Math 73/103: Fall 2020 Lecture 15

Dana P. Williams

Dartmouth College

October 16, 2020

- We should be recording!
- As usual, this a good time to ask questions about the previous lecture, complain, or tell a story.
- Our next homework will be due on the 21st.
- Legal Cheating on Homework: To construct counterexamples on homework, we can assume that we have defined Lebesgue measure *m* on (**R**, B(**R**)) such that the Lebesgue integral extends the Riemann integral. Thus 1_[-n,n] has integral 2*n* and 1_{[0,∞)} has infinite integral.

Sets of Measure Zero

- If (X, M, µ) is a measure space, then sets N ∈ M of measure 0 are called null sets.
- If $f, g: X \to \mathbf{C}$ are both measurable, then $N = \{ x \in X : f(x) \neq g(x) \} \in \mathcal{M}.$
- If µ(N) = 0, then we say that f = g almost everywhere and we write f ∼ g.
- If $f \sim g$ and $g \sim h$, then $N_1 = \{x : f(x) \neq g(x)\}$ and $N_2 = \{x : g(x) \neq h(x)\}$ are null sets and $N_3 = \{x : f(x) \neq h(x)\} \subset N_1 \cup N_2$. Hence $f \sim h$ and \sim is an equivalence relation.
- If $f \sim g$, then

$$\int_{E} |f - g| d\mu = \int_{E \cap N} |f - g| d\mu + \int_{E \setminus N} |f - g| d\mu = 0 + 0.$$

Thus $\int_{E} f d\mu = \int_{E} g d\mu!$

Lemma

Let $\{A_n\}_{n=1}^{\infty} \subset \mathcal{P}(X)$. Let $B_1 = A_1$ and define $B_n = A_n \setminus \bigcup_{k=1}^{n-1} B_k$ for $n \geq 2$. Then the B_n are pairwise disjoint and for each $n, B_n \subset A_n$ and $\bigcup_{k=1}^n A_n = \bigcup_{k=1}^n B_k$. In particular, $\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} B_k$. If (X, \mathcal{M}) is a measurable space and each $A_n \in \mathcal{M}$, then each $B_n \in \mathcal{M}$.

Proof.

Work this out for homework.

Proposition

Let (X, \mathcal{M}, μ) be a measure space. Then μ is countably subadditive; that is, if $\{A_n\}_{n=1}^{\infty} \subset \mathcal{M}$, then

$$\mu\Big(\bigcup_{n=1}^{\infty}A_n\Big)\leq \sum_{n=1}^{\infty}\mu(A_n).$$

Proof.

Use the lemma to find $\{B_n\}$ as in the lemma. Then

$$\mu\left(\bigcup_{n}A_{n}\right)=\mu\left(\bigcup_{n}B_{n}\right)=\sum_{n=1}^{\infty}\mu(B_{n})\leq\sum_{n=1}^{\infty}\mu(A_{n}).$$

Corollary

If (X, \mathcal{M}, μ) is a measure space, then the countable union of null sets in X is a null set.

Complete Measures

Remark

Later in the term—once we have defined Lebesgue measure $(\mathbf{R}, \mathcal{B}(\mathbf{R}), m)$ —we will see that there is a subset $C \subset [0, 1]$ that has zero measure with cardinality $|C| = \mathfrak{c} := |\mathbf{R}|$. If you accept that $|\mathcal{B}(\mathbf{R})| = \mathfrak{c}$, then C has subsets that are not Borel. This means that we can have a null set C not all of whose subsets are null sets. Note that any Borel subset of C would be a null set by monotonicty. This is annoying and counter-intuitive.

Definition

A measure space (X, \mathcal{M}, μ) is said to be complete if $\mu(N) = 0$ implies that every subset of N is measurable (and hence null).

Remark

The point of the above remark is that it will turn out that $(\mathbf{R}, \mathcal{B}(\mathbf{R}), m)$ is not complete.

Theorem

Let (X, \mathcal{M}, μ) be a measure space. Let \mathcal{M}^* be the set of subsets $B \subset X$ such that there are $F, G \in \mathcal{M}$ such that $F \subset B \subset G$ and $\mu(G \setminus F) = 0$. Then \mathcal{M}^* is a σ -algebra containing \mathcal{M} and there is a complete measure μ^* on \mathcal{M}^* extending μ such that $\mu^*(B) = \mu(F)$ whenever $F \subset B \subset G$ satisfies $\mu(G \setminus F) = 0$ with $F, G \in \mathcal{M}$. We call $(X, \mathcal{M}^*, \mu^*)$ the completion of (X, \mathcal{M}, μ) .

Proof.

Clearly, $\mathcal{M} \subset \mathcal{M}^*$, so $X \in \mathcal{M}^*$. If $B \in \mathcal{M}^*$, then let F, G be such that $F \subset B \subset G$ with $\mu(G \setminus F) = 0$. Then $G^C \subset B^C \subset F^C$ and $\mu(F^C \setminus G^C) = \mu(F^C \cap G) = \mu(G \setminus F) = 0$. Therefore $B^C \in \mathcal{M}^*$.

Now suppose $\{B_n\} \subset \mathcal{M}^*$. Suppose that $F_n \subset B_n \subset G_n$ are such that $\mu(G_n \setminus F_n) = 0$. Then $\bigcup F_n \subset \bigcup B_n \subset \bigcup G_n$ and

$$\mu\left(\bigcup G_n\setminus\bigcup F_n\right)=\mu\left(\bigcup(G_n\setminus\bigcup F_n\right)\leq \mu\left(\bigcup(G_n\setminus F_n)\right)=0.$$

This shows that \mathcal{M}^* is a σ -algebra containing \mathcal{M} .

Proof

Proof Continued.

We need to verify that μ^* is well-defined. Suppose that $F \subset B \subset G$ and $F' \subset B \subset G'$. Let $G'' = G' \cap G$. Then $\mu(G'' \setminus F) = 0 = \mu(G'' \setminus F')$. Suppose that $\mu(G'') = \infty$. Then $\mu(G'') = \mu(F) + \mu(G'' \setminus F) = \mu(F)$ and $\mu(F) = \infty$. By symmetry, $\mu(F') = \infty$ as well. Now suppose that $\mu(G'') < \infty$. Then $\mu(F) = \mu(G'') = \mu(F')$. This shows that μ^* is a well defined set-function on \mathcal{M}^* which extends μ .

Suppose that $\{B_n\} \subset \mathcal{M}^*$ are pairwise disjoint. Let $F_n \subset B_n \subset G_n$. Note that the F_n are also pairwise disjoint. Then

$$\mu^*\left(\bigcup B_n\right) = \mu\left(\bigcup F_n\right) = \sum_n \mu(F_n) = \sum_n \mu^*(B_n).$$

This completes the proof.

- Definitely time for a break.
- Questions?
- Start recording again.

Lemma

Suppose that (X, \mathcal{M}, μ) is a complete measure space and that $g: X \to \mathbf{C}$ is measurable. If $f \sim g$, then f is measurable.

Proof.

Let
$$N = \{x : f(x) \neq g(x)\}$$
. If $V \subset \mathbf{C}$ is open, then
 $f^{-1}(V) = g^{-1}(V) \cap N^{\mathcal{C}} \cup f^{-1}(V) \cap N$.

Since N is null, so is $f^{-1}(V) \cap N \subset N$. Hence $f^{-1}(V)$ is measurable.

Lemma

Suppose that (X, \mathcal{M}, μ) is a measure space (which may or may not be complete). Suppose that $f_n : X \to \mathbf{C}$ is measurable for all $n \in \mathbf{N}$. Then

$$E := \{ x \in X : \lim_{n \to \infty} f_n(x) \text{ exists} \}$$

is measurable.

Proof.

Since we can consider the real and imaginary parts of f separately, we may as well assume that f is real-valued. Then $g = \limsup_n f_n$ and $h = \liminf_n f_n$ are measurable from X to $[-\infty, \infty]$. But then

$$E = \{x : g(x) = h(x)\} \setminus \Big(\{x : g(x) = \infty\} \cup \{x : h(x) = -\infty\}\Big).$$

Thus suffices (with a little help from HW#31.

Corollary

Suppose that (X, \mathcal{M}, μ) is a complete measure space and that $f_n : X \to \mathbf{C}$ is measurable for all $n \in \mathbf{N}$. Suppose that $f : X \to \mathbf{C}$ is such that there is a null set N such that $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x \notin N$. (We say that (f_n) converges to f "pointwise almost everywhere" or "for almost all x".) Then f is measurable.

Proof.

Let $E = \{ x : \lim_{n \to \infty} f_n(x) \text{ exists} \}$. Now $\mathbb{1}_E \cdot f_n \to \mathbb{1}_E \cdot f$. Then $\mathbb{1}_E \cdot f$ is measurable and $\mathbb{1}_E \cdot f \sim f$.

Theorem (LDCT Revisted)

Let (X, \mathcal{M}, μ) be a measure space and assume that (f_n) is a sequence of complex-valued measurable functions on X converging almost everywhere to a function $f : X \to \mathbf{C}$. (If μ is not complete, then we must assume that f is measurable—otherwise this is automatic.) Suppose that there is a $g \in \mathcal{L}^1(X)$ such that for each $n \in \mathbf{N}$, $|f_n(x)| \leq g(x)$ for almost all x. Then

$$\lim_n \int_X |f_n - f| \, d\mu = 0.$$

Proof.

Let N_0 be a null set such that $f_n(x) \to f(x)$ if $x \notin N_0$. Let N_n be a null set such that $|f_n(x)| \leq g(x)$ if $x \notin N_n$. Let $N = \bigcup_{n=0}^{\infty} N_n$. Then N is a null set. Let $E = N^C = X \setminus N$. (We say that E is conull.) Then $\mathbb{1}_E \cdot f_n \to \mathbb{1}_E \cdot f$ pointwise and the $\mathbb{1}_E \cdot f_n$ are dominated by g. Since $|\mathbb{1}_E \cdot f_n - \mathbb{1}_E \cdot f| \sim |f_n - f|$, our previous version of the LDCT implies that

$$\int_X |f_n - f| \, d\mu = \int_X |\mathbb{1}_E \cdot f_n - \mathbb{1}_E \cdot f| \, d\mu \to 0.$$

Remark

Clearly, the Monotone Convergence Theorem and Fatou's Lemma can also be spiced up with suitably sprinkled "almost everywhere"s as needed.

Proposition

Suppose that (X, \mathcal{M}, μ) is a measure space.

• If $f: X \to [0,\infty]$ is measurable and

$$\int_E f(x)\,d\mu(x)=0,$$

then f(x) = 0 for almost all $x \in E$.

2 If $f : X \to \mathbf{C}$ is measurable and

$$\int_E f(x)\,d\mu(x)=0$$

for all $E \in \mathcal{M}$ then $f \sim 0$; that is, f(x) = 0 for almost all $x \in X$.

Proof.

(1) Let $A_n = \{ x \in E : f(x) \ge \frac{1}{n} \}$. Then

$$\frac{1}{n}\mu(A_n) \leq \int_{A_n} f(x) \, d\mu(x) \leq \int_E f(x) \, d\mu(x) = 0.$$

Therefore $\mu(A_n) = 0$ for all $n \in \mathbb{N}$. But $A_n \subset A_{n+1}$ and

$$\mu\bigl(\lbrace x \in E : f(x) > 0 \rbrace\bigr) = \mu\Bigl(\bigcup_{n=1}^{\infty} A_n\Bigr) = \lim_{n} \mu(A_n) = 0.$$

Proof

Proof Continued.

(2) Let $E = \{ x : \text{Re}(f(x)) > 0 \}$. By assumption,

$$\int_E f(x)\,d\mu(x)=0.$$

Hence

$$0 = \int_{E} \operatorname{Re}(f(x)) d\mu(x)$$

= $\int_{E} \operatorname{Re}(f(x))^{+} d\mu(x) + \int_{E^{C}} \operatorname{Re}(f(x))^{+} d\mu(x)$
= $\int_{X} \operatorname{Re}(f(x))^{+} d\mu(x).$

By part (1), $\operatorname{Re}(f(x))^+ \sim 0$. Similarly, $\operatorname{Re}(f(x))^- \sim 0$ as well as $\operatorname{Im}(f(x))^{\pm} \sim 0$. Hence $f \sim 0$ as claimed.

- Definitely time for a break.
- Questions?
- Start recording again.

• In order to get a non-trivial measure—in our case, Lebesgue measure—we need to start with a weak substitute.

Definition

If X is a set, then an outer measure on X is a set function $\mu^*:\mathcal{P}(X)\to [0,\infty]$ such that

- (non-trivial) $\mu^*(\emptyset) = 0$,
- ② (monotonic) A ⊂ B implies $\mu^*(A) ≤ \mu^*(B)$, and
- (countably subadditive) $\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \leq \sum_{n=1}^{\infty} \mu^*(A_n).$

return

Remark

If μ^* is an outer measure, then property (1) implies μ^* is finitely subadditive. Using "disjointification", it follows that a set function satisfying (1), (2), and (3) for disjoint unions is an outer measure.

Definition

Define $m^*:\mathcal{P}(\mathsf{R})
ightarrow [0,\infty]$ by

$$m^*(A) = \inf \Big\{ \sum_{n=1}^{\infty} \ell(I_n) : A \subset \bigcup_{n=1}^{\infty} I_n \quad \text{where} \\ \text{ each } I_n \text{ is an open interval} \Big\}.$$

Remark

Here we allow unbounded open intervals (a, ∞) , $(-\infty, a)$ and even $\mathbf{R} = (-\infty, \infty)$. Of course, if I is unbounded, then $\ell(I) = \infty$. We also allow $I = \emptyset$ with $\ell(I) = 0$ in that case. Similarly, we can make sense out of $\ell(I)$ for any interval, open or not, in \mathbf{R} .

Lebesgue Outer Measure is an Outer Measure

Lemma

The function $m^* : \mathcal{P}(\mathbf{R}) \to [0, \infty]$ defined on the previous slide is an outer measure on \mathbf{R} which we call Lebesgue outer measure on \mathbf{R} .

Proof.

Clearly, $m^*(\emptyset) = 0$. Let $\{A_n\}_{n=1}^{\infty} \subset \mathcal{P}(\mathbf{R})$. If $m^*(A_n) = \infty$ for some n, then (3) in the refinition is clear. So we can assume $m^*(A_n) < \infty$ for each n and find open intervals $\{I_{n,k}\}$ such that $A_n \subset \bigcup_k I_{n,k}$ and $\sum_k \ell(I_{n,k}) < m^*(A_n) + \frac{\epsilon}{2^n}$. Then $\bigcup A_n \subset \bigcup_n \bigcup_k I_{n,k}$ and

$$egin{aligned} m^*ig(igcup A_nig) &\leq \sum_n \sum_k \ell(I_{n,k}) = \sum_n m^*(A_n) + rac{\epsilon}{2^n} \ &= \sum_{n=1}^\infty m^*(A_n) + \epsilon. \end{aligned}$$

Since $\epsilon > 0$ is arbitrary, we're done.

Proposition

Let I be an interval in **R**. Then $m^*(I) = \ell(I)$.

Sketch of the Proof.

Suppose I = [a, b]. If $\epsilon > 0$, then $[a, b] \subset (a - \epsilon, b + \epsilon)$, so $m^*([a, b]) \leq b - a + 2\epsilon$. Since $\epsilon > 0$ is arbitray, $m^*([a, b]) \leq b - a$. To get the reverse inequality, suppose $\{I_k\}$ is a cover of [a, b] by open intervals. Since I is compact, there is a $n \in \mathbf{N}$ such that $[a, b] \subset \bigcup_{k=1}^{n} I_k$. It will suffice to prove that $\sum_{k=1}^{n} \ell(I_k) \geq b - a$. Since a must be in some I_k , there is a $(a_1, b_1) \in \{I_k\}$ such that $a_1 < a < b_1$. If $b_1 > b$, then $b - a \le \ell((a_1, b_1)) \le \sum_k \ell(I_k)$ and we're done. Otherwise there is a $(a_2, b_2) \in \{I_k\}$ such that $a_2 < b_1 < b_2$. We can continue in this way until we get $a_N < b_{N-1} < b_N$ with $b < b_N$ and N < n. Then $\sum_{k=1}^{n} \ell(I_k) \ge \sum_{k=1}^{N} \ell((a_k, b_k)) = (b_N - a_N) + \dots + (b_1 - a_1) =$ $b_N - (a_N - b_{N-1}) - \cdots - (a_2 - b_1) - a_1 > b_N - a_1 > b - a_1$

Proof Continued.

Now if *I* is unbounded, then it contains closed intervals of arbitrary large length. My monotonicity, $m^*(I) = \infty = \ell(I)$ in this case.

Now if I is any bounded interval, then given $\epsilon > 0$ we can find closed intervals J_1 and J_2 such that $J_1 \subset I \subset J_1$ with $\ell(I) - \epsilon < \ell(J_1)$ and $\ell(I) = \ell(J_2)$. Then by monotonicity,

$$\ell(I) - \epsilon < \ell(J_1) = m^*(J_1) \le m^*(I) \le m^*(J_2) = \ell(J_2) = \ell(I).$$

Since $\epsilon > 0$ is arbitrary, it follows that $m^*(I) = \ell(I)$.

• That is enough for now.