
Cartoon Counting and the Cantor Set

1. The Cantor-Lebesgue Function

The Cantor Set: Let C0 = [0, 1]. Let C1 = [0, 1
3
] ∪ [2

3
, 1] be the closed set obtained

by removing the open middle third of C0. In general, let Cn the union of 2n disjoint
closed intervals obtained by removing the open middle thirds of each of the closed
intervals in Cn−1. Then the Cantor set is

C =
∞⋂
n=1

Cn.

Ternary Expansions: If α ∈ [0, 1], then we can find
(
αk
)
3
∈
∏∞

k=1{ 0, 1, 2 } such that

(1) α =
∞∑
k=1

αk
3k

and conversely every
(
αk
)
3
∈
∏∞

k=1{ 0, 1, 2 } represents an α ∈ [0, 1] via (1). In the
world of cartoon characters (with three fingers), we might write α = 0.α1α2α3 · · · .
Unfortunately, we notice that sometimes the expansion in (1) is not unique. For
example, 4

9
= 0.11 = 0.102222 . . . . However the expansion is only not unique when

α is of the form p3−n. Then it has finite expansion—that is, one with αk = 0 for
all k > n, and another with αk = 2 for all k > n. In (p, 3) = 1, then one of these
expansions will have an = 1 and the other will have an equal to 0 or 2. Suppose that
when we have two such expansions, we always choose the one with an equal to 0 or
2. For example,

1

3
= 0.022 . . .

2

3
= 0.2

1

9
= 0.0022 . . .

2

9
= 0.02.

If we do this, then α1 = exactly when 1
3
< α < 2

3
. Similarly, if α1 6= 1 and α2 = 1

then we have exactly 1
9
< α < 2

9
or 7

9
< α < 8

9
. With this convention, α ∼

(
αk
)
3

is
in one of the open intervals deleted to get Cn exactly when αn = 1.

Definition 1. Suppose that α ∈ [0, 1] has the ternary expansion
(
αk
)
3
. Then let

N =

{
∞ αk 6= 1 for all k, and

k if αk = 1 and αj 6= 1 for j < k.

Then the Cantor-Lebesgue Function is the function φ : [0, 1]→ [0, 1] given by

(2) φ(α) =
N∑
k=1

bk
2k

1



2

where

bk =


0 if αk = 0,

1 if αk = 2, and

1 if N <∞ and k = N .

Remark 2. It is comforting to note that our definition of φ in (2) does not depend
on any choice of expansion for α as the exact same phenomena occurs in the binary
expansion.

Lemma 3. The Cantor-Lebesgue function φ : [0, 1] → [0, 1] is a continuous nonde-
creasing surjection. Furthermore, φ(C ) = [0, 1] and φ′(α) = 0 for all α ∈ [0, 1] \ C .

Proof. Since every α ∈ [0, 1] also has a binary expansion, it is clear that φ is surjective.
In fact, since α ∈ C if and only if α has a ternary expansion

(
αk
)
3

with each αk ∈
{0, 2}, it is clear that φ(C ) = [0, 1]. Moreover, it follow from the preceding discussion
that φ is constant on the closure each of the deleted open intervals. Moreover,
α, β ∈ C and α < β then φ(α) < φ(β) unless α and β are the endpoints of the same
deleted open interval.
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Figure 1. The Graph of the Cantor-Lebesgue Function

In follows that φ is nondecreasing—see Figure 1.1 Since it maps onto [0, 1], it
can have no jump discontinuities. Hence it must be continuous. Since [0, 1] \ C is
open and φ is constant on the open intervals making up [0, 1] \ C , we certainly have
φ′(x) = 0 there. �

Recall that a topological space is totally disconnected if its only connected subsets
are points—that is, its connected components are reduced to points.

1I pulled this graph from theWolfram’s web site https://mathworld.wolfram.com/CantorFunction.html
where one can access the Mathematica source.
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Corollary 4. The Cantor set C is a totally disconnected compact subset of Lebesgue
measure zero which is uncountable and has the same cardinality c as that of the
continuium.

Proof. We have m(Cn) = 22 · 1
3n

and m(C ) = limnm(Cn). Since φ(C ) = [0, 1], we
must have Card(C ) = c. To see that C is totally disconnected, it suffices to see
that given α < β in C there is a γ ∈ [0, 1] \ C such that α < γ < β. But we can
take n large enough so that the closed intervals in Cn have length less than r

3
. Then

α and β are contained in disjoint intervals [a, b] and [c, d] with b < c. Then either
(b, c) ∈ O := [0, 1] \ C or O contains closed interval I in some Cm with m ≥ n. In
the first case, any γ ∈ (b, c) will do. In the second, we can take γ in the middle third
of I.2 �

Now consider the function f : [0, 1]→ [0, 2] defined by

f(x) = x+ φ(x).

Then f is trivially continuous and hence surjective (by the Intermediate-Value The-
orem). If

f(x) = x+ φ(x) = y + φ(y) = f(y),

then

x− y = φ(y)− φ(x).

Since φ is nondecreasing, this forces x = y. Hence f is a continuous bijection between
to compact Hausdorff sets and must be a homeomorphism. Since φ is constant on
each open interval in [0, 1] \ C , f maps each such interval onto an interval of equal
length. Therefore m

(
f([0, 1])\C

)
= 1. Therefore m

(
f(C )

)
= 1. It follows that there

is nonmeasurable set P ⊂ f(C ). Let A = f−1(P ). Since A ⊂ C and m(C ) = 0, A is
Lebesgue measurable. If we let g = f−1, then g is continuous and g−1(A) = f(A) = P .
Since P is not measurable, A can’t be a Borel set. (Recall that since g is continuous,
it is Borel and hence measurable from ([0, 2],B([0, 2])) to ([0, 1],B([0, 1])).)

Now we have given a proper proof of the following.

Theorem 5. The Lebesgue measurable sets contain the Borel sets as a proper subset.

2This also shows that C has no isolated points. Then the Baire Category Theorem implies C is
uncountable. However we would have to invoke the Continuium Hypothesis to conclude from that
alone that Card(C ) = c.
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But there is a darker mystery unveiled here as well. Let h = 1A. Then h :
([0, 1],L[0, 1])→ R is Lebesgue measurable as in the continuous function g. But

(h ◦ g)−1
(
(1
2
,∞
)

= g−1
(
h−1(1

2
,∞)

)
= g−1(A)

= P.

Since P is not measurable, neither is the composition h ◦ g of a Lebesgue measurable
function h and the continuous—hence Lebesgue measurable—function g.3

Lemma 6. The composition h◦g of Lebesgue measurable functions need not measurable—
even if g is continuous.

While this observation is a bit disconcerting at first blush, it is actually not sur-
prising if we look at these maps as maps between measurable spaces. In our example
above, we have(

[0, 2],B([0, 2])
) (

[0, 1],B([0, 1])
)

(
[0, 1],L[0, 1]

) (
R,B(R)

)
.

g

id

h

Since L[0, 1] properly contains B([0, 1]), the identity map id :
(
[0, 1],B([0, 1])

)
→(

[0, 1],L[0, 1]
)

is not measurable.

2. Classical Absolute Continuity

In the good old days when “real analysis” meant studying real-valued functions on
the real line, a function f : [a, b]→ R was called absolutely continuous if for all ε > 0
there is a δ > 0 such that given finitely many open intervals { (ak, bk) }nk=1 in (a, b)
such that

∑n
k=1(bk − ak) < δ, then

∑n
k=1

∣∣f(bk) − f(ak)
∣∣ < ε. Notice that since this

holds for n = 1, an absolutely continuous function on [a, b] is necessarily (uniformly)
continuous on [a, b].

In [1, Theorem 6.5.10] for example, it is proven that if f is absolutely continuous on
[a, b], then f ′(x) exists for almost all x ∈ (a, b) and we can recover f via the integral:

f(x) = f(a) +

∫ x

a

f ′(t) dm(t).

3Recall that the composition of a continuous function with a measurable function is always
measurable.
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Furthermore it is shown in [1, Theorems 6.5.11 & 6.5.14] that the converse holds: if
g ∈ L1([a, b]), then

f(x) = c+

∫ x

a

g(t) dm(t)

is absolutely continuous on [a, b] and f ′(x) = g(x) for almost all x ∈ (a, b).

Example 7. The Cantor-Lebesgue function is an example of an almost everywhere
differentiable continuous function that is not absolutely continuous. There is a proof
of this given in the first example in [1, §6.5]. However, since φ′ is zero almost every-
where, φ is not integral of it’s derivative: the friendly formula

φ(x) = φ(0) +

∫ x

0

φ′(t) dt = 0

holds only when x = 0 (since the intergral is always zero). This also shows that φ
can’t be absolutely continuous.

The question which presents itself is “does the classic notion of absolute continu-
ity have anything to do with the absolute continuity of measures and the Raydon-
Nikodym derivative?” Here is a simple minded answer.

Suppose that ν is a finite measure on R and let

f(x) = ν((−∞, x)).

Then f is nondecreasing. This immediately implies that f is continuous except for
countably many jump discontinuities. Even better, “Lebesgue’s Theorem” implies
that f is differentiable almost everywhere [1, §6.2].

Suppose that ν � m. Let g = dν
dm

so that

f(x) =

∫ x

−∞
g(t) dm(t).

It follows that f is absolutely continuous and f ′ = g almost everywhere.
Now suppose that f is absolutely continuous. I claim that ν � m. For this it

suffices to see that if E ⊂ (a, b) has Lebesgue measure zero, then ν(E) = 0. Fix
ε > 0. Then by definition, since f is non-decreasing, there is a δ > 0 such that or
any finite collection { (ak, bk) }nk=1 of open intervals in (a, b) we have

n∑
k=1

(bk − ak) < δ implies
n∑
k=1

f(bk)− f(ak) =
n∑
k=1

ν([ak, bk)) < ε.
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Since m(E) = 0, we can find a countable cover { (ak, bk) }∞k=1 of E in (a, b) such that

∞∑
k=1

(bk − ak) < δ.

Hence we have

ν(E) ≤
∞∑
k=1

ν((ak, bk)) ≤
∞∑
k=1

ν([ak, bk)) = lim
n→∞

n∑
k=1

ν([ak, bk)) ≤ ε.

Since ε > 0 is arbitrary, ν(E) = 0 as required.
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