Math 73/103: Fall 2020 Lecture 11

Dana P. Williams
Dartmouth College

October 7, 2020

Getting Started

- We should be recording!
- This a good time to ask questions about the previous lecture, complain, or tell a story.
- Homework problems 11 to 23 are due today via gradescope.

Measusrable Functions

Definition

If $f:(X, \mathcal{M}) \rightarrow(Y, \mathcal{N})$ is a function between measurable spaces, then we say that f is measurable if $f^{-1}(A) \in \mathcal{M}$ for all $A \in \mathcal{N}$.

Definition (Unfortunate Convention)

If (X, \mathcal{M}) is a measurable space and (Y, τ) is a topological space, then we say that $f: X \rightarrow Y$ is measurable if $f:(X, \mathcal{M}) \rightarrow(Y, \mathcal{B}(Y))$ is measurable.

Proposition

If Y is a topological space, then $f: X \rightarrow Y$ is measurable if and only if $f^{-1}(V) \in \mathcal{M}$ for all open subsets $V \subset Y$.

Proof

Proof.

Suppose that $f:(X, \mathcal{M}) \rightarrow(Y, \mathcal{B}(Y))$ is measurable. Then if $V \in \tau, V \in \mathcal{B}(Y)$ and $f^{-1}(V) \in \mathcal{M}$ by assumption.
Now suppose that $f^{-1}(V) \in \mathcal{M}$ for all $V \in \tau$. Let
$\mathcal{N}=\left\{A \subset Y: f^{-1}(A) \in \mathcal{M}\right\}$. But assumption, $\tau \subset \mathcal{N}$.
Therefore it will suffice to see that \mathcal{N} is a σ-algebra in Y. Since $f^{-1}(Y)=X \in \mathcal{M}$, we have $Y \in \mathcal{N}$. Now if $A \in \mathcal{N}$, then $f^{-1}(A) \in \mathcal{M}$. Hence $f^{-1}(A)^{C}=f^{-1}\left(A^{C}\right) \in \mathcal{M}$ and $A^{C} \in \mathcal{N}$. Now suppose that $\left\{A_{n}\right\}_{n=1}^{\infty} \subset \mathcal{N}$. Then $f^{-1}\left(A_{n}\right) \in \mathcal{M}$. Hence $\bigcup f^{-1}\left(A_{n}\right)=f^{-1}\left(\bigcup A_{n}\right) \in \mathcal{M}$. Thus $\bigcup A_{n} \in \mathcal{N}$. Therefore \mathcal{N} is a σ-algebra in Y as required.

Borel Functions

Definition

If Y and Z are topological spaces, then $f: Y \rightarrow Z$ is Borel if $f^{-1}(V) \in \mathcal{B}(Y)$ for all open sets V in Z.

Proposition

Suppose that Y and Z are topological spaces.
(1) $f: Y \rightarrow Z$ is Borel if and only if $f:(Y, \mathcal{B}(Y)) \rightarrow(Z, \mathcal{B}(Z))$
is measurable.
(2) If $f: Y \rightarrow Z$ is continuous, then f is Borel.
(3) If $f: Y \rightarrow Z$ is Borel and $g:(X, \mathcal{M}) \rightarrow Y$ is measurable, then $f \circ g: X \rightarrow Z$ is measurable.

Proof

Proof.

(1) and (2) are straightforward and left for you to check. As for (3), note that if $V \subset Z$ is open, then

$$
(f \circ g)^{-1}(V)=g^{-1}\left(f^{-1}(V)\right)
$$

Since f is Borel, $f^{-1}(V) \in \mathcal{B}(Y)$. But then by definition, $g^{-1}\left(f^{-1}(V)\right) \in \mathcal{M}$.

Generalize

Proposition

Suppose that $f:(X, \mathcal{M}) \rightarrow(Y, \mathcal{N})$ and $g:(Y, \mathcal{N}) \rightarrow(Z, \mathcal{P})$ are measurable. Then $g \circ f:(X, \mathcal{M}) \rightarrow(Z, \mathcal{P})$ is measurable.

Proof.

Just like part (3) on the previous slide.

A Basis for a Topology

Definition

If (Y, τ) is a topological space, then $\beta \subset \tau$ is called a basis for τ if every element of τ is a union of elements from β.

Lemma

Let (Y, τ) be a topological space. Then β is a basis for the topology if given $U \in \tau$ and $x \in U$ there is a $V \in \beta$ such that $x \in V \subset U$.

Proof.

For each $x \in U$ let $V_{x} \in \beta$ be such that $x \in V_{x} \subset U$. Then $U=\bigcup_{x \in U} V_{x}$.

Examples

Example

(1) If (X, ρ) is a metric space then the collection of all open balls is a basis. In fact, we could take all open balls of rational radius or even of radii $\frac{1}{n}$ for $n \in \mathbf{N}$.
(2) The collection of open intervals with rational endpoints form a basis for the usual topology on \mathbf{R}.

Definition

A topological space Y is said to be second countable if there is a countable basis for the topology on Y.

Proposition

A separable metric space is second countable.

Proof

Proof.

Let $D=\left\{d_{n}\right\}_{n=1}^{\infty}$ be a countable dense subset of (X, ρ). Let

$$
\beta=\left\{B_{\frac{1}{n}}\left(d_{m}\right) ; n, m \in \mathbf{N}\right\} .
$$

Then $\beta \subset \tau_{\rho}$. Suppose $V \in \tau_{\rho}$ and $x \in V$. Then there is a $r>0$ such that $B_{r}(x) \subset V$. Let n be such that $\frac{1}{n}<\frac{r}{2}$. Since D is dense, there is a $d_{m} \in D$ such that $d_{m} \in B_{\frac{1}{n}}(x)$. If $y \in B_{\frac{1}{n}}\left(d_{m}\right)$, then

$$
\rho(y, x) \leq \rho\left(y, d_{m}\right)+\rho\left(d_{m}, x\right)<\frac{1}{n}+\frac{1}{n}<r .
$$

That is, $x \in B_{\frac{1}{m}}\left(d_{m}\right) \subset B_{r}(x) \subset V$.

Second Countability

Corollary

\mathbf{R}^{n} is second countable for all $n \geq 1$ as is ℓ^{p} for $1 \leq p<\infty$.

Proposition

Suppose that Y is a second countable topological space and that β is a countable basis for the topology on Y. Then $f:(X, \mathcal{M}) \rightarrow Y$ is measurable if and only if $f^{-1}(V) \in \mathcal{M}$ for all $V \in \beta$.

Proof.

By definition, every open set is a union of elements of β. Since β is countable, every open set is a countable union of elements of β. Etc.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Functions on \mathbf{R}^{2}

Proposition

Let Y be a topological space. Suppose that $u, v:(X, \mathcal{M}) \rightarrow \mathbf{R}$ are measurable, and that $\varphi: \mathbf{R}^{2} \rightarrow Y$ is continuous. Then

$$
h(x)=\varphi(u(x), v(x))
$$

is measurable from (X, \mathcal{M}) to Y.

Remark

For the proof we need to know that \mathbf{R}^{2}, it its usual topology, has a countable basis β of sets of the form $A \times B$ with A and B open in \mathbf{R}. This is not hard to prove using our lemma characterizing a basis for a topology proved earlier.

Proof

Proof.

I claim that $f(x)=(u(x), v(x))$ is a measurable function from (X, \mathcal{M}) to $\left(\mathbf{R}^{2}, \mathcal{B}\left(\mathbf{R}^{2}\right)\right)$. To verify the claim, it suffices by the previous remark to see that $f^{-1}(A \times B) \in \mathcal{M}$ if A, B are open in R. But $f^{-1}(A \times B)=u^{-1}(A) \cap v^{-1}(B) \in \mathcal{M}$ as required. This proves the claim.

Now $h=\varphi \circ f$, and since φ is continuous, we have already seen that this composition is measurable:

$$
(X, \mathcal{M}) \xrightarrow{f}\left(\mathbf{R}^{2}, \mathcal{B}\left(\mathbf{R}^{2}\right)\right) \xrightarrow{\varphi}(Y, \tau) .
$$

Low Hanging Fruit

Corollary

Suppose that $f, g:(X, \mathcal{M}) \rightarrow \mathbf{R}$ are measurable. Then so are $f \pm g$ and $f g$. Further, $h=f+i g$ is measurable from (X, \mathcal{M}) to \mathbf{C}.

Proof.

Note that $\varphi_{1}(x, y)=x \pm y$ and $\varphi_{2}(x, y)=x y$ are continuous from $\mathbf{R}^{2} \rightarrow \mathbf{R}$ while $\varphi_{3}(x, y)=x+i y$ is continuous from $\mathbf{R}^{2} \rightarrow \mathbf{C}$.

More Fruit

Corollary

If $f, g:(X, \mathcal{M}) \rightarrow \mathbf{C}$ are measurable, then so are $|f|, \operatorname{Re}(f)$, $\operatorname{Im}(f), f \pm g$, and $f g$.

Proof.

Then maps $z \mapsto|z|, z \mapsto \operatorname{Re}(z)$, and $z \mapsto \operatorname{Im}(z)$ are all continuous from $\mathbf{C} \rightarrow \mathbf{R}$. Then recall that the composition of a continuous function with a measurable function is measurable.

Combining with the previous corollary, we see that the real and imaginary parts of $f \pm g$ and $f g$ are measurable. The second part of that corollary then implies $f \pm g$ and $f g$ are measurable.

Supremums

Remark

Let $\left(f_{n}\right)$ be a sequence of real-valued functions. Then we will want to consider $g(x)=\sup _{n} f_{n}(x)$. But this is problematical: the supremum might be $+\infty$!

Definition

The extended real numbers $[-\infty, \infty]$ is the topological space $\mathbf{R} \cup\{ \pm \infty\}$ with a basis consisting of the sets $[-\infty, b),(a, b)$, and $(a, \infty]$ for all $a, b \in \mathbf{R}$. We give $[-\infty, \infty]$ its natural order.

Remark

Of course, we can take $a, b \in \mathbf{Q}$ above so that $[-\infty, \infty]$ is second countable. In fact, $[-\infty, \infty]$ is homeomorphic to $[-1,1]$ in an order preserving way. So we could pull the metric back from $[-1,1]$ and view $[-\infty, \infty]$ as a compact metric space.

Measurable Functions into $[-\infty, \infty]$

Lemma

A function $f:(X, \mathcal{M}) \rightarrow[-\infty, \infty]$ is measurable if and only if

$$
\begin{equation*}
\{x \in X: f(x)>a\}=f^{-1}((a, \infty]) \in \mathcal{M} \quad \text { for all } a \in \mathbf{R} \tag{1}
\end{equation*}
$$

Proof.

If f is measurable, then (1) must be measurable. So the only interesting bit is to assume that (1) holds and verify that f is measurable. Since $[-\infty, \infty]$ is second countable, it suffices to consider our basis.

Proof

Proof Continued.

Note that $f^{-1}([-\infty, a])=f^{-1}((a, \infty])^{C} \in \mathcal{M}$. But

$$
[-\infty, a)=\bigcup_{n=1}^{\infty}\left[-\infty, a-\frac{1}{n}\right]
$$

And then

$$
f^{-1}([-\infty, a))=\bigcup_{n=1}^{\infty} f^{-1}\left(\left[-\infty, a-\frac{1}{n}\right]\right) \in \mathcal{M}
$$

However, then

$$
f^{-1}((a, b))=f^{-1}((a, \infty]) \cap f^{-1}([-\infty, b)) \in \mathcal{M}
$$

as well. This completes the proof.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.
- Let $\left(a_{n}\right)$ be a sequence in $[-\infty, \infty]$.
- Let $b_{k}=\sup _{n \geq k} a_{n}$. (Note that $b_{k} \in[-\infty, \infty]$.)
- Since $b_{k+1} \leq b_{k}, \lim _{k \rightarrow \infty} b_{k}=\inf _{k} b_{k}$ always exists in $[-\infty, \infty]$.
- We define $\lim \sup _{n} a_{n}=\lim _{k \rightarrow \infty} \sup _{n \geq k} a_{n}$.
- Similarly, we define $\liminf _{n} a_{n}=\lim _{k \rightarrow \infty} \inf _{n \geq k} a_{n}=\sup _{k} \inf _{n \geq k} a_{n}$.
- Part of the reason for working in $[-\infty, \infty]$ is that then the $\limsup a_{n}$ and $\lim \inf a_{n}$ always exist.

Why We Went to College

Proposition

Let $\left(a_{n}\right)$ be a sequence in $[-\infty, \infty]$. Then

$$
\liminf _{n} a_{n} \leq \limsup _{n} a_{n} .
$$

Furthermore, $\lim _{n} a_{n}$ exists in $[-\infty, \infty]$ if and only if $\liminf _{n} a_{n}=\lim \sup _{n} a_{n}$, and then $\lim _{n} a_{n}$ is the common value.

Proof.

This is what your parents paid all that college tuition for.

That's Enough for Today

- That is enough for now.

