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Lecture 4

Chapter 1.4 Simple functions

Aim: A function is Riemann integrable if it can be approximated with step functions. A func-
tion is Lebesque integrable if it can be approximated with measurable simple functions. A
measurable simple function is similar to a step function, just that the supporting sets are ele-
ments of a o algebra.

Picture

Definition 1 (Simple functions) A function s : X — C is called a simple function if it
has finite range. We say that s is a non-negative simple function (nnsf) if s(X) C [0, +00).

Note 2 If s(X) # {0}, then s(X) = {a1,a92,as,...,a,} and let A; = {z € X | s(x) = a;}.
Then s is measurable if and only if A; € M for all i € {1,2,...,n}. In this case we have that

n
s:Zai-]lAi. (1)
i=1

We can furthermore assume that the (A;); are mutually disjoint. This representation as a linear
combination of characteristic functions is unique, if the (a;); are distinct and non-zero. In this
case we call it the standard representation of s.

Theorem 3 (Approximation by simple functions) For any function f: (X, M) — [0, +00],
there are nnsfs (s,)penw on X, such that

a) 0§81§82§...§f.
b) For all z € X, we have lim,,_,« sn(z) = f(2).

Furthermore, if f is measurable, then the (s;), can be chosen measurable as well.
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proof Let ¢, : [0,4+00] — R be the function defined in the following way: let k,(z) = k
be the unique integer, such that

.on <
E-27" <z <(k+1)-27" and set @,(x) 1:{ ]:l ’ if 222220 @

Example Sktech o and 3.

Then ¢, : [0, +00] — R is a Borel map and
0<pi(x) <pax) <gs(z)...<z forallz e R.
In fact, if © € [0,n] then by the definition of k,(z) = k and ¢, in (2) we have that
x—27" < pp(x) <z hence nh_}nolo on = id.

We now set s,, = pn 0 f.
Write out s, = ¢, (f()) and sketch s; for f(z) := 22

Since ¢, is Borel, we know that s,, is measurable if f is measurable and a) and b) are easily
verified. ]
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Chapter 1.5 Measures

Aim: By given each element of a ¢ algebra a weight, we can define a measure. All we need
is that the measure is countably additive. This is the last step to define integration.

Definition 1 (Measure) Let (X, M) be a measurable space.

a) A function y : M — [0,4+0c] C R is called a positive measure if it is countably
additive, i.e. if (A;);en is a collection of mutually disjoint elements of M, then

7 (Lﬂ Ai) = ZM(Az’)
€N i€N

To avoid trivialities, we also assume that there is an A € M, such that M
b) A space (X, M, ) is called a measure space.
¢) A function p: M — C that is countably additive is called a complex measure.

Note If not mentioned otherwise we assume in the following that a measure is a positive
measure.

Theorem 2 (Properties of 1) Let (X, M, u) be a measure space. Then
2) () = 0.
b) If A C B then u(A) < u(B).
c) If (An)new C M and

Auubc@c”.mdA:Ly%
nelN

then lim,, o0 p(A4,) = p(A).

d) If (Ap)new € M and . If furthermore

Ay DA DA3D ... and A= mAn
nelN

then lim,, o0 p1(A4y) = p(A4).




Math 103: Measure Theory and Complex Analysis
Fall 2018

09/19/18

proof

a) u(0) =0: Take A € M, such that u(A) < co. Then
b) If A C B then u(A) < u(B):

c) Idea: We divide A into a telescoping sum of sets:

d) Idea: We divide A; into a telescoping sum of sets:

In total this settles the proof of the theorem. ([l

Examples We give a few simple examples. Let X be a set and M = P(X).

a) Counting measure: For any £ C X we set

LC R L
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b) Unit mass concentrated at xg: For fixed 29 € X we set

1 .. mekE
u(E){O if w0 d B

c) The hypothesis that (A1) < co can not be dropped in Theorem 2, part d):

For X = IN let p be the counting measure. Let A, = {k € IN| £k > n}. Then

A:ﬂAn:®:>/L(A):O but p(Ay) = oo for alln € IN.

n=1

Hence limy, 00 pt(Ap) # p(A).




