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Getting Started

We should be recording!

As usual, this a good time to ask questions about the previous
lecture, complain, or tell a story.

Our next homework will be due on the 21st. We’ll see just
what problems when we see where we are Friday.
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Arithmetic

Remark (Slesnick’s Ghost)

When I was a new Dartmouth faculty member, the legendary Bill
Slesnick drummed it in to those of us who wanted to rise to the
level of a true Dartmouth mathematics professor that “infinity is
not a number”. In particular, limits “diverge to infinity”—they do
not “converge to infinity”. Nevertheless, ±∞ are perfectly good
points in [−∞,∞]. However, Bill would be delighted to point out
that addition in [−∞,∞] is not everywhere defined: e.g., ∞−∞
does not make sense. But in [0,∞] we can make do—with all due
apologies to the great Professor Slesnick. We agree that 0 ·∞ = 0,
that a +∞ =∞ for all a ∈ [0,∞], and a · ∞ =∞ if a > 0.
However, a + b = a + c only implies b = c if a ∈ [0,∞) and
ab = ac only implies b = c if a ∈ (0,∞). One important property
that we do have is that if an ↗ a and bn ↗ b, then anbn ↗ ab! A
first example of the use of this later property is the next lemma.
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Extended Non-Negative Real-Valued Functions

Lemma

Suppose that f , g : (X ,M)→ [0,∞] are measurable. Then so are
f + g and fg.

Proof.

Choose MNNSFs sn ↗ f and tn ↗ g . Then sn + tn ↗ f + g and
sntn ↗ fg . This suffices as we have already proved that the
pointwise limit of measurable functions is measurable.
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Simple Integrals

Definition

Let (X ,M, µ) be a measure space. Suppose that s : X → [0,∞) is a
MNNSF. Let s(X ) \ {0} = {α1, . . . , αn } with the αk distinct. Then

s =
n∑

k=1

αk1Ak
(∗)

is called the standard representation of s. (Note that Ak = s−1(αk) is
measurable in this case.) Then for all E ∈M we define

IntE (s) =
n∑

k=1

αk · µ(Ak ∩ E ). (†)

Remark

The point of taking the standard representation of s in (∗) is to insure
that (†) is well defined. Also our convention that 0 · ∞ = 0 eliminates
any concern over omitting 0 from {α1, . . . , αn }.
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The Integral

Definition

Suppose that f : (X ,M)→ [0,∞] is measurable. If E ∈M, then
we define ∫

E
f dµ =

∫
E
f (x) dµ(x) := sup

0≤s≤f
IntE (s)

where the supremum is taken over all MNNSFs dominated by f .
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What is the Deal with the Standard Representation?

Lemma

Let (X ,M, µ) be a measure space. Suppose that {Bj }mj=1 ⊂M
are pairwise disjoint and that λj ∈ [0,∞) for 1 ≤ j ≤ n. Then

s =
m∑
j=1

λj1Bj

is a MNNSF. Furthermore,

IntE (s) =
m∑
j=1

λj · µ(Bj ∩ E ).
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Proof

Proof.

Clearly, s is a MNNSF. We can assume that λk 6= 0 for all k. Let
s(X ) \ {0} = {α1, . . . , αn } with the αk distinct. Let
Ak = s−1(αk). Since the Bj are pairwise disjoint, Ak =

⋃
λj=αk

Bj .
Then by definition

m∑
j=1

λj · µ(Bj ∩ E ) =
n∑

k=1

∑
λj=αk

αk · µ(Bj ∩ E )

=
n∑

k=1

αk · µ(Ak ∩ E )

= IntE (s).
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Linearity of IntE

Lemma

Let s, t : X → [0,∞) be MNNSFs. Then for all α, β ∈ [0,∞),
α · s + β · t is a MNNSF, and

IntE (α · s + β · t) = α IndE (s) + β · Int(t).

Proof.

Let s =
∑n

k=1 αk1Ak
and t =

∑m
j=1 βj1Bj

be the standard forms of
s and t, respectively. Let Eij = Ai ∩ Bj . Then {Eij } is a finite
pairwise disjoint family in M.
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Proof

Proof Continued.

Then α · s + β · t =
∑

ij(ααi + ββj) · 1Eij
. Then

IntE (α · s + β · t) =
∑
ij

(ααi + ββj) · µ(Eij ∩ E )

= α
∑
ij

αi · µ(Eij ∩ E ) + β
∑
ij

βj · µ(Eij ∩ E )

= α
∑
i

αi · µ(Ai ∩ E ) + β
∑
j

βj · µ(Bj ∩ E )

= α IntE (s) + β IntE (t).
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Linear Combinations of Characteristic Functions

Corollary

Suppose that A1, . . . ,An ∈M and α1, . . . , αn ∈ [0,∞). Then
s =

∑n
k=1 αk · 1Ak

is a MNNSF, and

IntE

( n∑
k=1

αk · 1Ak

)
=

n∑
k=1

αk · µ(Ak ∩ E ).
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Death to IntE

Corollary

If s and t are MNNSFs such that s ≤ t (that is, s(x) ≤ t(x) for all
x ∈ X), then

IntE (s) ≤ IntE (t).

It follows that

IntE (s) =

∫
E
s(x) dµ(x).

Proof.

We have t = s + (t − s) and t − s is a MNNSF. Thus
IndE (t) = IntE (s) + IntE (t − s) ≥ IntE (s). Then∫

E
s(x) dµ(x) = sup

0≤t≤s
IntE (t) ≤ IntE (s).

But s ≤ s.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Low Hanging Fruit

Proposition

Let (X ,M, µ) be a measure space and f , g : X → [0,∞]
measurable.

1 f ≤ g implies
∫
E f dµ ≤

∫
E g dµ.

2 If A ⊂ E, then
∫
A f dµ ≤

∫
E f dµ.

3 If α ∈ [0,∞), then α
∫
E f dµ =

∫
E αf dµ.

4 If f (x) = 0 for all x ∈ E, then
∫
E f dµ = 0 (even if

µ(E ) =∞).

5 If µ(E ) = 0, then
∫
E f dµ = 0 (even if f (x) =∞ for all

x ∈ E).

6
∫
E f dµ =

∫
X 1E · f dµ.

Proof.

Let as exercises.
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New Measures from Old

Lemma

Suppose that (X ,M, µ) is a measure space and that
s : X → [0,∞) is a MNNSF. Then

ν(E ) =

∫
E
s(x) dµ(x)

defines a measure on (X ,M).

Proof.

Clearly ν(∅) = 0. Suppose {Ei } ⊂ M are pairwise disjoint. Let
s =

∑
k αk1Ak

be the standard representation of s.
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Proof

Proof Continued.

Then

ν
(⋃

Ei

)
=

∫
⋃

Ei

s dµ =
n∑

k=1

αk · µ
(
Ak ∩

⋃
Ei

)
=

n∑
k=1

αk

∞∑
i=1

µ(Ak ∩ Ei )

=
∞∑
i=1

n∑
k=1

αkµ(Ak ∩ Ei )

=
∞∑
i=1

∫
Ei

s dµ =
∞∑
i=1

ν(Ei ).
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The Monotone Convergence Theorem

Theorem (Monotone Convergence Theorem)

Let (X ,M, µ) be a measure space. Suppose that fn : X → [0,∞]
is measurable for all n ∈ N. Suppose also that

1 0 ≤ f1 ≤ f2 ≤ · · · , and

2 f (x) := limn→∞ fn(x) for all x ∈ X.

Then f : X → [0,∞] is measurable and

lim
n→∞

∫
E
fn(x) dµ(x) =

∫
E
f (x) dµ(x) for all E ∈M. (‡)

Proof.

Replacing fn by 1E · fn, we may as well assume E = X . Since f is
pointwise limit of measurable functions, it too is measurable. Thus
we just have to prove (‡).
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Proof

Proof.

Since fn ≤ fn+1, we have
∫
X fn dµ ≤

∫
X fn+1 dµ. Therefore there is

a α ∈ [0,∞] such that

lim
n

∫
X
fn dµ = α = sup

n≥1

∫
X
fn dµ.

Since each fn ≤ f , we have
∫
X fn dµ ≤

∫
X f dµ and

α ≤
∫
X
f dµ.
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Proof

Proof Continued.

Let s be a MNNSF such that 0 ≤ s ≤ f . Fix 0 < c < 1 and let
En = { x ∈ X : fn(x) ≥ cs(x) }. Then En ∈M and E1 ⊂ E2 ⊂ · · · .
If f (x) = 0, then s(x) = 0 and x ∈ E1. If f (x) > 0, then for some
n, fn(x) > cs(x) and x ∈ En. Therefore

X =
⋃

En.

Let

ν(E ) =

∫
E
s dµ.

Recall that ν is a measure on (X ,M).
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Proof

Proof Continued.

We have

c

∫
X
s dµ = cν(X ) = c lim

n
ν(En) = lim

n

∫
En

cs(x) dµ(x)

≤ lim sup
n

∫
En

fn(x) dµ(x)

≤ lim sup
n

∫
X
fn(x) dµ(x)

= lim
n

∫
X
fn(x) dµ(x) = α.

Therefore α ≥ c
∫
X s(x) dµ(x) for all 0 ≤ s ≤ f . Therefore

α ≥ c
∫
X f (x) dµ(x) for all 0 < c < 1. Therefore

α ≥
∫
X f (x) dµ(x). This completes the proof.
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A Concrete Example from the Future

Example

Let ([0, 1],B([0, 1]),m) be our once and future measure—Lebesgue

measure. Let f (x) =

{
1√
x

if x ∈ (0, 1], and

0 if x = 0.
. Let

fn(x) = 1[ 1
n
,1](x)f (x). Then down the road we will see that

∫
[0,1]

fn(x) dm(x) = R
∫ 1

1
n

1√
x

= 2− 1√
n
.

Since fn ↗ f , the MCT implies∫
[0,1]

1√
x
dm(x) = 2,

and there are no “improper integrals” involved.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Sums

Theorem

Let (X ,M, µ) be a measure space. Suppose that fn : X → [0,∞]
is measurable for all n ∈ N. Then

f (x) =
∞∑
n=1

fn(x)

defines a measurable function f : X → [0,∞] and∫
X
f (x) dµ(x) =

∞∑
n=1

∫
X
fn(x) dµ(x).
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Proof

Proof.

Let (sn) and (tn) be MNNSFs such that sn ↗ f1 and tn ↗ f2.
Then by the MCT,∫

X
(f1 + f2) dµ = lim

n

∫
X

(sn + tn) dµ = lim
n

(∫
X
sn dµ+

∫
X
tn dµ

)

=

∫
X
f1 dµ+

∫
X
f2 dµ.

Thus by an induction argument, if gN = f1 + · · ·+ fN , then∫
X
gN dµ =

N∑
n=1

∫
X
fn dµ.
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Proof

Proof Continued.

But gN ↗ f . Therefore f is measurable and by the MCT again,∫
X
f (x) dµ(x) = lim

N→∞

∫
X
gN(x) dµ(x)

= lim
N→∞

N∑
n=1

∫
X
fn(x) dµ(x)

=
∞∑
n=1

∫
X
fn(x) dµ(x).
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Linearity

Corollary

Suppose f , g : (X ,M)→ [0,∞] are measurable and that
α, β ∈ [0,∞). Then∫

X
(αf + βg) dµ = α

∫
X
f dµ+ β

∫
X
g dµ.
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That’s Enough for Today

That is enough for now.
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