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Getting Started

We should be recording!

This a good time to ask questions about the previous lecture,
complain, or tell a story.

Speaking of complaining, let’s have homework problems 11 to
23 due Wednesday via gradescope.
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Some Review

Definition

We say that a bounded real-valued function f on [a, b] is Riemann

integrable if the upper Riemann integral R
∫ b

a
f and the lower

Riemann integral R
∫ b

a
f are equal. In that case, we call the

common value is denoted by R
∫ b

a
f . The set of all Riemann

integrable functions on [a, b] is denoted by R[a, b].
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Homework

Proposition

A bounded real-valued function on [a, b] is Riemann integrable if
and only if for all ε > 0 there is a partition P of [a, b] such that

U(f ,P)− L(f ,P) < ε.

Proof.

I will leave this as a guided homework problem.
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Making Calculus Work

Proposition

If f : [a, b]→ R is continuous, then f ∈ R[a, b].

Proof.

Let ε > 0. Since [a, b] is compact, f is uniformly continuous. Let
δ > 0 be such that |x − y | < δ implies |f (x)− f (y)| < ε/(b − a).
Let n ∈ N be such that b−a

n < δ. Let Pn be the regular partition

{ tk }nk=0 such that tk = a + k (b−a)
n for 0 ≤ k ≤ n. By the Extreme

Value Theorem, there are c , d ∈ [tk−1, tk ] such that Mk = f (c)
and mk = f (d). Since |c − d | < δ, we have Mk −mk <

ε
b−a .
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Proof

Proof Continued.

Now we compute

U(f ,P)− L(f ,P) =
n∑

k=1

(Mk −mk)∆tk

<
ε

b − a

n∑
k=1

∆tk

= ε.

Since ε > 0 was arbitrary, it follows that f is Riemann integrable
by our homework problem.
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Measure Zero

Definition

A subset A ⊂ [a, b] has content zero (or later measure zero) if for
all ε > 0 there are open intervals { In }∞n=1 (some of which could be
empty) such that

1 A ⊂
⋃∞

n=1 In and

2
∑∞

n=1 `(In) < ε,

where `
(
(a, b)

)
:= b − a.
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Examples

Example

1 Single points have content zero.

2 You will prove for homework that the countable union of sets
of content zero have content zero.

3 In particular, countable subsets of [a, b] such as Q ∩ [a, b],
have content zero.
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Criteria

We will, I hope, have a proof of the following later in the term
using our methods, but a classical proof is available from Goldberg,
Methods of Real Analysis, §7.3 or Knapp, Real Analysis, Theorem
III.3.29.

Theorem

A bounded function f : [a, b]→ R is Riemann integrable if and
only if the set A of discontinuities of f has content zero.
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Examples

Example

Let f = 1Q∩[0,1] be the characteristic function of the rationals in
[0, 1].

f (x) =

{
1 if x ∈ Q ∩ [0, 1] and

0 if x ∈ [0, 1] \Q.

Then f is nowhere continuous. Hence f is not Riemann integrable.
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The Ruler Function

Example

Let g : R→ R be the “ruler function”

g(x) =

{
1
q if x = p

q with (p, q) = 1, and

0 otherwise.

It is a fun exercise to first figure out why g is called the “ruler
function”. One of the reasons its interesting is that it is continuous
at every irrational number but discontinuous at every rational. As
a result the restriction of g to any closed bounded interval [a, b] is
Riemann integrable. Furthermore,

R
∫ b

a
g = 0

for any interval [a, b].
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Back to Riemann’s Question

Remark (Problems with the Riemann Theory)

1 Restricted to bounded functions.

2 Restricted to bounded intervals.

3 Does not have strong convergence properties.

4 The set R[a, b] does not have good properties. In particular, it
does not admit a useful complete metric. Certainly, the metric
ρ(f , g) =

∫ b
a |f = g | is not complete on R[a, b]. (Ok, ρ is just

a pseudo metric, but even after forming the appropriate
equivalence relation, we don’t get a complete metric.)

Frankly, items (1) and (2) are just minor limitations, while (3) is
still just an inconvenience. But (4) is truly a problem. If we have
learned nothing else from the beginning of this term, it is—to
paraphrase the motto of Faber College—that “completeness is
good”.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Riemann Sums

Remark

For motivation for what comes next, let’s also dredge up the
concept of a Riemann sum.

Definition

Let P = { tk }nk=0 be a partition of [a, b]. Choose ξk ∈ [tk−1, tk ]
and let ξ = (ξ1, . . . , ξn). Then

R(f ,P, ξ) :=
n∑

k=1

f (ξi )∆tk =
n∑

k=1

f (ξi )`([tk−1, tk ])

is called a Riemann sum for f . Return Return We call

‖P‖ = max
1≤k≤n

∆tk = max
1≤k≤n

`([tk−1, tk ])

the mesh of the partition P.
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Picture
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Calculus I

Remark

The following is the way Riemann integrability is presented in most
of the basic calculus courses we teach. It takes a bit of hard work
to see that it is equivalent to the “lower/upper sum” version of the
definition we’ve settled on here. I am quoting it here primarily for
motivation, although you can use it on homework if you like.

Theorem (Knapp, Real Analysis, Theorem III.3.27)

Suppose that f is a bounded real-valued function on [a, b]. Then
f ∈ R[a, b] if and only if there is a I ∈ R such that for all ε > 0,
there is a δ > 0 such that for all partitions P with ‖P‖ < δ we have∣∣R(f ,P, ξ)− I

∣∣ < ε

provided ξk ∈ [tk−1, tk ]. Moreover, when f ∈ R[a, b], then

I = R
∫ b
a f .
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Motivation

Remark

Crudely put, the ideal of the Lebesgue integral is allow Riemann sums

that allow partition of [a, b] into more general subsets—rather than
just intervals. However, this requires that we assign a “length” to
these subsets that is compatible with our notion of the length `(I )
of and interval. This suggests that we want a function
m : P([0, 1])→ [0,∞) such that

1 m(∅) = 0,

2 m(I ) = `(I ) when I is an interval, and

3 If E =
⋃∞

n=1 En with En ∩ Em = ∅ if n 6= m, then

m(E ) =
∞∑
n=1

m(En).
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Set Theory

Remark

Unfortunately, asking for a function m as on the previous slide is
mired in a set-theoretic morass even working in ZFC. With mild
translation invariant requirements, it is not possible to define such
a m on all subsets of R—we will make this precise in due course.
One solution would be replace item (3) with finite disjoint unions.
But it turns out that this leads to a less useful theory. The
accepted “solution” is to restrict our generalized length function m
to a subset M⊂ P([a, b]). Even so, we need M to be robust. It
should contain all intervals. We also want it closed under
countable set operations like intersection and union. Then we can
only consider functions f : [a, b]→ R that “play nice” with M.
For example, we want f −1(I ) ∈M for any interval I ⊂ R.
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Making an Integral

Suppose f : [a, b]→ [0,∞) plays nice with M as on the previous
slide. If f takes only finite many values α1, . . . , αn ∈ R \ { 0 }, then
we are assuming

Ak = f −1(αk) = { x ∈ [a, b] : f (x) = αk } ∈ M.

Then we define

Int(f ) =
n∑

k=1

αkm(Ak)

which should remind you of a Riemann sum . We call such a function
a simple function. For a general f : [a, b]→ [0,∞), we define∫
[a,b]

f (x) dm(x) = sup{ Int(s) : s is a simple function and 0 ≤ s ≤ f }.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Getting Technical

Now that we see what the idea is, it is time to start getting precise.

Strictly for motivation, let’s review a bit of topology.

Definition

Recall that a topology on any set X is a collection τ ⊂ P(X ) such that

1 ∅,X ∈ τ ,

2 τ is closed under finite intersections, and

3 τ is closed under arbitrary unions.

Furthermore, a function f : (X , τ)→ (Y , σ) is continuous if f −1(V ) ∈ τ
for all V ∈ σ.

Remark

Of course, if life were fair, you would only have to know about topologies
that arise from metrics. But life is not fair.
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σ-Algebras

Definition

A collection M⊂ P(X ) is called a σ-algebra in X if

1 X ∈M,

2 A ∈ M implies AC := X \ A ∈M, and

3 {An }∞n=1 ⊂M implies that
⋃∞

n=1 An ∈M.

If M is a σ-algebra in X , then the pair (X ,M) is called a
measurable space.
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Bonus Properties

Remark

Suppose that M is a σ-algebra in X .

1 ∅ ∈ M.

2 If A1, . . . ,An ∈M, then A1 ∪ · · · ∪ An ∈M. (Just let Ak = ∅
if k > n.)

3 If {An }∞n=1 ⊂M, then
⋂∞

n=1 An =
(⋃∞

n=1 A
C
n

)C
∈M.

4 If A1, . . . ,An ∈M, then A1 ∩ · · · ∩ An ∈M. (Just let
Ak = X if k > n or take complements.)

5 If A,B ∈M, then A \ B = A ∩ BC ∈M.
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Low Hanging Fruit

Example

1 M = { ∅,X }.
2 M = P(X ).

3 Suppose that X is uncountable. Let M be the collection of
A ⊂ X such that either A or AC is countable. Then you can
check, yes you really should, that M is a σ-algebra in X .

Remark

If you find the above examples less than stimulating, you are just
normal. As it happens, producing “reasonable” non-trivial
examples of σ-algebras is hard.
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Generating σ-Algebras

Proposition

Let X be a set and N ⊂ P(X ) any subset. Then there is a
smallest σ-algebra M(N ) in X such that N ⊂ M(N ). We call
M(N ) the σ-algebra generated by N .

Proof.

Let S be the set of σ-algebras M′ in X such that N ⊂M′. Note
that M′ = P(X ) ∈ S, so S 6= ∅. Let

M =
⋂
M′∈S

M′.

Once you check that M is a σ-algebra, then it is clear that M is
the smallest σ-algebra containing N . Therefore we can let
M(N ) =M.
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The Borel Sets

Definition

Let (X , τ) be a topological space. Then the Borel σ-algebra in X
is the σ-algebra B(X ), generated by τ . (That is, B(X ) =M(τ).)
The elements of B(X ) are called Borel sets.
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Non-Trivial Example?

Remark

It is still not clear that we have exhibited a non-trivial σ-algebra!
There is no reason that B(X ) can’t be all of P(X ). For example, if
we give X the discrete metric—that is, ρ(x , y) = 1− δxy—then
every subset is open and B(X ) = P(X ). We will eventually see
that B(R) 6= P(R), but this is non-trivial! Worse, the structure of
B(R) is very subtle. Obviously, B(R) contains the open sets. But
it also contains countable intersections of open sets called Gδ sets.
But it contains countable unions of Gδ sets called Gδσ-sets. Then
Gδσδ-sets, and so on. Alternatively, we could start with closed sets,
then form countable unions called Fσ-sets. Then Fσδ-sets,
Fσδσ-sets, and so on. Fascinatingly, each of these clases is distinct
and do not exhaust the collection of Borel sets! One needs to
continue transfinitely using all countable ordinals. Fortunately,
almost none of this need concern the practicing analyst.
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That’s Enough for Today

That is enough for now.
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