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Getting Started

We should be recording!

As usual, this a good time to ask questions about the previous
lecture, complain, or tell a story.

Our next homework will be due on the 21st. We’ll see just
what problems when we see where we are Friday.
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The Next Big Theorem

Theorem (Fatou’s Lemma)

Let (X ,M, µ) be a measure space. Suppose that fn : X → [0,∞]
is measurable for all n ∈ N. Then∫

X

(
lim inf

n
fn
)
(x) dµ(x) ≤ lim inf

n

∫
X
fn(x) dµ(x)
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Proof

Proof.

Let gk = infn≥k fn. Then gk ≤ fk , and hence
∫
X gk dµ ≤

∫
X fk dµ.

Therefore

lim inf
k

∫
X
gk dµ ≤ lim inf

k

∫
X
fk dµ. (1)

But gk ↗ lim infk fk . Therefore by the MCT

lim inf
k

∫
X
gk dµ = lim

k

∫
X
gk dµ =

∫
X

lim inf
k

fk dµ. (2)

Combining (1) and (2) completes the proof.
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Can’t Guarantee Equality

Example

Let (X ,M, µ) be a measure sapce with A,B ∈M disjoint sets
satisfying µ(A) > 0 and µ(B) > 0 .Let

fn(x) =

{
1A(x) if n is even, and

1B(x) if n is odd.

Then lim infn fn = 0. But

lim inf
n

∫
X
fn dµ = min{µ(A), µ(B) } > 0.

That is, in this case,∫
X

lim inf fn dµ < lim inf
k

∫
X
fk dµ.
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There is Always Something

Proposition

Suppose that (X ,M, µ) is a measure space and that
fn : X → [0,∞] is a sequence of measurable functions converging
pointwise to f : X → [0,∞]. Then∫

X
f (x) dµ(x) ≤ lim inf

n

∫
X
fn(x) dµ(x).

Proof.

In this case, f = lim infn fn.

Remark

Using this observation, we see that the MCT follows from the
statement of Fatou’s Lemma.
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New Measures from Old (NC-17 Version)

Theorem

Suppose that (X ,M, µ) is a measure space and that
f : X → [0,∞] is measurable. Then

ν(E ) =

∫
E
f (x) dµ(x) for all E ∈M

defines a measure on (X ,M). Moreover∫
X
g(x) dν(x) =

∫
X
g(x)f (x) dµ(x)

for all g : X → [0,∞] measurable.
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Proof

Proof.

Clearly ν(∅) = 0. So let {Ei } ⊂ M be pairwise disjoint. For
convenience, let E =

⋃
Ei . Then 1E · f =

∑
i 1Ei
· f . Therefore

ν(E ) =

∫
E
f dµ =

∫
X

1E · f µ

=
∞∑
i=1

∫
X

1Ei
· f dµ

=
∞∑
i=1

∫
Ei

f dµ

=
∞∑
i=1

ν(Ei ).

Therefore ν is a measure as claimed.
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Proof

Proof Continued.

Now suppose that g = 1A. Then∫
X
g dν = ν(A) =

∫
A
f dµ =

∫
X
g · f dµ.

Therefore by linearity ∫
X
g dν =

∫
X
g · f dµ

for any MNNSF g ! But if g : X → [0,∞] is arbitrary, then there is
a sequence (gn) of MNNSFs such that gn ↗ g . Now by the MCT,
limn

∫
X gn dν =

∫
X g dν. But we also have gn · f ↗ g · f . By the

MCT again,
∫
X gn · f dµ↗

∫
X g · f dµ. Since∫

X gn dν =
∫
X gn · f dµ, this completes the proof.
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Corollary

Corollary

Suppose that (X ,M, µ) is a measure space and that A ⊂ B are
measurable sets. Then∫

B
f (x) dµ(x) =

∫
A
f (x) dµ(x) +

∫
B\A

f (x) dµ(x).

Proof.

This follows immediately from the finite additivity of

ν(E ) =

∫
E
f (x) dµ(x).
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Preview of Coming Attractions

Remark

Notice that if ν =
∫
f · dµ, then µ(E ) = 0 implies that ν(E ) = 0.

In this case, we say that ν is absolutely continuous with respect
to µ. Under modest hypotheses, the converse holds: if ν is
absolutely continuous with respect to µ there is a measurable
function f : X → [0,∞] such that

ν(E ) =

∫
E
f dµ.

The function f is called the Radon-Nykodym derivative of ν with
respect to µ. I hope we will be able to prove this later in the term.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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L1

Definition

Suppose that (X ,M, µ) is a measure space. Let L1(X ,M, µ) be
the collection of measurable functions f : X → C such that∫

X
|f (x)| dµ(x) <∞.

We call L1(X ) the Lebesgue integrable functions on X .
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Getting Non-Negative

Recall that if f : X → C is measurable, then
f (x) = u(x) + i v(x) with u, v : X → R measurable.

If g : X → [−∞,∞] is measurable, we let
g+(x) := max{ g(x), 0 } = 1E+ · g where
E+ = { x ∈ X : g(x) ≥ 0 }. Similarly, let
g−(x) = max{−g(x), 0 }.
The point is that g = g+ − g− with both g± : X → [0,∞]
measurable.

Thus if f : X → C is measurable, then
f = u+ − u− + i(v+ − v−) with u±, v± : X → [0,∞)
measurable.

Notice that if f ∈ L1(X ) and k ∈ { u±, v± }, then
0 ≤ k ≤ |f |. This means

∫
X k dµ <∞.
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The Integral

Definition

If f = u+ − u− + i(v+ − v−) ∈ L1(X ) with u±, v± as defined on
the previous slide, then we define∫

X
f (x) dµ(x) =

∫
X
u+(x) dµ(x)−

∫
X
u−(x) dµ(x)

+ i
[∫

X
v+(x) dµ(x)−

∫
X
v−(x) dµ(x)

]
return
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The (Extended) Real World

Remark

Some authors like to consider measurable functions
g = g+ − g− : X → [−∞,∞]. Then we can define∫

X
g(x) dµ(x) =

∫
X
g+(x) dµ(x)−

∫
X
g−(x) dµ(x) (∗)

provided at most one of
∫
X g±(x) dµ(x) is infinite. We won’t

bother with this, but even if one does, then saying “g is
integrable” or “g ∈ L1(X )” would still entail

∫
X |g | dµ <∞, and

both integrals on the right-hand side of (∗) would be finite.
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Vector Space

Theorem

If (X ,M, µ) is a measure space, then L1(X ) is a complex vector
space. Furthermore, if α, β ∈ C and f , g ∈ L1(X ), then∫

X
(αf + βg) dµ = α

∫
X
f dµ+ β

∫
X
g dµ.

Proof.

Since ∫
X
|αf + βg | dµ ≤

∫
X

(
|α||f |+ |β||g |

)
dµ

≤ |α|
∫
X
|f | dµ+ |β|

∫
X
|g | dµ <∞,

αf + βg ∈ L1(X ). Therefore L1(X ) is a vector space.
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Proof

Proof Continued.

Now we want to prove∫
X
αf dµ = α

∫
X
f dµ. (∗)

If α ≥ 0, this is almost immediate from the definition . If α = −1,
then ∫

−f =

∫
−(u+ − u−)− i(v+ − v−)

=

∫
(u− − u+) + i(v− − v+))

=

∫
u− −

∫
u+ + i

(∫
v− −

∫
v+
)

= −
∫

f .

Thus (∗) holds for all α ∈ R. Since a similar computation works
with α = i , we have established (∗).
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Proof

Proof Continued.

Since we can treat the real and imaginary parts of f separately, it
will suffice to see that

∫
(f + g) =

∫
f +

∫
g for f , g : X → R. So

let h = f + g . Then h+ − h− = f + − f − + g+ − g−. Thus
h+ + f − + g− = h− + f + + g+. Therefore∫

h+ +

∫
f − +

∫
g− =

∫
h− +

∫
f + +

∫
g+.

Consequently,∫
h+ −

∫
h− =

∫
f + −

∫
f − +

∫
g+ −

∫
g−1.

Therefore
∫
h =

∫
f +

∫
g and we’re done.
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Bounds

Theorem

If f ∈ L1(X ), then
∣∣∣∫

X
f (x) dµ(x)

∣∣∣ ≤ ∫
X
|f (x)| dµ(x).

Proof.

Let z = re iθ =
∫
X f (x) dµ(x). Let α = e−iθ. Then∣∣∣∫

X
f (x) dµ(x)

∣∣∣ = α

∫
X
f (x) dµ(x) =

∫
X
αf (x) dµ(x)

=

∫
X

Re
(
αf (x)

)
dµ(x) + i

∫
X

Im
(
αf (x)

)
dµ(x)︸ ︷︷ ︸

=0
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Proof

Proof Continued.∫
X

Re
(
αf (x)

)
dµ(x) =

∫
X

Re
(
αf (x)

)+
dµ(x)

−
∫
X

Re
(
αf (x)

)−
dµ(x)

≤
∫
X

Re
(
αf (x)

)+
dµ(x)

≤
∫
X
|αf (x)| dµ(x)

=

∫
X
|f (x)| dµ(x).
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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The Dominated Convergence Theorem

Theorem (Lebesgue’s Dominated Convergence Theorem)

Let (X ,M, µ) be a measure space. Suppose that fn : X → C is
measurable for all n ∈ N and that f (x) = lim

n→∞
fn(x) exists for all

x ∈ X . Suppose further that there is a g ∈ L1(X ) such that
|fn(x)| ≤ g(x) for all x ∈ X . Then f ∈ L1(X ) and

lim
n→∞

∫
X

∣∣fn(x)− f (x)
∣∣ dµ(x) = 0. (†)

Remark

Note that (†) implies that

lim
n→∞

∫
X
fn(x) dµ(x) =

∫
X
f (x) dµ(x).

However, (†) is formally a stronger conclusion.
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Proof

Proof.

As the pointwise limit of measurable functions, f : X → C is
measurable. Since |f | ≤ g , we also easily see that f ∈ L1(X ). On
the other hand, |fn − f | ≤ 2g . (Since our functions are C-valued,
we don’t have to worry about ∞−∞!) Let gn = 2g − |fn − f |.
Then lim infn gn = limn gn = 2g . Since gn ≥ 0, we can apply
Fatou’s Lemma and∫

X
2g dµ ≤ lim inf

n

∫
X

(
2g − |fn − f |

)
dµ

=

∫
X

2g dµ+ lim inf
n

(
−
∫
X
|fn − f | dµ

)
=

∫
X

2g dµ− lim sup
n

∫
X
|fn − f | dµ
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Proof

Proof Continued.

Since
∫
X 2g dµ <∞, we conclude that

0 ≥ lim sup
n

∫
X
|fn − f | dµ ≥ lim inf

n

∫
X
|fn − f | dµ ≥ 0.

But then it follows that

lim
n→∞

∫
X
|fn − f | dµ = 0

as required.
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Take That Riemann!

Example

Suppose that fn : [0, 1]→ [0, 1] are continuous and that fn → 0
pointwise on [0, 1]. We can let g(x) = 1 for all x ∈ [0, 1]. Then by
assumption |fn(x)| = fn(x) ≤ 1 = g(x) for all x ∈ [0, 1]. Since we
will eventually show that the Riemann integral agrees with the
Lebesgue integral on [0, 1], we have g ∈ L1([0, 1],m) and then the
LDCT implies that

R
∫ 1

0
fn =

∫
[0,1]

fn dm→
∫

[0,1]
0 dm = 0.
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That’s Enough for Today

That is enough for now.

Dana P. Williams Math 73/103: Fall 2020 Lecture 14


