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Lecture 5

Chapter 1.6 Integration

Outline: A function is Riemann integrable if it can be "approximated" by step functions.
A function is Lebesque integrable if it can be "approximated" by simple functions.
In the following section we we assume that (X, M, u) is a measure space and p is a positive
measure. We start with the definition of integration for simple functions.

Prelude: Arithmetic in R

Outline To define integration properly we have to deal with functions that take values in {£o0}.
To make this work we have to set a few conventions.

Definition 1 On [0, 00] = [0, +00] =C R we define:
a) Addition: a+oc0o=004+a=00if 0 <a < oc.
b) Multiplication:

{ o .. O<a<x
a-00=00"a= if .
0 a=

Note One verifies that with this definition in ([0, co], +, -)

e + and - are commutative and associative operations.

e In ([0, 0], +,-) the distributive laws hold.

eagt+b=a+t+c=b=cfora< o
a-b=a-c=>b=cfor0<a< o

o If (an)n and (by), are increasing sequences in [0, o], such that

lim a, =a and lim b, =06 then lim a,-b, =a-b.
n—o0 n—00 n—00

The last statement together with Ch.1.3 Theorem 4 and Ch.1.4 Theorem 3 implies that

Theorem 2 f,g: (X, M) — [0, co] measurable then

f+g and f-g measurable.
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Picture Sketch the function 3 - 14 and the function 2 -1 and 3-14 + 2 - 15 for some
A, B CR.

proof of Theorem 2

Integration of simple functions

Definition 3 (Integration) Let s: X — [0,00) be measurable simple function in the form

n
s = Zai~]l,4i where A; € M for all 1.
i=1

Then for s we define integration in the natural way: If £ € M then

/ sdp Dt Z a; - p(A; N E). (Int. of simple functions)
2 i=1

If f:X — [0,00] is measurable and E € M then we define

/ fdu Def- sup {/ sdp | s simple ,0 < s < f} . (Int. of pos. measurable functions)
E E

This integral is called the Lebesgue integral of f over E with respect to the measure u. Its
value is in [0, o).
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The following propositions are immediate consequences of the definitions.

Proposition 4 Let f,g: (X, M) — [0,00] be measurable functions and E € M. Then
a) If f <g, then [ fdu < [ gdp (Monotonicity for functions)
b) If AC B, then [, fdu < [5 fdu. (Monotonicity for sets)

¢) If 0 < ¢ < oo is a constant, then [ c- fdu=c- [, fdu.

)
)
)
d) If flg =0, then [, fdu =0 even if u(E) = oc.

If W(E) =0 then [, fdu=0evenif flp=00 (0-0c0=00-0=0).

&) Jpfdu= [y ] Lpdy

proof We only prove a) and b) and leave the rest as an exercise.

/fd,uzsup{/ sdussimple,()gsgf}.
E E

By definition of g we know that s < f < g = s < g hence

a) We recall that

b) If A C B, we note that for any measurable simple function s : X — [0, 00) we have that

/sdu ZGZ (A,NA)=

To later prove the additivity of the integral for functions, we first prove it for nonnegative
simple functions.
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Proposition 5 Let s,t : (X, M) — [0,00) be two nonnegative simple functions (nnsfs). For

FE € M we define
o(8) = [ s
E

Then ¢ is a measure on M and
/ s+tdy = / sdu +/ tdu. (Additivity of integration for nnsfs)
X X X

proof We know that s = > | a; - 14,, where 0 < a; < oo. Furthermore p(}) = 0 < co. It
remains to show that ¢ is countably additive. Let (Bg)rew be a collection of mutually disjoint
elements of M and B = |4, Bk, then

¢(B) =

To prove the second part let t = Z;n:l ¢j - 1¢;, where 0 < ¢; < oo. We consider ¢ and s on a

common refinement: set E;; = A; N C;. Then

Picture

As the statement is true on all (£;;); ;, it is true on X by the first part of the proposition. O
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The definition of measurable sets and measures allows us to easily deal with limits.

Theorem 6 (Lebesgue’s Monotone Convergence Theorem (MCT)) Let (fy)nen : (X, M) —
[0, 00] be a sequence of measurable functions on X such that for all z € X

a) 0< fi(z) < folz) < ... <@
b) limpy e fn(z) = f(z) ie. fr, "=° f pointwise.

Then f is measurable and lim, o [ fadp = [y fdp.

proof We note that by Ch.1.3 Theorem 4 f = sup,, f, is measurable and therefore inte-
grable. We show:

1.) ([x fndp)n has a limit which is smaller than [y fdu

Let I, = [y fndp. Since by Proposition 4 a) we know that

we know that (I,), is an increasing sequence which attains its limit I in [0, o], i.e.

lim fondpw = lim I, =1| and (1)
X n— o0

n—oo

As fp, < f for all n € IN we know, again by Proposition 4 a) that

It remains to show:

2‘) fxfd,u < Izlimn%oofxfndﬂ

Idea: [ fdu = sup{ [y sdu | ssimple,0 < s < f}. We have to look at those simple func-
tions.

Let s : X — [0,00) be a simple measurable functions, such that 0 < s < f and let ¢ € (0,1) be
a fixed constant. We define for all n € IN

E,={x€ X | fu(z) > c-s(x)}. Then
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e F, is measurable.
e Fy C Ey C...as (fn)n is an increasing sequence of functions.
o X =J,ew En as for a fixed x € X we have that f(z) > c-s(x) and lim, o0 fu(z) = f(2).

Furthermore for ¢(E) = [ s dp we have as in Proposition 5:

As ¢ is a measure we have by Ch.1.5 Theorem 2 d) for the left hand side and the fact
X = Upen En: for all ¢ € (0,1):

As this is true for all 0 < s < f it is true for the supremum

Hence in total we have proven our claim. O




