Math 73/103: Fall 2020 Lecture 12

Dana P. Williams
Dartmouth College

October 9, 2020

Getting Started

- We should be recording!
- As usual, this a good time to ask questions about the previous lecture, complain, or tell a story.
- I've graded and returned your second homework via gradescope. I've also updated the solutions on the assignments page. Everyone should carefully review the solutions.
- Note that I don't always look at every problem. For problems that I don't grade, I just check to see if it was attempted.
- Please bring questions and concerns to office hours.
- Keep in mind, that the goal is not just a correct solution, but an elegant write-up as well.

Measurable Functions

Theorem

Suppose that $f_{n}:(X, \mathcal{M}) \rightarrow[-\infty, \infty]$ is measurable for all $n \in \mathbf{N}$. Then so are the following:
(1) $g=\sup _{n \geq 1} f_{n}$.
(2) $h=\lim \sup _{n} f_{n}$.
(3) $k=\inf _{k \geq 1} f_{n}$.
(9) $r=\liminf _{n} f_{n}$.

Proof

Proof.

Let $g(x)=\sup _{n \geq 1} f_{n}(x)$. Then if $g(x)>\alpha$, then there is a n such that $f_{n}(x)>\alpha$. Since the other direction is immediate, it follows that $g^{-1}((a, \infty])=\bigcup_{n=1}^{\infty} f_{n}^{-1}((a, \infty])$. Therefore g is measurable.
But $k=\inf _{n \geq 1} f_{n}=-\sup _{n \geq 1}-f_{n}$. Hence k is measurable.
Now $h=\lim \sup _{n} f_{n}=\inf _{k}\left(\sup _{n \geq k} f_{n}\right)$, so h is measurable.
Then $r=\liminf _{n} f_{n}=-\limsup { }_{n}-f_{n}$, so r is measurable.

Pointwise Limits

Corollary (Pointwise limits of measurable functions are measurable)

Suppose that $Y=[-\infty, \infty]$ or $Y=\mathbf{C}$. Suppose also that $f_{n}:(X, \mathcal{M}) \rightarrow Y$ is measurable for all $n \in \mathbf{N}$, and that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in X$. Then $f:(X, \mathcal{M}) \rightarrow Y$ is measurable.

Proof.

If $Y=[-\infty, \infty]$, then $f=\lim \sup _{n} f_{n}$ and f is measurable. If $Y=\mathbf{C}$, then $\operatorname{Re}(f)=\lim _{n} \operatorname{Re}\left(f_{n}\right)$ while $\operatorname{Im}(f)=\lim _{n} \operatorname{Im}\left(f_{n}\right)$. Hence the real and imaginary parts of f are measurable. Therefore f is measurable.

Back To Riemann's Ghost

Remark

We can already see an improvement over the Riemann theory here. Let $\left\{r_{n}\right\}_{n=1}^{\infty}$ be an enumeration of the rationals in $[0,1]$. Let $A_{n}=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ and let $f_{n}=\mathbb{1}_{A_{n}}$. Then $f_{n} \in \mathcal{R}[0,1]$. But $\left(f_{n}\right)$ converges pointwise to $f=\mathbb{1}_{[0,1] \cap \text { Q }}$ which is not Riemann integrable! (Well, assuming here that $[0,1]$ does not have content zero. Although we will prove this in due course, it is not so hard to show.)

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Measures

Definition

A measure on a measurable space (X, \mathcal{M}) is a function $\mu: \mathcal{M} \rightarrow[0, \infty]$ such that
(1) $\mu(\emptyset)=0$, and
(2) (countable additivity) If $\left\{A_{n}\right\}_{n=1}^{\infty} \subset \mathcal{M}$ and if $A_{n} \cap A_{m}=\emptyset$ if $m \neq n$, then

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

The triple (X, \mathcal{M}, μ) is called a measure space.

Low Hanging Fruit

Proposition

Suppose that (X, \mathcal{M}, μ) is a measure space.
(1) (monotonicity) If $A, B \in \mathcal{M}$ and $A \subset B$, then $\mu(A) \leq \mu(B)$.
(2) In part (1), if $\mu(A)<\infty$, then $\mu(B \backslash A)=\mu(B)-\mu(A)$.
(3) If $A_{n} \in \mathcal{M}$ and $A_{n} \subset A_{n+1}$ for all $n \in \mathbf{N}$, then
$\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.
(9) If $A_{n} \in \mathcal{M}$ and $A_{n+1} \subset A_{n}$ for all $n \in \mathbf{N}$, and if $\mu\left(A_{1}\right)<\infty$, then $\mu\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n} \mu\left(A_{n}\right)$.

Proof

Proof.

(1) $B=A \cup B \backslash A$ is a disjoint union. Hence $\mu(B)=\mu(A)+\mu(B \backslash A)$.
(2) If $\mu(A)<\infty$, then we can subtract it from both sides.
(3) This is similar. Let $B_{1}=A_{1}$, and let $B_{n}=A_{n} \backslash A_{n-1}$ if $n \geq 2$.

Then $\left\{B_{n}\right\}_{n=1}^{\infty}$ are pairwise disjoint. Moreover,
$\bigcup_{k=1}^{n} A_{k}=\bigcup_{k=1}^{n} B_{k}=A_{n}$. Hence

$$
\begin{aligned}
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right) & =\mu\left(\bigcup_{n=1}^{\infty} B_{n}\right)=\sum_{n=1}^{\infty} \mu\left(B_{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \mu\left(B_{k}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{k=1}^{n} B_{k}\right) \\
& =\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
\end{aligned}
$$

Proof

Proof Continued.

(4) Let $C_{n}=A_{1} \backslash A_{n}$. Then $C_{n} \subset C_{n+1}$ and $\infty>\mu\left(A_{1}\right) \leq \mu\left(A_{n}\right) \leq \mu\left(\bigcap_{n=1}^{\infty} A_{n}\right)$. Therefore on the one hand,

$$
\mu\left(\bigcup C_{n}\right)=\mu\left(A_{1} \backslash \bigcap A_{n}\right)=\mu\left(A_{1}\right)-\mu\left(\bigcap A_{n}\right)
$$

On the other hand,

$$
\begin{aligned}
\mu\left(\bigcup C_{n}\right) & =\lim _{n \rightarrow \infty} \mu\left(C_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{1}\right)-\mu\left(A_{n}\right) \\
& =\mu\left(A_{1}\right)-\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
\end{aligned}
$$

Since $\mu\left(A_{1}\right)<\infty$, the result follows.

High Time For Examples

Example (Homework Problem \#30)

Let X be a set and let $\mathcal{M}=\mathcal{P}(X)$.
(1) Define

$$
\nu(E)= \begin{cases}\infty & \text { if } E \text { is infinite, and } \\ |E| & \text { if } E \text { is finite }\end{cases}
$$

where $|E|$ is the number of elements in E. This is the measure obtained by taking $f(x)=1$ for all $x \in X$ in problem $\# 30$. The measure ν is called counting measure on X.
(2) Pick any $x_{0} \in X$. Let

$$
\delta_{x_{0}}(E)= \begin{cases}1 & \text { if } x_{0} \in E, \text { and } \\ 0 & \text { if } x_{0} \notin E\end{cases}
$$

This is the measure obtained by taking $f=\mathbb{1}_{\left\{x_{0}\right\}}$. It is called the Dirac measure at x_{0}.

More Examples

Example

Suppose that X is uncountable and that $\mathcal{M}=\left\{E \subset X\right.$: either E or E^{C} is countable $\}$. Then

$$
\rho(E)= \begin{cases}1 & \text { if } E \text { is uncountable, or } \\ 0 & \text { if } E \text { is countable }\end{cases}
$$

You'll show that ρ is a measure on homework.

Example (Non-trivial)

We will devote a lot of effort to proving that there is a unique measure m on $\mathcal{B}(\mathbf{R})$ such that $m(I)=\ell(I)$ for every interval and $m(E+x)=m(E)$ for all $E \in \mathcal{B}(\mathbf{R})$ where
$E+x=\{y+x: y \in E\}$. At this point, it is worth noting that we don't even know that $E+x \in \mathcal{B}(\mathbf{R})$ if $E \in \mathcal{B}(\mathbf{R})$.

An Example

Example

Let ν be counting measure on \mathbf{N}. Let $A_{n}=\{n, n+1, n+2, \ldots\}$. Then $A_{n+1} \subset A_{n}$. But

$$
0=\nu(\emptyset)=\nu\left(\bigcap_{n=1}^{\infty} A_{n}\right) \neq \lim _{n \rightarrow \infty} \nu\left(A_{n}\right)=\infty .
$$

Thus the hypothesis that $\nu\left(A_{1}\right)<\infty$ is necessary in the nested intersection result from cearlier .

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Simple Functions

Definition

A function $f: X \rightarrow \mathbf{C}$ is called simple if $s(X)$ is finite. We say that s is a non-negative simple function (hereafter NNSF) if $s(X) \subset[0, \infty)$. (Note that the value ∞ is excluded-there is no such element in C!)

Remark

If $s(X) \backslash\{0\}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, and if $A_{k}=s^{-1}\left(\alpha_{k}\right)$, then it is not hard to work out that s is measurable if and only if each $A_{k} \in \mathcal{M}$. (Note that $s^{-1}(0)=\left(A_{1} \cup \cdots \cup A_{n}\right)^{C}$.) Then

$$
s=\sum_{k=1}^{n} \alpha_{k} \mathbb{1}_{A_{k}} .
$$

This representation of s as a linear combination of characteristic functions is unique if we assume the α_{k} are distinct and non-zero.

Approximation by Simple Functions

Theorem

Suppose that $f:(X, \mathcal{M}) \rightarrow[0, \infty]$ is any function. Then there are NNSFs, s_{k}, on X such that
(1) $0 \leq s_{1} \leq s_{2} \leq \cdots \leq f$, and such that
(2) for all $x \in X, \lim _{n \rightarrow \infty} s_{n}(x)=f(x)$.

Furthermore, if f is measurable, we can assume each s_{k} is a measurable non-negative simple function (hereafter MNNSF). If f is bounded, then $s_{n} \rightarrow f$ uniformly on X.

Remark

Since the pointwise limit of measurable functions is always measurable, the theorem above implies that a non-negative extended real-valued function f is measurable if and only if there are MNNSFs, s_{n}, such that $s_{n} \nearrow f$ pointwise.

Proof

Proof.

Let $n \in \mathbf{N}$. For each $x \in[0, \infty)$, let $k_{n}(x)$ be the unique $k \in \mathbf{Z}$ (with $k \geq 0$) such that

$$
2^{-n} k \leq x<2^{-n}(k+1)
$$

Then define $\varphi_{n}:[0, \infty] \rightarrow[0, \infty)$ by

$$
\varphi_{n}(x)= \begin{cases}k_{n}(x) 2^{-n} & \text { if } 0 \leq x \leq n, \text { and } \\ n & \text { if } n \leq x \leq \infty\end{cases}
$$

Proof

Proof Continued.

Here is a picture of the graph of $y=\varphi_{3}(x)$ I stole from the web:

Proof

Proof Continued.

Notice that each φ_{n} is a Borel function on $[0, \infty)$ and $0 \leq \varphi_{1} \leq \varphi_{2} \leq \cdots \leq x$. Moreover, for all $x \in[0, n]$,

$$
x-2^{-n} \leq \varphi_{n}(x) \leq x
$$

It follows that $\varphi_{n}(x) \rightarrow x$ on $[0, \infty]$ and that the convergence is uniform on any interval $[0, N]$ with $N \in \mathbf{N}$.

Proof

Proof Continued.

We now let $s_{n}=\varphi_{n} \circ f$. Again, I stole a picture of a sample graph of such a s_{n} from the web. It is poorly labeled-you should replace 2^{n} on the right by n, but I hope this gives you an idea:

Proof

Proof Continued.

The point is that, since φ_{n} is Borel, s_{n} is measurable if f is. In any case, we have $s_{n}(x) \rightarrow f(x)$ for all $x \in X$. If f is bounded-say $0 \leq f(x) \leq N$, then it follows from our construction of the φ_{n} that the convergence is uniform.

That's Enough for Today

- That is enough for now.

