Math 73/103: Measure Theory and Complex Analysis Fall 2019 - Homework 1

1. Show that the *countable* union of sets of measure zero in \mathbb{R} has measure zero.

ANS: Suppose that E_n has measure zero for n = 1, 2, ..., and let $E = \bigcup E_n$. Let $\varepsilon > 0$. By assumption, there are intervals $I_{n,m}$ such that $E_n \subset \bigcup_{m=1}^{\infty} I_{n,m}$ and $\sum_{m=1}^{\infty} \ell(I_{n,m}) < \frac{\varepsilon}{2^n}$. Then $E \subset \bigcup_{n,m=1}^{\infty} I_{n,m}$ and $\sum_{n,m=1}^{\infty} \ell(I_{n,m}) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon$. This suffices.

2. Suppose $f : [a,b] \to \mathbb{R}$ is bounded, and let \mathcal{P} and \mathcal{Q} be subdivisions of [a,b]. Prove that $L(f,\mathcal{P}) \leq U(f,\mathcal{Q})$, where $L(f,\mathcal{P})$ and $U(f,\mathcal{Q})$ are the lower and upper Riemann sums, respectively, for f on [a,b].

Hint: The result is trivial if $\mathcal{P} = \mathcal{Q}$; now let $\mathcal{R} = \mathcal{P} \cup \mathcal{Q}$.

ANS: The following are relatively easy to prove for any subdivision \mathcal{P} and any subdivision \mathcal{R} such that $\mathcal{P} \subset \mathcal{R}$: $L(f, \mathcal{P}) \leq U(f, \mathcal{P}), L(f, \mathcal{P}) \leq L(f, \mathcal{R})$, and $U(f, \mathcal{R}) \leq U(f, \mathcal{P})$. Thus if \mathcal{P}, \mathcal{Q} , and \mathcal{R} are as in the problem, then

$$L(f, \mathcal{P}) \le L(f, \mathcal{R})$$
$$\le U(f, \mathcal{R})$$
$$\le U(f, \mathcal{Q}).$$

Here are two suggestions for proving that $L(f, \mathcal{R}) \ge L(f, \mathcal{P})$.

Method I—Brute Force: Let $\mathcal{P} = \{a = t_0 < \cdots < t_n = b\}$ and $\mathcal{R} = \{a = s_0 < \cdots < s_m\}$. Since $\mathcal{P} \subset \mathcal{R}$, for any k, there is a unique i such that $[s_{k-1}, s_k] \subset [t_{i-1}, t_i]$. Furthermore,

$$t_i - t_{i-1} = \sum_{[s_{k-1}, s_k] \subset [t_{i-1}, t_i]} s_k - s_{k-1}.$$
(†)

Thus if

$$m_i := \inf_{t \in [t_{i-1}, t_i]} f(t)$$
 and $n_k = \inf_{t \in [s_{k-1}, s_k]} f(t)$

then we have $m_i \leq n_k$ whenever $[s_{k-1}, s_k] \subset [t_{i-1}, t_i]$. Thus

$$L(f, \mathcal{R}) = \sum_{k=1}^{m} n_k (s_k - s_{k-1})$$

= $\sum_{i=1}^{n} \left(\sum_{[s_{k-1}, s_k] \subset [t_{i-1}, t_i]} n_k (s_k - s_{k-1}) \right)$
 $\geq \sum_{i=1}^{n} m_i \left(\sum_{[s_{k-1}, s_k] \subset [t_{i-1}, t_i]} s_k - s_{k-1} \right)$

which, by (\dagger) , is

$$=\sum_{i=1}^{n}m_i(t_i-t_{i-1})$$
$$=L(f,\mathcal{P}).$$

Method II—Simple: Suppose that \mathcal{R} refines $\mathcal{P} = \{a = t_0 < \cdots < t_n = b\}$ by adding a single point s where $t_{j-1} < s < t_j$. Define m_i as in "Method I" and let

$$n_{j1} = \inf_{t \in [t_{j-1},s]} f(t)$$
 and $n_{j2} = \inf_{t \in [s,t_j]} f(t)$,

and note that $m_j \leq n_{1j} + n_{2j}$. Then

$$L(f,\mathcal{R}) = \sum_{i=1}^{j-1} m_i(t_i - t_{i-1}) + n_{j1}(s - t_{i-1}) + n_{2j}(t_i - s) + \sum_{i=j+1}^n m_i(t_i - t_{i-1})$$

$$\leq \sum_{i=1}^n m_i(t_i - t_{i-1})$$

$$= L(f,\mathcal{P}).$$

Now the general result follows from a simple induction.

3. Prove that a bounded function $f : [a, b] \to \mathbb{R}$ is Riemann integrable on [a, b] if and only if for all $\varepsilon > 0$ there is a subdivision \mathcal{P} of [a, b] such that

$$U(f,\mathcal{P}) - L(f,\mathcal{P}) < \varepsilon.$$

ANS: Note that for any subdivision \mathcal{P} , $L(f, \mathcal{P}) \leq \mathcal{R} \int_{a}^{b} f$ and $U(f, \mathcal{P}) \geq \mathcal{R} \overline{\int}_{a}^{b}$ Suppose that f is Riemann integrable. Then given $\varepsilon > 0$ there are *subdivisions* \mathcal{P} and \mathcal{Q} such that

$$\mathcal{R} \underline{\int}_{a}^{b} f - L(f, \mathcal{P}) < \frac{\varepsilon}{2}, \text{ and}$$

 $U(f, \mathcal{Q}) - \mathcal{R} \overline{\int}_{a}^{b} f < \frac{\varepsilon}{2}.$

Now let $\mathcal{R} = \mathcal{P} \cup \mathcal{Q}$. Then using the previous problem, we see that the two inequalities above hold with \mathcal{P} and \mathcal{Q} replaced by \mathcal{R} . In particular, since f is integrable, $\mathcal{R} \underline{\int}_{a}^{b} f = \mathcal{R} \overline{\int}_{a}^{b} f = \mathcal{R} \int_{a}^{b} f$ and

$$U(f,\mathcal{R}) - L(f,\mathcal{R}) < \frac{\varepsilon}{2} + \mathcal{R} \int_{a}^{b} f - \mathcal{R} \int_{a}^{b} f + \frac{\varepsilon}{2} = \varepsilon.$$

Now assume that for all $\varepsilon > 0$ a subdivision \mathcal{P} exists as stated in the problem. The previous problem implies that

$$\mathcal{R} \underline{\int}_{a}^{b} f \leq \mathcal{R} \overline{\int}_{a}^{b} f$$

Let $\varepsilon > 0$ be given, and choose \mathcal{P} such that $U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon$. Thus

$$\mathcal{R} \underline{\int}_{a}^{b} f \geq L(f, \mathcal{P}) > U(f, \mathcal{P}) - \varepsilon \geq \mathcal{R} \overline{\int}_{a}^{b} f - \varepsilon.$$

Thus,

$$0 \leq \mathcal{R}\overline{\int}_{a}^{b} f - \mathcal{R}\underline{\int}_{a}^{b} f < \varepsilon.$$

Since ε is arbitrary, it follows that $\mathcal{R}\overline{\int}_{a}^{b}f = \mathcal{R}\underline{\int}_{a}^{b}f$, and f is Riemann integrable on [a, b] as required.

4. (*Rudin*: page 31 #1) Suppose that (X, \mathcal{M}) is a measurable space. Show that if \mathcal{M} is countable, then \mathcal{M} is finite.

Hint: Since \mathcal{M} is countable, you can show that $\omega_x = \bigcap \{ E : E \in \mathcal{M} \text{ and } x \in E \}$ belongs to \mathcal{M} . The sets $\{ \omega_x \}_{x \in X}$ partition X.

ANS: Notice that if $E \in \mathcal{M}$ and if $x \in E$, then $\omega_x \subset E$. On the other hand, if $F \in \mathcal{M}$ and if $x \notin F$, then $x \in \omega_x \setminus F$, and $\omega_x \subset \omega_x \setminus F$ so $\omega_x \cap F = \emptyset$. Thus if $\omega_x \cap \omega_y \neq \emptyset$, then $x \in \omega_y$ and $\omega_x \subset \omega_y$. By symmetry, $\omega_y \subset \omega_x$ and $\omega_x = \omega_y$. This shows that $\{\omega_x\}_{x\in X}$ partitions X. If $x \in F \in \mathcal{M}$, then $\omega_x \subset F$ and $F = \bigcup_{x\in F} \omega_x$. Thus the elements of \mathcal{M} are in one-to-one correspondence with the (distinct) subsets of $\{\omega_x\}_{x\in X}$. If this set is finite, then so is \mathcal{M} . If it is infinite, then it has at least as many subsets as does \mathbb{Z} —and there are uncountably many of these.

5. Let X be an uncountable set and let \mathcal{M} be the collection of subsets E of X such that either E or E^c is countable. Prove that \mathcal{M} is a σ -algebra.

ANS: Since \mathcal{M} certainly contains X and is closed under taking complements, the only issue is to show that \mathcal{M} is closed under countable unions. Suppose that $\{E_n\}_{n=1}^{\infty} \subset \mathcal{M}$. If all the E_n are countable, then the countable union $E = \bigcup_n E_n$ of countable sets is countable and $E \in \mathcal{M}$. If E_k^c is countable, then note that $E^c \subset E_k^c$ must also be countable. Thus in all cases, $E \in \mathcal{M}$ and \mathcal{M} is a σ -algebra.

6. Recall from calculus that if $\{a_n\}$ is a sequence of nonnegative real numbers, then $\sum_{n=1}^{\infty} a_n = \sup_n s_n$, where $s_n = a_1 + \cdots + a_n$. (Note the value ∞ is allowed.)

(a) Show that $\sum_{n=1}^{\infty} a_n = \sup\{\sum_{k\in F} a_k : F \text{ is a finite subset of } \mathbb{Z}^+ = 1, 2, 3, \dots\}$. **Note:** The point of this problem is that if I is a (not necessarily countable) set, and if $a_i \ge 0$ for all $i \in I$, then we can define $\sum_{i\in I} a_i = \sup\{\sum_{k\in F} a_k : F \text{ is a finite subset of } I\}$, and our new definition coincides with the usual one when both make sense.

ANS: Let $I = \sup\{\sum_{k \in F} a_k : F \text{ is a finite subset of } \mathbb{Z}^+ = 1, 2, 3, \dots\}$. Since $F = \{1, \dots, n\}$ is finite,

$$I \ge \sup\{\sum_{k \in F} a_k : F = \{1, \dots, n\}$$
$$= \sup s_n = \sum_{n=1}^{\infty} a_n.$$

}

Let $\varepsilon > 0$. Choose a finite set $F \subset \mathbb{Z}^+$ such that $\sum_{k \in F} a_k > I - \varepsilon$. Let $m = \max_{k \in F} k$. Then $s_m \ge \sum_{k \in F} a_k > I - \varepsilon$. Thus

$$\sum_{n=1}^{\infty} a_n = \sup s_n \ge s_m > I - \varepsilon$$

Since ε was arbitrary, $\sum_{n=1}^{\infty} a_n \ge I$. Thus $\sum_{n=1}^{\infty} a_n = I$ as claimed.

(b) Now let X be a set and $f: X \to [0, \infty)$ a function. For each $E \subset X$, define

$$\nu(E) := \sum_{x \in E} f(x).$$

Show that ν is a measure on $(X, \mathcal{P}(X))$. In lecture, we considered the special cases of *counting* measure, where f(x) = 1 for all $x \in X$, and the *delta measure at* x_0 , where $f(x_0) = 1$ for some $x_0 \in X$ and f(x) = 0 otherwise. Another important example is the case where $\sum_{x \in X} f(x) =$ 1. Then f is a (discrete) probability distribution on X and $\nu(E)$ is the probability of the event E for this distribution.

ANS: Let $\{E_n\}$ be disjoint sets and $E = \bigcup_n E_n$. Suppose that $\nu(E) = \infty$. Fix M > 0. Choose a finite set $F \subset E$ such that $M < \sum_{x \in F} f(x)$. Let $F_n = \{x \in F : x \in E_n\}$. Since all but finitely many F_n are empty,

$$M < \sum_{x \in F} f(x) = \sum_{n} \sum_{x \in F_n} f(x) \le \sum_{n=1}^{\infty} \nu(E_n).$$

Since *M* is arbitrary, $\sum_{n=1}^{\infty} \nu(E_n) = \infty = \nu(E)$. So we can assume from here on that $\nu(E) < \infty$. Let $\varepsilon > 0$. Choose a finite set $F \subset E$ such that $\nu(E) - \varepsilon < \sum_{x \in F} f(x)$. Let $F_n = \{x \in F : x \in E_n\}$. Since all but finitely may F_n are empty,

$$\nu(E) - \varepsilon < \sum_{x \in F} f(x) = \sum_{n} \sum_{x \in F_n} f(x) \le \sum_{n=1}^{\infty} \nu(E_n).$$

Since ε is arbitrary, $\nu(E) \leq \sum_{n=1}^{\infty} \nu(E_n)$.

Notice that if $\nu(E) < \infty$, the $\nu(E_k) < \infty$ for all k. Let $\varepsilon > 0$. Since $\sum_n \nu(E_n) = \sup_n \sum_{k=1}^n \nu(E_k)$ it will suffice to show that for any n

$$\nu(E) + \varepsilon > \sum_{k=1}^{n} \nu(E_k).$$

Choose finite sets $F_k \subset E_k$ such that

$$\nu(E_k) - \frac{\varepsilon}{n} < \sum_{x \in F_k} f(x)$$

Put $F = \bigcup_{k=1}^{n} F_k$. Note that F is finite, and since the F_k are disjoint,

$$\nu(E) \ge \sum_{x \in F} f(x) = \sum_{k=1}^{n} \sum_{x \in F_k} f(x) > -\varepsilon + \sum_{k=1}^{n} \nu(E_k).$$

That's it.

(c) Let X, f, and ν be as in part (b). Show that if $\nu(E) < \infty$, then $\{x \in E : f(x) > 0\}$ is countable.

Hint: If $\{x \in E : f(x) > 0\}$ is uncountable, then for some $m \in \mathbb{Z}^+$, the set

$$\{x \in E : f(x) > \frac{1}{m}\}$$
 is infinite

This last result says that discrete probability distributions "live on" countable sample spaces.

7. (*Rudin*: page 31 #3) Prove that if f is a real-valued function on a measurable space (X, \mathcal{M}) such that $\{x : f(x) \ge r\}$ is measurable for all rational r, then f is measurable.

ANS: Note that for all $a \in \mathbb{R}$ we have

$$\{x \in X : f(x) > a\} = \bigcup_{r \in \mathbb{Q} \cap (a, +\infty)} \{x \in X : f(x) \ge r\}$$

Hence $\{x \in X : f(x) > a\}$ is a countable union of measurable sets and therefore measurable. As $\{x \in X : f(x) > a\} = f^{-1}((a, +\infty))$ is measurable for all $a \in \mathbb{R}$, we know that f is measurable.

8. (*Rudin*: page 31 #5) Suppose that $f, g: (X, \mathcal{M}) \to [-\infty, \infty]$ are measurable functions. Prove that the sets

$$\{x: f(x) < g(x)\}$$
 and $\{x: f(x) = g(x)\}$

are measurable.

Remark: If h = f - g were defined, then this problem would be much easier (why?). The problem is that $\infty - \infty$ and $-\infty + \infty$ make no sense, so h may not be everywhere defined.

ANS: Since $\{x : f(x) = g(x)\}$ is the complement of $\{x : f(x) < g(x)\} \cup \{x : g(x) < f(x)\}$ it suffice to see that $\{x : f(x) < g(x)\}$ is measurable. But

$$\{ x : f(x) < g(x) \} = \bigcup_{r \in \mathbb{Q}} \{ x : f(x) < r < g(x) \},\$$

and each $\{x : f(x) < r < g(x)\} = g^{-1}((r,\infty)) \cap f^{-1}([-\infty,r))$ is measurable.