Cartoon Counting and the Cantor Set

1. The Cantor-Lebesgue Function

The Cantor Set: Let $C_0 = [0, 1]$. Let $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ be the closed set obtained by removing the open middle third of C_0 . In general, let C_n the union of 2^n disjoint closed intervals obtained by removing the open middle thirds of each of the closed intervals in C_{n-1} . Then the Cantor set is

$$\mathscr{C} = \bigcap_{n=1}^{\infty} C_n$$

Ternary Expansions: If $\alpha \in [0,1]$, then we can find $(\alpha_k)_3 \in \prod_{k=1}^{\infty} \{0,1,2\}$ such that

(1)
$$\alpha = \sum_{k=1}^{\infty} \frac{\alpha_k}{3^k}$$

and conversely every $(\alpha_k)_3 \in \prod_{k=1}^{\infty} \{0, 1, 2\}$ represents an $\alpha \in [0, 1]$ via (1). In the world of cartoon characters (with three fingers), we might write $\alpha = 0.\alpha_1\alpha_2\alpha_3\cdots$. Unfortunately, we notice that sometimes the expansion in (1) is not unique. For example, $\frac{4}{9} = 0.11 = 0.102222\ldots$ However the expansion is only not unique when α is of the form $p3^{-n}$. Then it has finite expansion—that is, one with $\alpha_k = 0$ for all k > n, and another with $\alpha_k = 2$ for all k > n. In (p, 3) = 1, then one of these expansions will have $a_n = 1$ and the other will have a_n equal to 0 or 2. Suppose that when we have two such expansions, we always choose the one with a_n equal to 0 or 2. For example,

$$\frac{1}{3} = 0.022...$$
 $\frac{2}{3} = 0.2$ $\frac{1}{9} = 0.0022...$ $\frac{2}{9} = 0.02.$

If we do this, then $\alpha_1 = \text{exactly when } \frac{1}{3} < \alpha < \frac{2}{3}$. Similarly, if $\alpha_1 \neq 1$ and $\alpha_2 = 1$ then we have exactly $\frac{1}{9} < \alpha < \frac{2}{9}$ or $\frac{7}{9} < \alpha < \frac{8}{9}$. With this convention, $\alpha \sim (\alpha_k)_3$ is in one of the open intervals deleted to get C_n exactly when $\alpha_n = 1$.

Definition 1. Suppose that $\alpha \in [0, 1]$ has the ternary expansion $(\alpha_k)_3$. Then let

$$N = \begin{cases} \infty & \alpha_k \neq 1 \text{ for all } k, \text{ and} \\ k & \text{if } \alpha_k = 1 \text{ and } \alpha_j \neq 1 \text{ for } j < k. \end{cases}$$

Then the Cantor-Lebesgue Function is the function $\phi: [0,1] \to [0,1]$ given by

(2)
$$\phi(\alpha) = \sum_{k=1}^{N} \frac{b_k}{2^k}$$

where

$$b_k = \begin{cases} 0 & \text{if } \alpha_k = 0, \\ 1 & \text{if } \alpha_k = 2, \text{ and} \\ 1 & \text{if } N < \infty \text{ and } k = N. \end{cases}$$

Remark 2. It is comforting to note that our definition of ϕ in (2) does not depend on any choice of expansion for α as the exact same phenomena occurs in the binary expansion.

Lemma 3. The Cantor-Lebesgue function $\phi : [0,1] \to [0,1]$ is a continuous nondecreasing surjection. Furthermore, $\phi(\mathscr{C}) = [0,1]$ and $\phi'(\alpha) = 0$ for all $\alpha \in [0,1] \setminus \mathscr{C}$.

Proof. Since every $\alpha \in [0, 1]$ also has a binary expansion, it is clear that ϕ is surjective. In fact, since $\alpha \in \mathscr{C}$ if and only if α has a ternary expansion $(\alpha_k)_3$ with each $\alpha_k \in \{0, 2\}$, it is clear that $\phi(\mathscr{C}) = [0, 1]$. Moreover, it follow from the preceding discussion that ϕ is constant on the closure each of the deleted open intervals. Moreover, $\alpha, \beta \in \mathscr{C}$ and $\alpha < \beta$ then $\phi(\alpha) < \phi(\beta)$ unless α and β are the endpoints of the same deleted open interval.

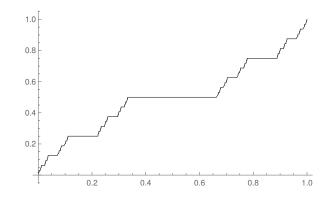


FIGURE 1. The Graph of the Cantor-Lebesgue Function

In follows that ϕ is nondecreasing—see Figure 1.¹ Since it maps onto [0,1], it can have no jump discontinuities. Hence it must be continuous. Since $[0,1] \setminus \mathscr{C}$ is open and ϕ is constant on the open intervals making up $[0,1] \setminus \mathscr{C}$, we certainly have $\phi'(x) = 0$ there.

Recall that a topological space is *totally disconnected* if its only connected subsets are points—that is, its connected components are reduced to points.

¹I pulled this graph from the Wolfram's web site https://mathworld.wolfram.com/CantorFunction.html where one can access the Mathematica source.

Corollary 4. The Cantor set \mathscr{C} is a totally disconnected compact subset of Lebesgue measure zero which is uncountable and has the same cardinality \mathfrak{c} as that of the continuium.

Proof. We have $m(C_n) = 2^2 \cdot \frac{1}{3^n}$ and $m(\mathscr{C}) = \lim_n m(C_n)$. Since $\phi(\mathscr{C}) = [0, 1]$, we must have $\operatorname{Card}(\mathscr{C}) = \mathfrak{c}$. To see that \mathscr{C} is totally disconnected, it suffices to see that given $\alpha < \beta$ in \mathscr{C} there is a $\gamma \in [0, 1] \setminus \mathscr{C}$ such that $\alpha < \gamma < \beta$. But we can take n large enough so that the closed intervals in C_n have length less than $\frac{r}{3}$. Then α and β are contained in disjoint intervals [a, b] and [c, d] with b < c. Then either $(b, c) \in O := [0, 1] \setminus \mathscr{C}$ or O contains closed interval I in some C_m with $m \ge n$. In the first case, any $\gamma \in (b, c)$ will do. In the second, we can take γ in the middle third of I.²

Now consider the function $f: [0,1] \to [0,2]$ defined by

$$f(x) = x + \phi(x).$$

Then f is trivially continuous and hence surjective (by the Intermediate-Value Theorem). If

$$f(x) = x + \phi(x) = y + \phi(y) = f(y),$$

then

$$x - y = \phi(y) - \phi(x).$$

Since ϕ is nondecreasing, this forces x = y. Hence f is a continuous bijection between to compact Hausdorff sets and must be a homeomorphism. Since ϕ is constant on each open interval in $[0,1] \setminus \mathscr{C}$, f maps each such interval onto an interval of equal length. Therefore $m(f([0,1]) \setminus \mathscr{C}) = 1$. Therefore $m(f(\mathscr{C})) = 1$. It follows that there is nonmeasurable set $P \subset f(\mathscr{C})$. Let $A = f^{-1}(P)$. Since $A \subset \mathscr{C}$ and $m(\mathscr{C}) = 0$, A is Lebesgue measurable. If we let $g = f^{-1}$, then g is continuous and $g^{-1}(A) = f(A) = P$. Since P is not measurable, A can't be a Borel set. (Recall that since g is continuous, it is Borel and hence measurable from $([0, 2], \mathcal{B}([0, 2]))$ to $([0, 1], \mathcal{B}([0, 1]))$.)

Now we have given a proper proof of the following.

Theorem 5. The Lebesgue measurable sets contain the Borel sets as a proper subset.

²This also shows that \mathscr{C} has no isolated points. Then the Baire Category Theorem implies \mathscr{C} is uncountable. However we would have to invoke the Continuium Hypothesis to conclude from that alone that $\operatorname{Card}(\mathscr{C}) = \mathfrak{c}$.

But there is a darker mystery unveiled here as well. Let $h = \mathbb{1}_A$. Then $h : ([0,1], \mathcal{L}[0,1]) \to \mathbf{R}$ is Lebesgue measurable as in the continuous function g. But

$$(h \circ g)^{-1} \left(\left(\frac{1}{2}, \infty \right) = g^{-1} \left(h^{-1} \left(\frac{1}{2}, \infty \right) \right)$$

= $g^{-1}(A)$
= P .

Since P is not measurable, neither is the composition $h \circ g$ of a Lebesgue measurable function h and the continuous—hence Lebesgue measurable—function g^3 .

Lemma 6. The composition $h \circ g$ of Lebesgue measurable functions need not measurable even if g is continuous.

While this observation is a bit disconcerting at first blush, it is actually not surprising if we look at these maps as maps between measurable spaces. In our example above, we have

$$\begin{pmatrix} [0,2], \mathcal{B}([0,2]) \end{pmatrix} \xrightarrow{g} \begin{pmatrix} [0,1], \mathcal{B}([0,1]) \end{pmatrix} \\ \downarrow^{\mathrm{id}} \\ ([0,1], \mathcal{L}[0,1]) \xrightarrow{h} (\mathbf{R}, \mathcal{B}(\mathbf{R}))$$

Since $\mathcal{L}[0,1]$ properly contains $\mathcal{B}([0,1])$, the identity map id : $([0,1], \mathcal{B}([0,1])) \rightarrow ([0,1], \mathcal{L}[0,1])$ is not measurable.

2. Classical Absolute Continuity

In the good old days when "real analysis" meant studying real-valued functions on the real line, a function $f : [a, b] \to \mathbf{R}$ was called *absolutely continuous* if for all $\epsilon > 0$ there is a $\delta > 0$ such that given finitely many open intervals $\{(a_k, b_k)\}_{k=1}^n$ in (a, b)such that $\sum_{k=1}^n (b_k - a_k) < \delta$, then $\sum_{k=1}^n |f(b_k) - f(a_k)| < \epsilon$. Notice that since this holds for n = 1, an absolutely continuous function on [a, b] is necessarily (uniformly) continuous on [a, b].

In [1, Theorem 6.5.10] for example, it is proven that if f is absolutely continuous on [a, b], then f'(x) exists for almost all $x \in (a, b)$ and we can recover f via the integral:

$$f(x) = f(a) + \int_a^x f'(t) \, dm(t).$$

 $^{^3\}mathrm{Recall}$ that the composition of a continuous function with a measurable function is always measurable.

Furthermore it is shown in [1, Theorems 6.5.11 & 6.5.14] that the converse holds: if $g \in \mathcal{L}^1([a, b])$, then

$$f(x) = c + \int_{a}^{x} g(t) \, dm(t)$$

is absolutely continuous on [a, b] and f'(x) = g(x) for almost all $x \in (a, b)$.

Example 7. The Cantor-Lebesgue function is an example of an almost everywhere differentiable continuous function that is not absolutely continuous. There is a proof of this given in the first example in [1, §6.5]. However, since ϕ' is zero almost everywhere, ϕ is not integral of it's derivative: the friendly formula

$$\phi(x) = \phi(0) + \int_0^x \phi'(t) \, dt = 0$$

holds only when x = 0 (since the integral is always zero). This also shows that ϕ can't be absolutely continuous.

The question which presents itself is "does the classic notion of absolute continuity have anything to do with the absolute continuity of measures and the Raydon-Nikodym derivative?" Here is a simple minded answer.

Suppose that ν is a finite measure on **R** and let

$$f(x) = \nu((-\infty, x)).$$

Then f is nondecreasing. This immediately implies that f is continuous except for countably many jump discontinuities. Even better, "Lebesgue's Theorem" implies that f is differentiable almost everywhere [1, §6.2].

Suppose that $\nu \ll m$. Let $g = \frac{d\tilde{\nu}}{dm}$ so that

$$f(x) = \int_{-\infty}^{x} g(t) \, dm(t).$$

It follows that f is absolutely continuous and f' = g almost everywhere.

Now suppose that f is absolutely continuous. I claim that $\nu \ll m$. For this it suffices to see that if $E \subset (a, b)$ has Lebesgue measure zero, then $\nu(E) = 0$. Fix $\epsilon > 0$. Then by definition, since f is non-decreasing, there is a $\delta > 0$ such that or any finite collection $\{(a_k, b_k)\}_{k=1}^n$ of open intervals in (a, b) we have

$$\sum_{k=1}^{n} (b_k - a_k) < \delta \quad \text{implies} \quad \sum_{k=1}^{n} f(b_k) - f(a_k) = \sum_{k=1}^{n} \nu([a_k, b_k)) < \epsilon.$$

Since m(E) = 0, we can find a countable cover $\{(a_k, b_k)\}_{k=1}^{\infty}$ of E in (a, b) such that

$$\sum_{k=1}^{\infty} (b_k - a_k) < \delta.$$

Hence we have

$$\nu(E) \le \sum_{k=1}^{\infty} \nu((a_k, b_k)) \le \sum_{k=1}^{\infty} \nu([a_k, b_k)) = \lim_{n \to \infty} \sum_{k=1}^{n} \nu([a_k, b_k)) \le \epsilon.$$

Since $\epsilon > 0$ is arbitrary, $\nu(E) = 0$ as required.

References

[1] Halsey L. Royden and Patrick M. Fitzpatrick, *Real analysis*, 4th Ed., Prentice Hall, New York, 2010.