
Math 73/103: Measure Theory and Complex Analysis
Fall 2019 - Homework 2

1. Page 32 of Rudin, problem #6. (Note that we have already shown that M is a σ-algebra so
there is no need to show it again.)

ANS: We already know M is a σ-algebra. Let {Ei} be a countable pairwise disjoint family of measurable
subsets with E :=

⋃
iEi. If all the Ei are countable then so is E. Thus we clearly have

µ(E) =
∑
i

µ(Ei).

On the other hand, if one the Ei — say Ek is uncountable, then Eck is countable and contains all the other
Ei with i 6= k. Thus E is uncountable, µ(E) = 1 and∑

i

µ(Ei) = µ(Ek) = 1.

Thus µ is a measure.
The key to the rest of the problem is to realize that f : (X,M) → C is measurable if and only if f is

constant µ-almost everywhere; that is, f is measurable if and only if there is a c ∈ C such that f−1(X \ {c})
is countable. Of course, if this assertion is correct, then f is equal to the constant function g(x) = c almost
everywhere and ∫

X

f dµ =

∫
X

c dµ = cµ(X) = c.

It is fairly clear that if f is constant almost everywhere, then f is measurable. So, assume that f is
measurable. Then for any open set V , either f−1(V ) is uncountable or f−1(V )c = f−1(V c) is uncountable.
Let {Vn} be a countable basis for the topology of C. In view of the above, let

Bn :=

{
Vn if f−1(Vn) is uncountable, and

V cn if f−1(V cn ) is uncountable.

Let A =
⋂
Bn. I claim that A can consist of at most one point. If x 6= y, then there is a n such that

x ∈ Vn and y ∈ V cn . Thus at most one of x and y belong to Bn. Thus at most one of x and y can belong
to A. Now it will suffice to see that f−1(A) is uncountable. (This implies its complement is countable.) For
this, it suffices to see that µ(f−1(A)) = 1.

But since C ∪ D is the disjoint union of C \ D, C ∩ D and D \ C, it follows that if both f−1(C) and
f−1(D) are uncountable, then so is f−1(C ∩D). But

A =
⋂
n

Bn =
⋂
n

Fn where, Fn = B1 ∩ · · · ∩Bn.

Then f−1(Fn) is uncountable and

µ(f−1(A)) = lim
n
µ(f−1(Fn)) = 1.

This completes the proof.

2. Page 32 of Rudin, problem #7.

ANS: Note that fn(x) = |fn(x)| ≤ f1(x) for all x ∈ X, and f1 ∈ L1(µ). Therefore, the conclusion follows
from the LDCT. For a counterexample, take fk := I[k,∞). Then fk ↘ 0, but all the fk have infinite integrals.
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3. Page 32 of Rudin, problem #10.

ANS: Since constant functions are summable if µ(X) < ∞, use the LDCT on the sequence gn = |fn − f |
together with the observation that fn and fn − f integrable implies f is too.1

For a counterexample when µ(X) = ∞, consider Lebesgue measure on R and set fn = 1
n
I
[−n,n]

. Then

fn → 0 uniformly, while
∫
R fn du = 2 for all n.

4. Page 32 of Rudin, problem #12. (This is easy if f is bounded.)

ANS: First notice that the conclusion is obvious if f is bounded2. In general, let fn = min{|f |, n}. Since
fn ↗ |f |, the MCT implies that

∫
X
fn dµ↗

∫
X
|f | dµ. In particular, we can choose N such that∣∣∣∣∫

X

fN dµ−
∫
X

|f | dµ
∣∣∣∣ < ε

2
.

Now since fN is bounded, choose δ > 0 so that µ(E) < δ implies that
∫
E
fN dµ < ε/2. The point being that∫

E

|f | dµ ≤
∣∣∣∣∫
E

fN dµ

∣∣∣∣+

∣∣∣∣∫
X

(|f | − fN ) dµ

∣∣∣∣ < ε.

(We’ve used |f | ≥ fN for the second to last inequality.)

5. Suppose that Y is a topological space and that M is a σ-algebra in Y containing all the Borel
sets. Suppose in addition, µ is a measure on (Y,M) such that for all E ∈M we have

µ(E) = inf{µ(V ) : V is open and E ⊂ V }. (1)

Suppose also that

Y =

∞⋃
n=1

Yn with µ(Yn) <∞ for all n ≥ 1. (2)

One says that µ is a σ-finite outer regular measure on (Y,M).

(a) Show that Lebesgue measure m is a σ-finite outer regular measure on (R,M).

ANS: Since (1) is obviously satisfied if m(E) = ∞, we can assume that m(E) < ∞. If ε > 0, then by
definition of m (as the restriction of m∗), there are open intervals {In}) such that

E ⊂
⋃
n

In and m(E) + ε >
∑
n

`(In).

1Alternatively, you can show that the { fn } are uniformly bounded ; that is, there exists M such that ‖fn‖∞ ≤M
for all n. However, you must prove this. By assumption, we only know that for each n, Mn := ‖fn‖∞ <∞. But by
assumption, there is a N such that n ≥ N implies ‖fn − f‖∞ < 1. It follows that ‖f‖∞ ≤ ‖fN‖∞ + 1 and for all n

‖fn‖∞ ≤M := max{ ‖f‖1, . . . , ‖fN‖∞, ‖fN‖∞ + 2 }.

Now we can apply the LDCT with g ≡M .
2This technique is used quite often—reduce the problem to a simpler situation (e.g., a characteristic function,

simple function, or, as here, a bounded function.
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But V :=
⋃
n In is an open set containing E and

m(E) + ε >
∑
n

`(In) =
∑
n

m(In) ≥ m(V ) ≥ m(E).

This implies (1). Since R =
⋃
n[−n, n], Lebesgue measure is also σ-finite. This proves (a).

(b) Suppose E is a µ-measurable subset of Y .

(i) Given ε > 0, show that there is an open set V ⊂ Y and a closed set F ⊂ Y such that
F ⊂ E ⊂ V and µ(V \ F ) < ε.

ANS: Suppose µ(E) <∞. Then in view of (1), there is an open set V ⊃ E such that µ(V )−µ(E) < ε/2.
Since µ(E) < ∞, µ(V \ E) < ε/2. Now in general, X =

⋃
nXn with µ(Xn) < ∞ for each n. Let

En = E ∩Xn. Then there are open sets Vn ⊂ En such that µ(Vn \En) < ε
2n=1 . Let V =

⋃
Vn. Then V

is open and contains E. Furthermore,

µ(V \ E) = µ
(⋃

Vn \
⋃
En
)
≤ µ

(⋃
n

(Vn \ En)
)
≤ ε/2.

But the above reasoning shows that there is an open set W containing Ec such that µ(W \ Ec) < ε/2.
Then F = W c is a closed subset of E, and µ(E \F ) < ε/2. Then, since V \F = V \E ∪E \F , we have
µ(V \ F ) < ε as required.

(c) Argue that (R,M,m) is the completion of the restriction of Lebesgue measure to the Borel
sets in R.

ANS: Let B = B(R) be the Borel sets in R. Let (R,B0,m0) be the completion. Since Gδ sets and Fσ sets are
Borel, part (b)(ii) shows that M ⊂ B0. But if E ∈ B0, then E = B ∪N where B is Borel and N is a subset
of a Borel m-null set. Since Lebesgue measure is complete, N ∈M, and hence, E ∈M. ThusM = B0 and it
is clear that m = m0.

6. Let m be Lebesgue measure on R and suppose that E is a set of finite measure. Given ε > 0,
show that there is a finite disjoint union F of open intervals such that m(E4F ) < ε where
E4F := (E \ F ) ∪ (F \ E) is the symmetric difference. (This illustrates the first of Littlewood’s
three principles: “Every Lebesgue measurable set is nearly a disjoint union of open intervals”.)

ANS: In view of problem 5a, there is an open set V ⊂ R containing E such that m(V \E) < ε/2. But V is
a countable disjoint union of intervals: V =

⋃
n In. Since µ(E) <∞, we must also have µ(V ) <∞ and then

∞ > m(V ) =

∞∑
n=1

m(In),

there is a N such that
∑
n>N m(In) < ε/2. Let F =

⋃N
n=1 In. (Then F is a disjoint union of intervals.) Also

m(E∆F ) = m(E \ F ) +m(F \ E) ≤ m(V \ F ) +m(V \ E) < ε.
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7. Let (X,M, µ) be a measure space, and let (X,M0, µ0) be its completion.

(a) Let f : X → C be a µ0-measurable function and assume that g : X → C is a µ-measurable
function such that f = g a.e. [µ0]. Is there necessarily a µ-null set N such that f(x) = g(x)
for all x /∈ N?

ANS: If g is µ-measurable, then {x ∈ X : f(x) 6= g(x) } is only guaranteed to belong to M0. But if it is a
µ0-null set then it is contained in a µ-null set N ∈M.

(b) If f : X → C is µ0-measurable, show that there is a µ-measurable function g : X → C such
that f = g a.e. [µ0].

ANS: Clearly, it suffices to consider only functions f : X → [0,∞). I claim it is enough to prove that the
result is true for simple functions. In view of (a), this means that given any µ0-measurable simple function
s, there is a µ-measurable simple function s′ which agrees with s off a µ-null set in M. Recall that there are
nonnegative µ0-measurable simple functions sn ↗ f . If there are nonnegative µ-measurable simple functions
s′n and null sets Nn ∈M so that s′n = sn off Nn, then s′n ↗ f except possibly on the null set N =

⋃
Nn ∈M.

Replacing the s′n by s′′n = I
X\N

· s′n, then the sequence { s′′n } converges everywhere to a function g which is

necessarily µ-measurable. Of course, g = f off N . This proves the claim.

However, to prove the result for a simple function, it surely suffices to prove it only for a characteristic function
of a measurable set D ∈ M0. By definition, D is µ0-measurable if and only if there are sets A,B ∈ B so that
A ⊆ D ⊆ B with µ(B \A) = 0. In particular, I

A
= I

D
off of N = B \A; this completes the proof.

(c) What does this result say about Lebesgue measurable functions and Borel functions on R?
(Compare with problem #14 on page 59 of Rudin.)

ANS: Since the Lebesgue measurable sets (with Lebesgue measure) result from the completion of Lebesgue
measure on the Borel sets, we obtain, as a special case, the fact that a Lebesgue measurable function is equal
to a Borel function almost everywhere.
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