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Lecture 14

Chapter 2.5 - L1 spaces

Outline A normed vector space which is complete is called a Banach space. L1(µ) is a vec-
tor space, but in general not complete. We can complete L1(µ) to L1(µ) by taking equivalence
classes of functions where two functions are equivalent if they coincide almost everywhere.

We recall the de�nition of a norm on a vector space. In the following we assume that F is
a �eld where F = C or F = R.

De�nition 1 (Norm) Let V be a vector space over a �eld F where F = C or F = R. A
norm is a map

‖ · ‖ : V → [0,+∞) such that for all v, w ∈ V

a) ‖v‖ = 0⇔ v = 0.

b) ‖λ · v‖ = |λ| · ‖v‖ for all λ ∈ F.

c) ‖v + w‖ ≤ ‖v‖+ ‖w‖ (4 6=).

Every norm ‖ · ‖ induced a metric d : V × V → [0,∞), (u, v) 7→ d(u, v) := ‖u− v‖.

Example 2 (p - norms) For V = Cn or V = Rn we have for v = (v1, v2, . . . , vn) ∈ V :

1.) ‖v‖1 =
∑n

i=1 |vi| (1 - norm)

2.) ‖v‖2 =
(∑n

i=1 |vi|2
) 1

2 (2 - norm or Euclidean norm)

3.) ‖v‖p = (
∑n

i=1 |vi|p)
1
p for p ∈ [1,+∞) (p - norm)

4.) ‖v‖∞ = maxi∈{1,...,n} |vi| (∞ - norm)

Picture Sketch the unit circles in R2 with respect to 1.), 2.) and 4.):
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Given a measure space (X,M, µ) we would like to de�ne a norm on L1(µ) by

‖f‖1 =
∫
X
|f | dµ .

Problem Condition a) of the norm is not satis�ed.
Solution We make a vector space out of classes of functions:

De�nition 3 (L1 space) Let (X,M, µ) be a measure space. We set

L1(µ) := L1(µ)/ ∼ where f ∼ g ⇔ f = g almost everywhere.

Theorem 4 Let (X,M, µ) be a measure space. Then (L1(µ), ‖ · ‖) with the norm

‖f‖1 =
∫
X
|f | dµ is a normed vector space.

proof 1.) L1(µ) is a vector space

We have seen that L1(µ) is a vector space. We can show that

W := {f ∈ L1(µ) |
∫
X
|f | dµ = 0}

is a subspace. Then it follows from Linear Algebra that the quotient space
L1(µ) := L1(µ)/W is again a vector space. We check the subspace criteria:

2.) ‖ · ‖ is a norm on L1(µ)

To show that ‖ · ‖ is a norm on L1(µ) we remark that L1(µ) inherits condition b) and c) of
the norm from L1(µ). We recall that c) follows from Minkowski's inequality. So it remains to
show that L1(µ) := L1(µ)/W = L1(µ)/ ∼ to complete part a):

Suppose that

∫
X
|f | dµ = 0. We have to show that f = 0 almost everywhere. Let

E = {x ∈ X | |f(x)| > 0}

We have to show that µ(E) = 0.
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We prove the statement by contradiction:
Let En = {x ∈ X | |f(x)| > 1

n}, then E =
⋃

n∈NEn. Hence if µ(E) > 0 then

Note Though L1(µ) is not a space of functions, we will often pretend that it is.

Remark We recall that a metric space is complete if every Cauchy sequence converges in
the space. We have:

De�nition 6 (Banach space) A normed vector space (V, ‖ · ‖) that is complete is called a
Banach space.

We want to prove that (L1(µ), ‖ · ‖1) is a Banach space. To this end we prove the following
lemma:

Lemma 7 A normed vector space (V, ‖ · ‖) is complete if and only if every absolute conver-
gent series in V is convergent in V .

proof "⇒" We know that every Cauchy sequence is complete. For (vk)k∈N let
∑

k∈N vk be
an absolutely convergent series i.e.

∑
k∈N ‖vk‖ = S < ∞. Let Sn :=

∑n
k=1 ‖vk‖ As (Sn)n ⊂ R

is converging to S this implies that (Sn)n is a Cauchy sequence. Hence

By the 4 6= this implies that

Hence the series (sn)n where sn :=
∑n

k=1 vk is a Cauchy sequence and limn→∞ sn = s ∈ V
as (V, ‖ · ‖) is complete. Hence the series converges in V .

"⇐" Now assume that absolute convergence implies convergence of a series and let (vn)n∈N
be a Cauchy sequence in V . As it is a Cauchy sequence we can extract a subsequence (vnk

)k∈N,
such that

‖vnk+1
− vnk

‖ < 1

2k
. (*)

We now turn the sequence (vnk
)k∈N into a telescoping sum. To this end we set



Math 103: Measure Theory and Complex Analysis

Fall 2018

10/15/18

Then by (*) we know that
∑

k≥1 ‖ak‖ converges, hence by our assumption
∑

k≥1 ak converges
to v ∈ V . This is equal to that the subsequence (vnk

)k converges to v. Then by the 4 6= this
implies that (vn)n∈N converges to v ∈ V .

In total we have shown the lemma. �

Theorem 8 Let (X,M, µ) be a measure space then (L1(µ), ‖ · ‖1) is a Banach space.

proof We use the lemma. Let (fn)n∈N ⊂ L1(µ) be a sequence of functions, such that
∑

n∈N ‖fn‖1 =
S ∈ R. We have to show that

∑
n∈N fn is convergent in L1(µ). Let g be the function given by

g(x) :=
∑
n∈N
|fn(x)| ∈ [0,+∞].

Then ∫
X
g dµ =

This implies that the set
N := {x ∈ X | g(x) = +∞}

has measure zero and
∑

n∈N fn(x) is absolutely convergent for all x ∈ X\N . Let s(x) be the
function de�ned by

s(x) =

{ ∑
n∈N fn(x)

0
if

x 6∈ N
x ∈ N

For the function de�ned by sn =
∑n

i=1 1X\Nfi we know that

|sn(x)| ≤ and lim
n→∞

sn(x) =

By the DCT we know that

This means that
∑

n∈N fn = s almost everywhere. �


