Cartoon Counting and the Cantor Set

1. The Cantor-Lebesgue Function

The Cantor Set: Let $C_{0}=[0,1]$. Let $C_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$ be the closed set obtained by removing the open middle third of C_{0}. In general, let C_{n} the union of 2^{n} disjoint closed intervals obtained by removing the open middle thirds of each of the closed intervals in C_{n-1}. Then the Cantor set is

$$
\mathscr{C}=\bigcap_{n=1}^{\infty} C_{n} .
$$

Ternary Expansions: If $\alpha \in[0,1]$, then we can find $\left(\alpha_{k}\right)_{3} \in \prod_{k=1}^{\infty}\{0,1,2\}$ such that

$$
\begin{equation*}
\alpha=\sum_{k=1}^{\infty} \frac{\alpha_{k}}{3^{k}} \tag{1}
\end{equation*}
$$

and conversely every $\left(\alpha_{k}\right)_{3} \in \prod_{k=1}^{\infty}\{0,1,2\}$ represents an $\alpha \in[0,1]$ via (1). In the world of cartoon characters (with three fingers), we might write $\alpha=0 . \alpha_{1} \alpha_{2} \alpha_{3} \cdots$. Unfortunately, we notice that sometimes the expansion in (1) is not unique. For example, $\frac{4}{9}=0.11=0.102222 \ldots$. However the expansion is only not unique when α is of the form $p 3^{-n}$. Then it has finite expansion-that is, one with $\alpha_{k}=0$ for all $k>n$, and another with $\alpha_{k}=2$ for all $k>n$. In $(p, 3)=1$, then one of these expansions will have $a_{n}=1$ and the other will have a_{n} equal to 0 or 2 . Suppose that when we have two such expansions, we always choose the one with a_{n} equal to 0 or 2. For example,

$$
\frac{1}{3}=0.022 \ldots \quad \frac{2}{3}=0.2 \quad \frac{1}{9}=0.0022 \ldots \quad \frac{2}{9}=0.02
$$

If we do this, then $\alpha_{1}=$ exactly when $\frac{1}{3}<\alpha<\frac{2}{3}$. Similarly, if $\alpha_{1} \neq 1$ and $\alpha_{2}=1$ then we have exactly $\frac{1}{9}<\alpha<\frac{2}{9}$ or $\frac{7}{9}<\alpha<\frac{8}{9}$. With this convention, $\alpha \sim\left(\alpha_{k}\right)_{3}$ is in one of the open intervals deleted to get C_{n} exactly when $\alpha_{n}=1$.

Definition 1. Suppose that $\alpha \in[0,1]$ has the ternary expansion $\left(\alpha_{k}\right)_{3}$. Then let

$$
N= \begin{cases}\infty & \alpha_{k} \neq 1 \text { for all } k, \text { and } \\ k & \text { if } \alpha_{k}=1 \text { and } \alpha_{j} \neq 1 \text { for } j<k\end{cases}
$$

Then the Cantor-Lebesgue Function is the function $\phi:[0,1] \rightarrow[0,1]$ given by

$$
\begin{equation*}
\phi(\alpha)=\sum_{k=1}^{N} \frac{b_{k}}{2^{k}} \tag{2}
\end{equation*}
$$

where

$$
b_{k}= \begin{cases}0 & \text { if } \alpha_{k}=0 \\ 1 & \text { if } \alpha_{k}=2, \text { and } \\ 1 & \text { if } N<\infty \text { and } k=N\end{cases}
$$

Remark 2. It is comforting to note that our definition of ϕ in (2) does not depend on any choice of expansion for α as the exact same phenomena occurs in the binary expansion.

Lemma 3. The Cantor-Lebesgue function $\phi:[0,1] \rightarrow[0,1]$ is a continuous nondecreasing surjection. Furthermore, $\phi(\mathscr{C})=[0,1]$ and $\phi^{\prime}(\alpha)=0$ for all $\alpha \in[0,1] \backslash \mathscr{C}$.

Proof. Since every $\alpha \in[0,1]$ also has a binary expansion, it is clear that ϕ is surjective. In fact, since $\alpha \in \mathscr{C}$ if and only if α has a ternary expansion $\left(\alpha_{k}\right)_{3}$ with each $\alpha_{k} \in$ $\{0,2\}$, it is clear that $\phi(\mathscr{C})=[0,1]$. Moreover, it follow from the preceding discussion that ϕ is constant on the closure each of the deleted open intervals. Moreover, $\alpha, \beta \in \mathscr{C}$ and $\alpha<\beta$ then $\phi(\alpha)<\phi(\beta)$ unless α and β are the endpoints of the same deleted open interval.

Figure 1. The Graph of the Cantor-Lebesgue Function
In follows that ϕ is nondecreasing-see Figure 1. ${ }^{1}$ Since it maps onto $[0,1]$, it can have no jump discontinuities. Hence it must be continuous. Since $[0,1] \backslash \mathscr{C}$ is open and ϕ is constant on the open intervals making up $[0,1] \backslash \mathscr{C}$, we certainly have $\phi^{\prime}(x)=0$ there.

Recall that a topological space is totally disconnected if its only connected subsets are points - that is, its connected components are reduced to points.

[^0]Corollary 4. The Cantor set \mathscr{C} is a totally disconnected compact subset of Lebesgue measure zero which is uncountable and has the same cardinality \mathfrak{c} as that of the continuium.

Proof. We have $m\left(C_{n}\right)=2^{2} \cdot \frac{1}{3^{n}}$ and $m(\mathscr{C})=\lim _{n} m\left(C_{n}\right)$. Since $\phi(\mathscr{C})=[0,1]$, we must have $\operatorname{Card}(\mathscr{C})=\mathfrak{c}$. To see that \mathscr{C} is totally disconnected, it suffices to see that given $\alpha<\beta$ in \mathscr{C} there is a $\gamma \in[0,1] \backslash \mathscr{C}$ such that $\alpha<\gamma<\beta$. But we can take n large enough so that the closed intervals in C_{n} have length less than $\frac{r}{3}$. Then α and β are contained in disjoint intervals $[a, b]$ and $[c, d]$ with $b<c$. Then either $(b, c) \in O:=[0,1] \backslash \mathscr{C}$ or O contains closed interval I in some C_{m} with $m \geq n$. In the first case, any $\gamma \in(b, c)$ will do. In the second, we can take γ in the middle third of $I .{ }^{2}$

Now consider the function $f:[0,1] \rightarrow[0,2]$ defined by

$$
f(x)=x+\phi(x) .
$$

Then f is trivially continuous and hence surjective (by the Intermediate-Value Theorem). If

$$
f(x)=x+\phi(x)=y+\phi(y)=f(y),
$$

then

$$
x-y=\phi(y)-\phi(x) .
$$

Since ϕ is nondecreasing, this forces $x=y$. Hence f is a continuous bijection between to compact Hausdorff sets and must be a homeomorphism. Since ϕ is constant on each open interval in $[0,1] \backslash \mathscr{C}, f$ maps each such interval onto an interval of equal length. Therefore $m(f([0,1]) \backslash \mathscr{C})=1$. Therefore $m(f(\mathscr{C}))=1$. It follows that there is nonmeasurable set $P \subset f(\mathscr{C})$. Let $A=f^{-1}(P)$. Since $A \subset \mathscr{C}$ and $m(\mathscr{C})=0, A$ is Lebesgue measurable. If we let $g=f^{-1}$, then g is continuous and $g^{-1}(A)=f(A)=P$. Since P is not measurable, A can't be a Borel set. (Recall that since g is continuous, it is Borel and hence measurable from $([0,2], \mathcal{B}([0,2]))$ to $([0,1], \mathcal{B}([0,1]))$.)

Now we have given a proper proof of the following.
Theorem 5. The Lebesgue measurable sets contain the Borel sets as a proper subset.

[^1]But there is a darker mystery unveiled here as well. Let $h=\mathbb{1}_{A}$. Then h : $([0,1], \mathcal{L}[0,1]) \rightarrow \mathbf{R}$ is Lebesgue measurable as in the continuous function g. But

$$
\begin{aligned}
(h \circ g)^{-1}\left(\left(\frac{1}{2}, \infty\right)\right. & =g^{-1}\left(h^{-1}\left(\frac{1}{2}, \infty\right)\right) \\
& =g^{-1}(A) \\
& =P .
\end{aligned}
$$

Since P is not measurable, neither is the composition $h \circ g$ of a Lebesgue measurable function h and the continuous-hence Lebesgue measurable - function $g .{ }^{3}$

Lemma 6. The composition hog of Lebesgue measurable functions need not measurableeven if g is continuous.

While this observation is a bit disconcerting at first blush, it is actually not surprising if we look at these maps as maps between measurable spaces. In our example above, we have

Since $\mathcal{L}[0,1]$ properly contains $\mathcal{B}([0,1])$, the identity map id : $([0,1], \mathcal{B}([0,1])) \rightarrow$ $([0,1], \mathcal{L}[0,1])$ is not measurable.

2. Classical Absolute Continuity

In the good old days when "real analysis" meant studying real-valued functions on the real line, a function $f:[a, b] \rightarrow \mathbf{R}$ was called absolutely continuous if for all $\epsilon>0$ there is a $\delta>0$ such that given finitely many open intervals $\left\{\left(a_{k}, b_{k}\right)\right\}_{k=1}^{n}$ in (a, b) such that $\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)<\delta$, then $\sum_{k=1}^{n}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|<\epsilon$. Notice that since this holds for $n=1$, an absolutely continuous function on $[a, b]$ is necessarily (uniformly) continuous on $[a, b]$.

In [1, Theorem 6.5.10] for example, it is proven that if f is absolutely continuous on $[a, b]$, then $f^{\prime}(x)$ exists for almost all $x \in(a, b)$ and we can recover f via the integral:

$$
f(x)=f(a)+\int_{a}^{x} f^{\prime}(t) d m(t)
$$

[^2]Furthermore it is shown in [1, Theorems 6.5.11 \& 6.5.14] that the converse holds: if $g \in \mathcal{L}^{1}([a, b])$, then

$$
f(x)=c+\int_{a}^{x} g(t) d m(t)
$$

is absolutely continuous on $[a, b]$ and $f^{\prime}(x)=g(x)$ for almost all $x \in(a, b)$.
Example 7. The Cantor-Lebesgue function is an example of an almost everywhere differentiable continuous function that is not absolutely continuous. There is a proof of this given in the first example in $[1, \S 6.5]$. However, since ϕ^{\prime} is zero almost everywhere, ϕ is not integral of it's derivative: the friendly formula

$$
\phi(x)=\phi(0)+\int_{0}^{x} \phi^{\prime}(t) d t=0
$$

holds only when $x=0$ (since the intergral is always zero). This also shows that ϕ can't be absolutely continuous.

The question which presents itself is "does the classic notion of absolute continuity have anything to do with the absolute continuity of measures and the RaydonNikodym derivative?" Here is a simple minded answer.

Suppose that ν is a finite measure on \mathbf{R} and let

$$
f(x)=\nu((-\infty, x))
$$

Then f is nondecreasing. This immediately implies that f is continuous except for countably many jump discontinuities. Even better, "Lebesgue's Theorem" implies that f is differentiable almost everywhere [1, §6.2].

Suppose that $\nu \ll m$. Let $g=\frac{d \nu}{d m}$ so that

$$
f(x)=\int_{-\infty}^{x} g(t) d m(t)
$$

It follows that f is absolutely continuous and $f^{\prime}=g$ almost everywhere.
Now suppose that f is absolutely continuous. I claim that $\nu \ll m$. For this it suffices to see that if $E \subset(a, b)$ has Lebesgue measure zero, then $\nu(E)=0$. Fix $\epsilon>0$. Then by definition, since f is non-decreasing, there is a $\delta>0$ such that or any finite collection $\left\{\left(a_{k}, b_{k}\right)\right\}_{k=1}^{n}$ of open intervals in (a, b) we have

$$
\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)<\delta \quad \text { implies } \quad \sum_{k=1}^{n} f\left(b_{k}\right)-f\left(a_{k}\right)=\sum_{k=1}^{n} \nu\left(\left[a_{k}, b_{k}\right)\right)<\epsilon
$$

Since $m(E)=0$, we can find a countable cover $\left\{\left(a_{k}, b_{k}\right)\right\}_{k=1}^{\infty}$ of E in (a, b) such that

$$
\sum_{k=1}^{\infty}\left(b_{k}-a_{k}\right)<\delta .
$$

Hence we have

$$
\nu(E) \leq \sum_{k=1}^{\infty} \nu\left(\left(a_{k}, b_{k}\right)\right) \leq \sum_{k=1}^{\infty} \nu\left(\left[a_{k}, b_{k}\right)\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \nu\left(\left[a_{k}, b_{k}\right)\right) \leq \epsilon .
$$

Since $\epsilon>0$ is arbitrary, $\nu(E)=0$ as required.

References

[1] Halsey L. Royden and Patrick M. Fitzpatrick, Real analysis, 4th Ed., Prentice Hall, New York, 2010.

[^0]: ${ }^{1}$ I pulled this graph from the Wolfram's web site https://mathworld.wolfram.com/CantorFunction.html where one can access the Mathematica source.

[^1]: ${ }^{2}$ This also shows that \mathscr{C} has no isolated points. Then the Baire Category Theorem implies \mathscr{C} is uncountable. However we would have to invoke the Continuium Hypothesis to conclude from that alone that $\operatorname{Card}(\mathscr{C})=\mathfrak{c}$.

[^2]: ${ }^{3}$ Recall that the composition of a continuous function with a measurable function is always measurable.

