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Lecture 5

Chapter 1.6 Integration

Outline: A function is Riemann integrable if it can be "approximated" by step functions.
A function is Lebesque integrable if it can be "approximated" by simple functions.
In the following section we we assume that (X,M, µ) is a measure space and µ is a positive
measure. We start with the de�nition of integration for simple functions.

Prelude: Arithmetic in R̄

Outline To de�ne integration properly we have to deal with functions that take values in {±∞}.
To make this work we have to set a few conventions.

De�nition 1 On [0,∞] = [0,+∞] =⊂ R̄ we de�ne:

a) Addition: a+∞ =∞+ a =∞ if 0 ≤ a ≤ ∞.

b) Multiplication:

a · ∞ =∞ · a =

{
∞
0

if
0 < a ≤ ∞
a = 0

.

Note One veri�es that with this de�nition in ([0,∞],+, ·)

• + and · are commutative and associative operations.

• In ([0,∞],+, ·) the distributive laws hold.

• a+ b = a+ c⇒ b = c for a <∞
a · b = a · c⇒ b = c for 0 < a <∞

• If (an)n and (bn)n are increasing sequences in [0,∞], such that

lim
n→∞

an = a and lim
n→∞

bn = b then lim
n→∞

an · bn = a · b.

The last statement together with Ch.1.3 Theorem 4 and Ch.1.4 Theorem 3 implies that

Theorem 2 f, g : (X,M)→ [0,∞] measurable then

f + g and f · g measurable.



Math 103: Measure Theory and Complex Analysis
Fall 2018

09/21/18

Picture Sketch the function 3 · 1A and the function 2 · 1B and 3 · 1A + 2 · 1B for some
A,B ⊂ R.

proof of Theorem 2

�
Integration of simple functions

De�nition 3 (Integration) Let s : X → [0,∞) be measurable simple function in the form

s =
n∑

i=1

ai · 1Ai where Ai ∈M for all i.

Then for s we de�ne integration in the natural way: If E ∈M then∫
E
s dµ

Def.
=

n∑
i=1

ai · µ(Ai ∩ E). (Int. of simple functions)

If f : X → [0,∞] is measurable and E ∈M then we de�ne∫
E
f dµ

Def.
= sup

{∫
E
s dµ | s simple , 0 ≤ s ≤ f

}
. (Int. of pos. measurable functions)

This integral is called the Lebesgue integral of f over E with respect to the measure µ. Its
value is in [0,∞].
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The following propositions are immediate consequences of the de�nitions.

Proposition 4 Let f, g : (X,M)→ [0,∞] be measurable functions and E ∈M. Then

a) If f ≤ g, then
∫
E f dµ ≤

∫
E g dµ (Monotonicity for functions)

b) If A ⊂ B, then
∫
A f dµ ≤

∫
B f dµ. (Monotonicity for sets)

c) If 0 ≤ c <∞ is a constant, then
∫
E c · f dµ = c ·

∫
E f dµ.

d) If f |E = 0, then
∫
E f dµ = 0 even if µ(E) =∞.

If µ(E) = 0 then
∫
E f dµ = 0 even if f |E =∞ ( 0 · ∞ =∞ · 0 = 0 ).

e)
∫
E f dµ =

∫
X f · 1E dµ

proof We only prove a) and b) and leave the rest as an exercise.

a) We recall that ∫
E
f dµ = sup

{∫
E
s dµ | s simple , 0 ≤ s ≤ f

}
.

By de�nition of g we know that s ≤ f ≤ g ⇒ s ≤ g hence

b) If A ⊂ B, we note that for any measurable simple function s : X → [0,∞) we have that∫
A
s dµ =

n∑
i=1

ai · µ(Ai ∩A) =

To later prove the additivity of the integral for functions, we �rst prove it for nonnegative
simple functions.
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Proposition 5 Let s, t : (X,M) → [0,∞) be two nonnegative simple functions (nnsfs). For
E ∈M we de�ne

ϕ(E) =

∫
E
s dµ.

Then ϕ is a measure onM and∫
X
s+ t dµ =

∫
X
s dµ+

∫
X
t dµ. (Additivity of integration for nnsfs)

proof We know that s =
∑n

i=1 ai · 1Ai , where 0 < ai < ∞. Furthermore ϕ(∅) = 0 < ∞. It
remains to show that ϕ is countably additive. Let (Bk)k∈N be a collection of mutually disjoint
elements ofM and B =

⊎
k∈NBk, then

ϕ(B) =

To prove the second part let t =
∑m

j=1 cj · 1Cj , where 0 < cj <∞. We consider t and s on a
common re�nement: set Eij = Ai ∩ Cj . Then

Picture

As the statement is true on all (Eij)i,j , it is true on X by the �rst part of the proposition. �
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The de�nition of measurable sets and measures allows us to easily deal with limits.

Theorem 6 (Lebesgue's Monotone Convergence Theorem (MCT)) Let (fn)n∈N : (X,M)→
[0,∞] be a sequence of measurable functions on X such that for all x ∈ X

a) 0 ≤ f1(x) ≤ f2(x) ≤ . . . ≤ ∞

b) limn→∞ fn(x) = f(x) i.e. fn
n→∞→ f pointwise.

Then f is measurable and limn→∞
∫
X fn dµ =

∫
X f dµ.

proof We note that by Ch.1.3 Theorem 4 f = supn fn is measurable and therefore inte-
grable. We show:

1.) (
∫
X fn dµ)n has a limit which is smaller than

∫
X f dµ

Let In =
∫
X fn dµ. Since by Proposition 4 a) we know that

we know that (In)n is an increasing sequence which attains its limit I in [0,∞], i.e.

lim
n→∞

∫
X
fn dµ = lim

n→∞
In = I and (1)

As fn ≤ f for all n ∈ N we know, again by Proposition 4 a) that

It remains to show:

2.)
∫
X f dµ ≤ I = limn→∞

∫
X fn dµ

Idea:
∫
X f dµ = sup{

∫
X s dµ | s simple, 0 ≤ s ≤ f}. We have to look at those simple func-

tions.
Let s : X → [0,∞) be a simple measurable functions, such that 0 ≤ s ≤ f and let c ∈ (0, 1) be
a �xed constant. We de�ne for all n ∈ N

En = {x ∈ X | fn(x) ≥ c · s(x)}. Then
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• En is measurable.

• E1 ⊂ E2 ⊂ . . . as (fn)n is an increasing sequence of functions.

• X =
⋃

n∈NEn as for a �xed x ∈ X we have that f(x) > c · s(x) and limn→∞ fn(x) = f(x).

Furthermore for ϕ(E) =
∫
E s dµ we have as in Proposition 5:

As ϕ is a measure we have by Ch.1.5 Theorem 2 d) for the left hand side and the fact
X =

⋃
n∈NEn: for all c ∈ (0, 1):

As this is true for all 0 ≤ s ≤ f it is true for the supremum

Hence in total we have proven our claim. �


