Math 73/103: Fall 2020 Lecture 12

Dana P. Williams

Dartmouth College

October 9, 2020

- We should be recording!
- As usual, this a good time to ask questions about the previous lecture, complain, or tell a story.
- I've graded and returned your second homework via gradescope. I've also updated the solutions on the assignments page. Everyone should carefully review the solutions.
- Note that I don't always look at every problem. For problems that I don't grade, I just check to see if it was attempted.
- Please bring questions and concerns to office hours.
- Keep in mind, that the goal is not just a correct solution, but an elegant write-up as well.

Theorem

Suppose that $f_n : (X, \mathcal{M}) \to [-\infty, \infty]$ is measurable for all $n \in \mathbb{N}$. Then so are the following:

 $g = \sup_{n \ge 1} f_n$. $h = \limsup_n f_n$. $k = \inf_{k \ge 1} f_n$. $r = \liminf_n f_n$.

Proof.

Let $g(x) = \sup_{n \ge 1} f_n(x)$. Then if $g(x) > \alpha$, then there is a *n* such that $f_n(x) > \alpha$. Since the other direction is immediate, it follows that $g^{-1}((a, \infty]) = \bigcup_{n=1}^{\infty} f_n^{-1}((a, \infty])$. Therefore *g* is measurable. But $k = \inf_{n \ge 1} f_n = -\sup_{n \ge 1} -f_n$. Hence *k* is measurable. Now $h = \limsup_n f_n = \inf_k (\sup_{n \ge k} f_n)$, so *h* is measurable. Then $r = \liminf_n f_n = -\limsup_n -f_n$, so *r* is measurable.

Corollary (Pointwise limits of measurable functions are measurable)

Suppose that $Y = [-\infty, \infty]$ or $Y = \mathbf{C}$. Suppose also that $f_n : (X, \mathcal{M}) \to Y$ is measurable for all $n \in \mathbf{N}$, and that $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x \in X$. Then $f : (X, \mathcal{M}) \to Y$ is measurable.

Proof.

If $Y = [-\infty, \infty]$, then $f = \limsup_n f_n$ and f is measurable. If $Y = \mathbf{C}$, then $\operatorname{Re}(f) = \lim_n \operatorname{Re}(f_n)$ while $\operatorname{Im}(f) = \lim_n \operatorname{Im}(f_n)$. Hence the real and imaginary parts of f are measurable. Therefore f is measurable.

Remark

We can already see an improvement over the Riemann theory here. Let $\{r_n\}_{n=1}^{\infty}$ be an enumeration of the rationals in [0, 1]. Let $A_n = \{r_1, r_2, \ldots, r_n\}$ and let $f_n = \mathbb{1}_{A_n}$. Then $f_n \in \mathcal{R}[0, 1]$. But (f_n) converges pointwise to $f = \mathbb{1}_{[0,1]\cap \mathbf{Q}}$ which is not Riemann integrable! (Well, assuming here that [0, 1] does not have content zero. Although we will prove this in due course, it is not so hard to show.)

- Definitely time for a break.
- Questions?
- Start recording again.

Definition

A measure on a measurable space (X, \mathcal{M}) is a function $\mu : \mathcal{M} \to [0, \infty]$ such that

•
$$\mu(\emptyset) = 0$$
, and

② (countable additivity) If $\{A_n\}_{n=1}^{\infty} \subset M$ and if $A_n \cap A_m = \emptyset$ if $m \neq n$, then

$$\mu\Big(\bigcup_{n=1}^{\infty}A_n\Big)=\sum_{n=1}^{\infty}\mu(A_n).$$

The triple (X, \mathcal{M}, μ) is called a measure space.

Proposition

Suppose that (X, \mathcal{M}, μ) is a measure space.

- (monotonicity) If $A, B \in \mathcal{M}$ and $A \subset B$, then $\mu(A) \leq \mu(B)$.
- 3 In part (1), if $\mu(A) < \infty$, then $\mu(B \setminus A) = \mu(B) \mu(A)$.
- **③** If $A_n \in \mathcal{M}$ and $A_n \subset A_{n+1}$ for all $n \in \mathbb{N}$, then $\mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n).$
- If $A_n \in \mathcal{M}$ and $A_{n+1} \subset A_n$ for all $n \in \mathbb{N}$, and if $\mu(A_1) < \infty$, then $\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$.

▶ return

Proof

Proof.

(1)
$$B = A \cup B \setminus A$$
 is a disjoint union. Hence
 $\mu(B) = \mu(A) + \mu(B \setminus A).$

(2) If $\mu(A) < \infty$, then we can subtract it from both sides.

(3) This is similar. Let $B_1 = A_1$, and let $B_n = A_n \setminus A_{n-1}$ if $n \ge 2$. Then $\{B_n\}_{n=1}^{\infty}$ are pairwise disjoint. Moreover, $\bigcup_{k=1}^{n} A_k = \bigcup_{k=1}^{n} B_k = A_n$. Hence

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(\bigcup_{n=1}^{\infty} B_n\right) = \sum_{n=1}^{\infty} \mu(B_n)$$
$$= \lim_{n \to \infty} \sum_{k=1}^{n} \mu(B_k) = \lim_{n \to \infty} \mu\left(\bigcup_{k=1}^{n} B_k\right)$$
$$= \lim_{n \to \infty} \mu(A_n).$$

(4) Let
$$C_n = A_1 \setminus A_n$$
. Then $C_n \subset C_{n+1}$ and
 $\infty > \mu(A_1) \le \mu(A_n) \le \mu(\bigcap_{n=1}^{\infty} A_n)$. Therefore on the one hand,
 $\mu(\bigcup C_n) = \mu(A_1 \setminus \bigcap A_n) = \mu(A_1) - \mu(\bigcap A_n).$

On the other hand,

$$\mu\left(\bigcup C_n\right) = \lim_{n \to \infty} \mu(C_n) = \lim_{n \to \infty} \mu(A_1) - \mu(A_n)$$
$$= \mu(A_1) - \lim_{n \to \infty} \mu(A_n).$$

Since $\mu(A_1) < \infty$, the result follows.

Example (Homework Problem #30)

Let X be a set and let $\mathcal{M} = \mathcal{P}(X)$.

Define

$$u(E) = egin{cases} \infty & ext{if E is infinite, and} \ |E| & ext{if E is finite} \end{cases}$$

where |E| is the number of elements in E. This is the measure obtained by taking f(x) = 1 for all $x \in X$ in problem #30. The measure ν is called counting measure on X.

2 Pick any
$$x_0 \in X$$
. Let

$$\delta_{x_0}(E) = \begin{cases} 1 & \text{if } x_0 \in E, \text{ and} \\ 0 & \text{if } x_0 \notin E. \end{cases}$$

This is the measure obtained by taking $f = \mathbb{1}_{\{x_0\}}$. It is called the Dirac measure at x_0 .

Example

Suppose that X is uncountable and that $\mathcal{M} = \{ E \subset X : \text{either } E \text{ or } E^C \text{ is countable } \}.$ Then

$$\rho(E) = \begin{cases} 1 & \text{if } E \text{ is uncountable, or} \\ 0 & \text{if } E \text{ is countable.} \end{cases}$$

You'll show that ρ is a measure on homework.

Example (Non-trivial)

We will devote a lot of effort to proving that there is a unique measure m on $\mathcal{B}(\mathbf{R})$ such that $m(I) = \ell(I)$ for every interval and m(E + x) = m(E) for all $E \in \mathcal{B}(\mathbf{R})$ where $E + x = \{y + x : y \in E\}$. At this point, it is worth noting that we don't even know that $E + x \in \mathcal{B}(\mathbf{R})$ if $E \in \mathcal{B}(\mathbf{R})$.

Example

Let ν be counting measure on **N**. Let $A_n = \{n, n+1, n+2, ...\}$. Then $A_{n+1} \subset A_n$. But

$$0 = \nu(\emptyset) = \nu\left(\bigcap_{n=1}^{\infty} A_n\right) \neq \lim_{n \to \infty} \nu(A_n) = \infty.$$

Thus the hypothesis that $\nu(A_1) < \infty$ is necessary in the nested intersection result from \bigcirc earlier.

- Definitely time for a break.
- Questions?
- Start recording again.

Simple Functions

Definition

A function $f : X \to \mathbf{C}$ is called simple if s(X) is finite. We say that s is a non-negative simple function (hereafter NNSF) if $s(X) \subset [0, \infty)$. (Note that the value ∞ is excluded—there is no such element in \mathbf{C} !)

Remark

If $s(X) \setminus \{0\} = \{\alpha_1, \ldots, \alpha_n\}$, and if $A_k = s^{-1}(\alpha_k)$, then it is not hard to work out that s is measurable if and only if each $A_k \in \mathcal{M}$. (Note that $s^{-1}(0) = (A_1 \cup \cdots \cup A_n)^C$.) Then

$$s = \sum_{k=1}^{n} \alpha_k \mathbb{1}_{A_k}.$$

This representation of s as a linear combination of characteristic functions is unique if we assume the α_k are distinct and non-zero.

Approximation by Simple Functions

Theorem

Suppose that $f : (X, \mathcal{M}) \to [0, \infty]$ is any function. Then there are NNSFs, s_k , on X such that

 $\textbf{0} \quad 0 \leq s_1 \leq s_2 \leq \cdots \leq f \text{, and such that}$

• for all
$$x \in X$$
, $\lim_{n \to \infty} s_n(x) = f(x)$.

Furthermore, if f is measurable, we can assume each s_k is a measurable non-negative simple function (hereafter MNNSF). If f is bounded, then $s_n \rightarrow f$ uniformly on X.

Remark

Since the pointwise limit of measurable functions is always measurable, the theorem above implies that a non-negative extended real-valued function f is measurable if and only if there are MNNSFs, s_n , such that $s_n \nearrow f$ pointwise.

Proof.

Let $n \in \mathbf{N}$. For each $x \in [0, \infty)$, let $k_n(x)$ be the unique $k \in \mathbf{Z}$ (with $k \ge 0$) such that

$$2^{-n}k \le x < 2^{-n}(k+1).$$

Then define $\varphi_n: [0,\infty] \to [0,\infty)$ by

$$\varphi_n(x) = egin{cases} k_n(x)2^{-n} & ext{if } 0 \leq x \leq n, ext{ and} \\ n & ext{if } n \leq x \leq \infty. \end{cases}$$

Proof

Proof Continued.

Here is a picture of the graph of $y = \varphi_3(x)$ I stole from the web:

Dana P. Williams Math 73/103: Fall 2020 Lecture 12

Notice that each φ_n is a Borel function on $[0, \infty)$ and $0 \le \varphi_1 \le \varphi_2 \le \cdots \le x$. Moreover, for all $x \in [0, n]$,

$$x-2^{-n}\leq \varphi_n(x)\leq x.$$

It follows that $\varphi_n(x) \to x$ on $[0, \infty]$ and that the convergence is uniform on any interval [0, N] with $N \in \mathbf{N}$.

We now let $s_n = \varphi_n \circ f$. Again, I stole a picture of a sample graph of such a s_n from the web. It is poorly labeled—you should replace 2^n on the right by n, but I hope this gives you an idea:

The point is that, since φ_n is Borel, s_n is measurable if f is. In any case, we have $s_n(x) \to f(x)$ for all $x \in X$. If f is bounded—say $0 \le f(x) \le N$, then it follows from our construction of the φ_n that the convergence is uniform.

• That is enough for now.