Math 73/103: Measure Theory and Complex Analysis
Fall 2019 - Homework 1

1. Show that the countable union of sets of measure zero in R has measure zero.

ANS: Suppose that E, has measure zero for n = 1,2,..., and let £ = |J E,. Let ¢ > 0. By assumption,
there are intervals I such that E, C Uy _; Inm and > 0 €(Inm) < 5. Then E C U, In,m and
o0 UInm) < D227, 5% = e. This suffices.

n,m=1 n=1 2n
2. Suppose f : [a,b] — R is bounded, and let P and Q be subdivisions of [a,b]. Prove that
L(f,P) <U(f,Q), where L(f,P) and U(f, Q) are the lower and upper Riemann sums, respectively,
for f on [a,b].
Hint: The result is trivial if P = Q; now let R = P U Q.
ANS: The following are relatively easy to prove for any subdivision P and any subdivision R such that

P CR: L(f,P) U(f,P), L(f,P) < L(f,R), and U(f,R) < U(f,P). Thus if P, Q, and R are as in the
problem, then

L(f,P) < L(f,R)
<U(f,R)
<U(f, Q).
Here are two suggestions for proving that L(f,R) > L(f,P).

Method I—Brute Force: Let P={a=ty < - <t, =bland R={a=s0 <+ < 8m }. Since P C R,
for any k, there is a unique ¢ such that [sx—1, sx] C [ti—1, ¢;]. Furthermore,

ti —ti-1 = Z Sk — Sk—1- (1)

[sk—1:5k]C[ti—1,t:]
Thus if
m;:= inf f(¢t) and np= inf  f(t),

tefti—1,t;] t€sk_1,5%]

then we have m; < ny whenever [sx—1,sk] C [ti—1,t:]. Thus

L(f,R) =) nu(sk — sk-1)

= zn: ( Z ne(sk — Sk—l))

=1 [sp—1,55]Cti—1,t;]

>Zzn;mi ( Z Sk_sk—l)

[sk—1:86]Clti—1,t:]

which, by (), is

= Zmi(ti —ti—1)
= L(f,P).



Method II—Simple: Suppose that R refines P = {a =ty < --- < ¢, = b} by adding a single point s
where t;_1 < s < tj. Define m; as in “Method I” and let

o= f t d io = inf t
np= inf f() and nz= inf f(0)

and note that m; < ni; + n2j. Then

n

Zmz ti —tic1) +nji(s — tic1) + noi(ti —s) + Z mi(t; — ti—1)

i=j+1
<Zmz ti —ti— 1

:L(f7 )

Now the general result follows from a simple induction.

3. Prove that a bounded function f : [a,b] — R is Riemann integrable on [a, b] if and only if for all

€ > 0 there is a subdivision P of [a, b] such that

U(f,P)—L(f,P) <e.

ANS: Note that for any subdivision P, L(f, P) < Rf f and U(f,P) > RT Z Suppose that f is Riemann
integrable. Then given € > 0 there are subdwzswns P and Q such that

b
R/ f—MﬂP%<; and

— b
€
—R/af<§.

Now let R = P U Q. Then using the previous problem, we see that the two inequalities above hold with P
—b
and Q replaced by R. In particular, since f is integrable, R [ br= Rf = Rf: f and

13 b b 3
(R LR <5+R [ 1R [ 545 =

Now assume that for all € > 0 a subdivision P exists as stated in the problem. The previous problem

implies that
b — b
R / <R / I

Let € > 0 be given, and choose P such that U(f,P) — L(f,P) < . Thus

—b
R/bfZL(f,P)>U(f7P)—52R/ f—e

OgR/Cf—R/bf<a

)

Thus,



—b
Since ¢ is arbitrary, it follows that R [ J= RS bf7 and f is Riemann integrable on [a, b] as required.

4. (Rudin: page 31 #1) Suppose that (X, M) is a measurable space. Show that if M is countable,
then M is finite.
Hint: Since M is countable, you can show that w, = ([{ F : E € M and = € E'} belongs to M.
The sets { w; },ex partition X.
ANS: Notice that if E € M and if z € E, then w, C E. On the other hand, if F € M and if z ¢ F,
then z € w; \ F, and wy C we \ F so wy N F = (. Thus if w, Nwy # 0, then z € w, and w; C wy. By
symmetry, wy C wy and w; = wy. This shows that {wy }zex partitions X. If z € F € M, then w, C F
and F' = |J, cpws. Thus the elements of M are in one-to-one correspondence with the (distinct) subsets of
{wz }oex. If this set is finite, then so is M. If it is infinite, then it has at least as many subsets as does Z
— and there are uncountably many of these.

5. Let X be an uncountable set and let M be the collection of subsets E of X such that either F
or E° is countable. Prove that M is a o-algebra.

ANS: Since M certainly contains X and is closed under taking complements, the only issue is to show that
M is closed under countable unions. Suppose that { E, }52; C M. If all the E,, are countable, then the
countable union E = J,, En of countable sets is countable and E € M. If Ej, is countable, then note that
E° C Ej must also be countable. Thus in all cases, E € M and M is a o-algebra.

6. Recall from calculus that if { a,, } is a sequence of nonnegative real numbers, then
> o | Gy = SUp,, Sp, where s, = aj + - -+ + a,. (Note the value oo is allowed.)

(a) Show that > >°; an =sup{ > ,cpak : F is a finite subset of Z* =1,2,3,... }.
Note: The point of this problem is that if I is a (not necessarily countable) set, and if a; > 0
for all i € I, then we can define ), ; a; = sup{ ) _,cpax : F is a finite subset of I }, and our
new definition coincides with the usual one when both make sense.

ANS: Let I =sup{ ), cpax: F is a finite subset of 7t =1,2,3,... }. Since F = {1,...,n} is finite,

IZsup{Zak:F:{l,...,n}}

keF
oo
= sup s, = E Qn .
n=1

Let € > 0. Choose a finite set F C ZT such that ZkeF ar > I —e. Let m = maxgep k. Then s,,, > ZkEF ar >
I — . Thus

oo
ZanzsupSHZSm >1—e.

n=1

Since € was arbitary, >~ | an > I. Thus > 2 an = I as claimed.



(b)

Now let X be a set and f: X — [0,00) a function. For each E C X, define

v(E) = f(x).

zel

Show that v is a measure on (X ,P(X )) In lecture, we considered the special cases of counting
measure, where f(x) =1 for all x € X, and the delta measure at xy, where f(xg) = 1 for some
rg € X and f(x) = 0 otherwise. Another important example is the case where )y f(z) =
1. Then f is a (discrete) probability distribution on X and v(FE) is the probability of the
event F for this distribution.

ANS: Let { E, } be disjoint sets and F = |J,, En. Suppose that v(E) = co. Fix M > 0. Choose a finite set
F C E such that M <} f(x). Let F;, = {z € F:x € E, }. Since all but finitely many F, are empty,

M<Y fl@)=) > fl@) <y v(En).

z€F n x€Fp

Since M is arbitrary, Y oo, v(En) = 0o = v(E). So we can assume from here on that v(E) < co. Let € > 0.
Choose a finite set F' C E such that v(E) —e < > _p f(x). Let F,, = {x € F: x € E, }. Since all but finitely

may F, are empty,
oo

WE)—e< S f@) =33 f@) <> ulEn).

zEF n xzeF, n=1
Since ¢ is arbitrary, v(E) < 32 | v(En).
Notice that if ¥(F) < oo, the v(Ex) < oo for all k. Let ¢ > 0. Since Y, v(En) = sup, y_pr_, V(Ex) it will
suffice to show that for any n

v(E) +e > il/(Ek)

Choose finite sets Fx C Ej such that

V(B ~ < D (@),

zEFy
Put F = J}_, Fr. Note that F is finite, and since the F}, are disjoint,

WE) > S (@) =33 f@) > —e+ S vl
k=1

z€F k=1z€cF}

That’s it.

Let X, f, and v be as in part (b). Show that if ¥(F) < oo, then {z € E : f(x) > 0} is
countable.
Hint: If {z € E: f(x) > 0} is uncountable, then for some m € Z*, the set
Loy
{zeE: f(z)> E} is infinite.

This last result says that discrete probability distributions “live on” countable sample spaces.

—4—



7. (Rudin: page 31 #3) Prove that if f is a real-valued function on a measurable space (X, M)
such that {z : f(x) > r} is measurable for all rational r, then f is measurable.

ANS: Note that for all a € R we have
{reX: f(x) >a} = U {zeX: f(z)>r}

reQN(a,+o0)

Hence {x € X : f(x) > a} is a countable union of measurable sets and therefore measurable.
As {z € X : f(z) > a} = f~*((a, +00]) is measurable for all a € R, we know that f is measurable.

8. (Rudin: page 31 #5) Suppose that f,g : (X, M) — [—00, 00| are measurable functions. Prove
that the sets

{z:f(z) <g(x)} and {z:f(z)=g(2)}
are measurable.

Remark: If h = f — g were defined, then this problem would be much easier (why?). The problem
is that co — co and —oo 4+ oo make no sense, so h may not be everywhere defined.
ANS: Since {z: f(z) = g(z) } is the complement of {z : f(z) < g(z) }U{z : g(z) < f(x) } it suffice to see
that {z : f(z) < g(z) } is measurable. But
{z: f(z) <g(x)}=J{z: fl&) <r <g(2)},

r€Q

and each {z : f(z) <r < g(z)} =g " ((r,00]) N f~"([—o0, 7)) is measurable.



