g(x) } ∪ {x : g(x) < f(x) } it suffice to see
that {x : f(x) < g(x) } is measurable. But

{x : f(x) < g(x) } =
⋃
r∈Q

{x : f(x) < r < g(x) },

and each {x : f(x) < r < g(x) } = g−1
(
(r,∞]

)
∩ f−1

(
[−∞, r)

)
is measurable.
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