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Lecture 4

Chapter 1.4 Simple functions

Aim: A function is Riemann integrable if it can be approximated with step functions. A func-
tion is Lebesque integrable if it can be approximated with measurable simple functions. A
measurable simple function is similar to a step function, just that the supporting sets are ele-
ments of a σ algebra.

Picture

De�nition 1 (Simple functions) A function s : X → C is called a simple function if it
has �nite range. We say that s is a non-negative simple function (nnsf) if s(X) ⊂ [0,+∞).

Note 2 If s(X) 6= {0}, then s(X) = {a1, a2, a3, . . . , an} and let Ai = {x ∈ X | s(x) = ai}.
Then s is measurable if and only if Ai ∈M for all i ∈ {1, 2, . . . , n}. In this case we have that

s =
n∑

i=1

ai · 1Ai . (1)

We can furthermore assume that the (Ai)i are mutually disjoint. This representation as a linear
combination of characteristic functions is unique, if the (ai)i are distinct and non-zero. In this
case we call it the standard representation of s.

Theorem 3 (Approximation by simple functions) For any function f : (X,M)→ [0,+∞],
there are nnsfs (sn)n∈N on X, such that

a) 0 ≤ s1 ≤ s2 ≤ . . . ≤ f .

b) For all x ∈ X, we have limn→∞ sn(x) = f(x).

Furthermore, if f is measurable, then the (sn)n can be chosen measurable as well.
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proof Let ϕn : [0,+∞] → R be the function de�ned in the following way: let kn(x) = k
be the unique integer, such that

k · 2−n ≤ x ≤ (k + 1) · 2−n and set ϕn(x) :=

{
k · 2−n
n

if
0 ≤ x < n
n ≤ x ≤ ∞ . (2)

Example Sktech ϕ2 and ϕ3.

Then ϕn : [0,+∞]→ R is a Borel map and

0 ≤ ϕ1(x) ≤ ϕ2(x) ≤ ϕ3(x) . . . ≤ x for all x ∈ R .

In fact, if x ∈ [0, n] then by the de�nition of kn(x) = k and ϕn in (2) we have that

x− 2−n ≤ ϕn(x) ≤ x hence lim
n→∞

ϕn = id.

We now set sn = ϕn ◦ f .
Write out sn = ϕn(f(x)) and sketch s5 for f(x) := x2.

Since ϕn is Borel, we know that sn is measurable if f is measurable and a) and b) are easily
veri�ed. �
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Chapter 1.5 Measures

Aim: By given each element of a σ algebra a weight, we can de�ne a measure. All we need
is that the measure is countably additive. This is the last step to de�ne integration.

De�nition 1 (Measure) Let (X,M) be a measurable space.

a) A function µ : M → [0,+∞] ⊂ R̄ is called a positive measure if it is countably
additive, i.e. if (Ai)i∈N is a collection of mutually disjoint elements ofM, then

µ

(⊎
i∈N

Ai

)
=
∑
i∈N

µ(Ai)

To avoid trivialities, we also assume that there is an A ∈M, such that µ(A) <∞ .

b) A space (X,M, µ) is called a measure space.

c) A function µ :M→ C that is countably additive is called a complex measure.

Note If not mentioned otherwise we assume in the following that a measure is a positive
measure.

Theorem 2 (Properties of µ) Let (X,M, µ) be a measure space. Then

a) µ(∅) = 0.

b) If A ⊂ B then µ(A) ≤ µ(B).

c) If (An)n∈N ⊂M and

A1 ⊂ A2 ⊂ A3 ⊂ . . . and A =
⋃
n∈N

An

then limn→∞ µ(An) = µ(A).

d) If (An)n∈N ⊂M and µ(A1) <∞ . If furthermore

A1 ⊃ A2 ⊃ A3 ⊃ . . . and A =
⋂
n∈N

An

then limn→∞ µ(An) = µ(A).
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proof

a) µ(∅) = 0: Take A ∈M, such that µ(A) <∞. Then

b) If A ⊂ B then µ(A) ≤ µ(B):

c) Idea: We divide A into a telescoping sum of sets:

d) Idea: We divide A1 into a telescoping sum of sets:

In total this settles the proof of the theorem. �

Examples We give a few simple examples. Let X be a set andM = P(X).

a) Counting measure: For any E ⊂ X we set

µ(E) =

{
+∞
n

if
#(E) = +∞
#(E) = n

.
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b) Unit mass concentrated at x0: For �xed x0 ∈ X we set

µ(E) =

{
1
0

if
x0 ∈ E
x0 6∈ E

.

c) The hypothesis that µ(A1) <∞ can not be dropped in Theorem 2, part d):
For X = N let µ be the counting measure. Let An = {k ∈ N | k ≥ n}. Then

A =

∞⋂
n=1

An = ∅ ⇒ µ(A) = 0 but µ(An) =∞ for all n ∈ N .

Hence limn→∞ µ(An) 6= µ(A).


