Math 73/103: Fall 2020 Lecture 14

Dana P. Williams

Dartmouth College

October 14, 2020

Dana P. Williams Math 73/103: Fall 2020 Lecture 14

- We should be recording!
- As usual, this a good time to ask questions about the previous lecture, complain, or tell a story.
- Our next homework will be due on the 21st. We'll see just what problems when we see where we are Friday.

Theorem (Fatou's Lemma)

Let (X, \mathcal{M}, μ) be a measure space. Suppose that $f_n : X \to [0, \infty]$ is measurable for all $n \in \mathbb{N}$. Then

$$\int_X (\liminf_n f_n)(x) \, d\mu(x) \leq \liminf_n \int_X f_n(x) \, d\mu(x)$$

Proof.

Let $g_k = \inf_{n \ge k} f_n$. Then $g_k \le f_k$, and hence $\int_X g_k d\mu \le \int_X f_k d\mu$. Therefore $\liminf_k \int_X g_k d\mu \le \liminf_k \int_X f_k d\mu.$ (1) But $g_k \nearrow \liminf_k f_k$. Therefore by the MCT $\liminf_k \int_X g_k d\mu = \lim_k \int_X g_k d\mu = \int_X \liminf_k f_k d\mu.$ (2) Combining (1) and (2) completes the proof.

Example

Let (X, \mathcal{M}, μ) be a measure sapce with $A, B \in \mathcal{M}$ disjoint sets satisfying $\mu(A) > 0$ and $\mu(B) > 0$.Let

$$f_n(x) = egin{cases} \mathbbm{1}_A(x) & ext{if } n ext{ is even, and} \ \mathbbm{1}_B(x) & ext{if } n ext{ is odd.} \end{cases}$$

Then $\liminf_n f_n = 0$. But

$$\liminf_n \int_X f_n \, d\mu = \min\{\,\mu(A), \mu(B)\,\} > 0.$$

That is, in this case,

$$\int_X \liminf f_n \, d\mu < \liminf_k \int_X f_k \, d\mu.$$

Proposition

Suppose that (X, \mathcal{M}, μ) is a measure space and that $f_n : X \to [0, \infty]$ is a sequence of measurable functions converging pointwise to $f : X \to [0, \infty]$. Then

$$\int_X f(x) \, d\mu(x) \leq \liminf_n \int_X f_n(x) \, d\mu(x).$$

Proof.

In this case, $f = \liminf_n f_n$.

Remark

Using this observation, we see that the MCT follows from the statement of Fatou's Lemma.

Theorem

Suppose that (X, \mathcal{M}, μ) is a measure space and that $f : X \to [0, \infty]$ is measurable. Then

$$u(E) = \int_E f(x) \, d\mu(x) \quad ext{for all } E \in \mathcal{M}$$

defines a measure on (X, \mathcal{M}) . Moreover

$$\int_X g(x) \, d\nu(x) = \int_X g(x) f(x) \, d\mu(x)$$

for all $g: X \to [0,\infty]$ measurable.

Proof.

Clearly $\nu(\emptyset) = 0$. So let $\{E_i\} \subset \mathcal{M}$ be pairwise disjoint. For convenience, let $E = \bigcup E_i$. Then $\mathbb{1}_E \cdot f = \sum_i \mathbb{1}_{E_i} \cdot f$. Therefore

$$\nu(E) = \int_{E} f \, d\mu = \int_{X} \mathbb{1}_{E} \cdot f \, \mu$$
$$= \sum_{i=1}^{\infty} \int_{X} \mathbb{1}_{E_{i}} \cdot f \, d\mu$$
$$= \sum_{i=1}^{\infty} \int_{E_{i}} f \, d\mu$$
$$= \sum_{i=1}^{\infty} \nu(E_{i}).$$

Therefore ν is a measure as claimed.

Proof Continued.

Now suppose that $g = \mathbb{1}_A$. Then

$$\int_X g \, d
u =
u(A) = \int_A f \, d\mu = \int_X g \cdot f \, d\mu.$$

Therefore by linearity

$$\int_X g \, d\nu = \int_X g \cdot f \, d\mu$$

for any MNNSF g! But if $g: X \to [0, \infty]$ is arbitrary, then there is a sequence (g_n) of MNNSFs such that $g_n \nearrow g$. Now by the MCT, $\lim_n \int_X g_n d\nu = \int_X g d\nu$. But we also have $g_n \cdot f \nearrow g \cdot f$. By the MCT again, $\int_X g_n \cdot f d\mu \nearrow \int_X g \cdot f d\mu$. Since $\int_X g_n d\nu = \int_X g_n \cdot f d\mu$, this completes the proof.

Corollary

Suppose that (X, \mathcal{M}, μ) is a measure space and that $A \subset B$ are measurable sets. Then

$$\int_B f(x) d\mu(x) = \int_A f(x) d\mu(x) + \int_{B \setminus A} f(x) d\mu(x).$$

Proof.

This follows immediately from the finite additivity of $\nu(E) = \int_E f(x) d\mu(x).$

Remark

Notice that if $\nu = \int f \cdot d\mu$, then $\mu(E) = 0$ implies that $\nu(E) = 0$. In this case, we say that ν is absolutely continuous with respect to μ . Under modest hypotheses, the converse holds: if ν is absolutely continuous with respect to μ there is a measurable function $f : X \rightarrow [0, \infty]$ such that

$$\nu(E) = \int_E f \, d\mu.$$

The function f is called the Radon-Nykodym derivative of ν with respect to μ . I hope we will be able to prove this later in the term.

- Definitely time for a break.
- Questions?
- Start recording again.

Definition

Suppose that (X, \mathcal{M}, μ) is a measure space. Let $\mathcal{L}^1(X, \mathcal{M}, \mu)$ be the collection of measurable functions $f : X \to \mathbf{C}$ such that

$$\int_X |f(x)|\,d\mu(x)<\infty.$$

We call $\mathcal{L}^1(X)$ the Lebesgue integrable functions on X.

Getting Non-Negative

• Recall that if $f : X \to \mathbf{C}$ is measurable, then f(x) = u(x) + i v(x) with $u, v : X \to \mathbf{R}$ measurable.

• If
$$g: X \to [-\infty, \infty]$$
 is measurable, we let
 $g^+(x) := \max\{g(x), 0\} = \mathbb{1}_{E^+} \cdot g$ where
 $E^+ = \{x \in X : g(x) \ge 0\}$. Similarly, let
 $g^-(x) = \max\{-g(x), 0\}$.

- The point is that g = g⁺ − g⁻ with both g[±] : X → [0,∞] measurable.
- Thus if $f: X \to \mathbf{C}$ is measurable, then $f = u^+ - u^- + i(v^+ - v^-)$ with $u^{\pm}, v^{\pm}: X \to [0, \infty)$ measurable.
- Notice that if $f \in \mathcal{L}^1(X)$ and $k \in \{ u^{\pm}, v^{\pm} \}$, then $0 \le k \le |f|$. This means $\int_X k \, d\mu < \infty$.

Definition

If $f = u^+ - u^- + i(v^+ - v^-) \in \mathcal{L}^1(X)$ with u^{\pm}, v^{\pm} as defined on the previous slide, then we define

$$\int_{X} f(x) d\mu(x) = \int_{X} u^{+}(x) d\mu(x) - \int_{X} u^{-}(x) d\mu(x) + i \Big[\int_{X} v^{+}(x) d\mu(x) - \int_{X} v^{-}(x) d\mu(x) \Big]$$

▶ return

Remark

Some authors like to consider measurable functions $g = g^+ - g^- : X \to [-\infty, \infty]$. Then we can define

$$\int_X g(x) \, d\mu(x) = \int_X g^+(x) \, d\mu(x) - \int_X g^-(x) \, d\mu(x) \qquad (*)$$

provided at most one of $\int_X g^{\pm}(x) d\mu(x)$ is infinite. We won't bother with this, but even if one does, then saying "g is integrable" or " $g \in \mathcal{L}^1(X)$ " would still entail $\int_X |g| d\mu < \infty$, and both integrals on the right-hand side of (*) would be finite.

Theorem

If (X, \mathcal{M}, μ) is a measure space, then $\mathcal{L}^1(X)$ is a complex vector space. Furthermore, if $\alpha, \beta \in \mathbf{C}$ and $f, g \in \mathcal{L}^1(X)$, then

$$\int_X (\alpha f + \beta g) \, d\mu = \alpha \int_X f \, d\mu + \beta \int_X g \, d\mu.$$

Proof.

Since

$$\begin{split} \int_{X} |\alpha f + \beta g| \, d\mu &\leq \int_{X} \left(|\alpha| |f| + |\beta| |g| \right) d\mu \\ &\leq |\alpha| \int_{X} |f| \, d\mu + |\beta| \int_{X} |g| \, d\mu < \infty, \end{split}$$

 $\alpha f + \beta g \in \mathcal{L}^1(X)$. Therefore $\mathcal{L}^1(X)$ is a vector space.

Proof

Proof Continued.

Now we want to prove

$$\int_{X} \alpha f \, d\mu = \alpha \int_{X} f \, d\mu. \tag{(*)}$$

If $\alpha \geq$ 0, this is almost immediate from the \bigcirc definition. If $\alpha = -1,$ then

$$\int -f = \int -(u^{+} - u^{-}) - i(v^{+} - v^{-})$$

= $\int (u^{-} - u^{+}) + i(v^{-} - v^{+}))$
= $\int u^{-} - \int u^{+} + i(\int v^{-} - \int v^{+}) = -\int f.$

Thus (*) holds for all $\alpha \in \mathbf{R}$. Since a similar computation works with $\alpha = i$, we have established (*).

Proof Continued.

Since we can treat the real and imaginary parts of f separately, it will suffice to see that $\int (f+g) = \int f + \int g$ for $f, g : X \to \mathbf{R}$. So let h = f + g. Then $h^+ - h^- = f^+ - f^- + g^+ - g^-$. Thus $h^+ + f^- + g^- = h^- + f^+ + g^+$. Therefore

$$\int h^+ + \int f^- + \int g^- = \int h^- + \int f^+ + \int g^+.$$

Consequently,

$$\int h^+ - \int h^- = \int f^+ - \int f^- + \int g^+ - \int g^{-1}$$

Therefore $\int h = \int f + \int g$ and we're done.

Theorem

If
$$f \in \mathcal{L}^1(X)$$
, then $\left| \int_X f(x) \, d\mu(x) \right| \leq \int_X |f(x)| \, d\mu(x)$.

Proof.

Let
$$z = re^{i\theta} = \int_X f(x) d\mu(x)$$
. Let $\alpha = e^{-i\theta}$. Then

$$\left| \int_{X} f(x) \, d\mu(x) \right| = \alpha \int_{X} f(x) \, d\mu(x) = \int_{X} \alpha f(x) \, d\mu(x)$$
$$= \int_{X} \operatorname{Re}(\alpha f(x)) \, d\mu(x) + \underbrace{i \int_{X} \operatorname{Im}(\alpha f(x)) \, d\mu(x)}_{=0}$$

Proof Continued.

$$\int_{X} \operatorname{Re}(\alpha f(x)) d\mu(x) = \int_{X} \operatorname{Re}(\alpha f(x))^{+} d\mu(x) - \int_{X} \operatorname{Re}(\alpha f(x))^{-} d\mu(x) \leq \int_{X} \operatorname{Re}(\alpha f(x))^{+} d\mu(x) \leq \int_{X} |\alpha f(x)| d\mu(x) = \int_{X} |f(x)| d\mu(x).$$

- Definitely time for a break.
- Questions?
- Start recording again.

The Dominated Convergence Theorem

Theorem (Lebesgue's Dominated Convergence Theorem)

Let (X, \mathcal{M}, μ) be a measure space. Suppose that $f_n : X \to \mathbb{C}$ is measurable for all $n \in \mathbb{N}$ and that $f(x) = \lim_{n \to \infty} f_n(x)$ exists for all $x \in X$. Suppose further that there is a $g \in \mathcal{L}^1(X)$ such that $|f_n(x)| \le g(x)$ for all $x \in X$. Then $f \in \mathcal{L}^1(X)$ and

$$\lim_{n\to\infty}\int_X \left|f_n(x)-f(x)\right|\,d\mu(x)=0.\tag{\dagger}$$

Remark

Note that (†) implies that

$$\lim_{n\to\infty}\int_X f_n(x)\,d\mu(x)=\int_X f(x)\,d\mu(x).$$

However, (†) is formally a stronger conclusion.

Proof.

As the pointwise limit of measurable functions, $f: X \to \mathbf{C}$ is measurable. Since $|f| \leq g$, we also easily see that $f \in \mathcal{L}^1(X)$. On the other hand, $|f_n - f| \leq 2g$. (Since our functions are **C**-valued, we don't have to worry about $\infty - \infty$!) Let $g_n = 2g - |f_n - f|$. Then $\liminf_n g_n = \lim_n g_n = 2g$. Since $g_n \geq 0$, we can apply Fatou's Lemma and

$$\int_{X} 2g \, d\mu \leq \liminf_{n} \int_{X} (2g - |f_{n} - f|) \, d\mu$$
$$= \int_{X} 2g \, d\mu + \liminf_{n} \left(-\int_{X} |f_{n} - f| \, d\mu \right)$$
$$= \int_{X} 2g \, d\mu - \limsup_{n} \int_{X} |f_{n} - f| \, d\mu$$

Proof Continued.

Since $\int_X 2g \ d\mu < \infty$, we conclude that

$$0 \geq \limsup_{n} \int_{X} |f_n - f| \, d\mu \geq \liminf_{n} \int_{X} |f_n - f| \, d\mu \geq 0.$$

But then it follows that

$$\lim_{n\to\infty}\int_X |f_n-f|\,d\mu=0$$

as required.

Example

Suppose that $f_n : [0,1] \to [0,1]$ are continuous and that $f_n \to 0$ pointwise on [0,1]. We can let g(x) = 1 for all $x \in [0,1]$. Then by assumption $|f_n(x)| = f_n(x) \le 1 = g(x)$ for all $x \in [0,1]$. Since we will eventually show that the Riemann integral agrees with the Lebesgue integral on [0,1], we have $g \in \mathcal{L}^1([0,1],m)$ and then the LDCT implies that

$$\mathcal{R}\int_0^1 f_n = \int_{[0,1]} f_n \, dm \to \int_{[0,1]} 0 \, dm = 0.$$

• That is enough for now.