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Getting Started

We should be recording!

As usual, this a good time to ask questions about the previous
lecture, complain, or tell a story.

Our next homework will be due on the 21st.

Legal Cheating on Homework: To construct counterexamples
on homework, we can assume that we have defined Lebesgue
measure m on (R,B(R)) such that the Lebesgue integral
extends the Riemann integral. Thus 1[−n,n] has integral 2n
and 1[0,∞) has infinite integral.
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Sets of Measure Zero

If (X ,M, µ) is a measure space, then sets N ∈M of measure
0 are called null sets.

If f , g : X → C are both measurable, then
N = { x ∈ X : f (x) 6= g(x) } ∈ M.

If µ(N) = 0, then we say that f = g almost everywhere and
we write f ∼ g .

If f ∼ g and g ∼ h, then N1 = { x : f (x) 6= g(x) } and
N2 = { x : g(x) 6= h(x) } are null sets and
N3 = { x : f (x) 6= h(x) } ⊂ N1 ∪N2. Hence f ∼ h and ∼ is an
equivalence relation.

If f ∼ g , then∫
E
|f − g | dµ =

∫
E∩N
|f − g | dµ+

∫
E\N
|f − g | dµ = 0 + 0.

Thus

∫
E
f dµ =

∫
E
g dµ!
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Disjointification

Lemma

Let {An }∞n=1 ⊂ P(X ). Let B1 = A1 and define Bn = An \
⋃n−1

k=1 Bk for
n ≥ 2. Then the Bn are pairwise disjoint and for each n, Bn ⊂ An and⋃n

k=1 An =
⋃n

k=1 Bk . In particular,
⋃∞

k=1 Ak =
⋃∞

k=1 Bk . If (X ,M) is a
measurable space and each An ∈M, then each Bn ∈M.

Proof.

Work this out for homework.

Proposition

Let (X ,M, µ) be a measure space. Then µ is countably subadditive; that
is, if {An }∞n=1 ⊂M, then

µ
( ∞⋃
n=1

An

)
≤
∞∑
n=1

µ(An).
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Proof

Proof.

Use the lemma to find {Bn } as in the lemma. Then

µ
(⋃

n

An

)
= µ

(⋃
n

Bn

)
=
∞∑
n=1

µ(Bn) ≤
∞∑
n=1

µ(An).

Corollary

If (X ,M, µ) is a measure space, then the countable union of null
sets in X is a null set.
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Complete Measures

Remark

Later in the term—once we have defined Lebesgue measure
(R,B(R),m)—we will see that there is a subset C ⊂ [0, 1] that has
zero measure with cardinality |C | = c := |R|. If you accept that
|B(R)| = c, then C has subsets that are not Borel. This means
that we can have a null set C not all of whose subsets are null
sets. Note that any Borel subset of C would be a null set by
monotonicty. This is annoying and counter-intuitive.

Definition

A measure space (X ,M, µ) is said to be complete if µ(N) = 0
implies that every subset of N is measurable (and hence null).

Remark

The point of the above remark is that it will turn out that
(R,B(R),m) is not complete.
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Completion

Theorem

Let (X ,M, µ) be a measure space. Let M∗ be the set of subsets
B ⊂ X such that there are F ,G ∈M such that F ⊂ B ⊂ G and
µ(G \ F ) = 0. Then M∗ is a σ-algebra containing M and there is
a complete measure µ∗ on M∗ extending µ such that
µ∗(B) = µ(F ) whenever F ⊂ B ⊂ G satisfies µ(G \ F ) = 0 with
F ,G ∈M. We call (X ,M∗, µ∗) the completion of (X ,M, µ).
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Proof

Proof.

Clearly, M⊂M∗, so X ∈M∗. If B ∈M∗, then let F ,G be such
that F ⊂ B ⊂ G with µ(G \ F ) = 0. Then GC ⊂ BC ⊂ FC and
µ(FC \ GC ) = µ(FC ∩ G ) = µ(G \ F ) = 0. Therefore BC ∈M∗.

Now suppose {Bn } ⊂ M∗. Suppose that Fn ⊂ Bn ⊂ Gn are such
that µ(Gn \ Fn) = 0. Then

⋃
Fn ⊂

⋃
Bn ⊂

⋃
Gn and

µ
(⋃

Gn \
⋃

Fn
)

= µ
(⋃

(Gn \
⋃

Fn
)
≤ µ

(⋃
(Gn \ Fn)

)
= 0.

This shows that M∗ is a σ-algebra containing M.
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Proof

Proof Continued.

We need to verify that µ∗ is well-defined. Suppose that
F ⊂ B ⊂ G and F ′ ⊂ B ⊂ G ′. Let G ′′ = G ′ ∩ G . Then
µ(G ′′ \ F ) = 0 = µ(G ′′ \ F ′). Suppose that µ(G ′′) =∞. Then
µ(G ′′) = µ(F ) + µ(G ′′ \ F ) = µ(F ) and µ(F ) =∞. By symmetry,
µ(F ′) =∞ as well. Now suppose that µ(G ′′) <∞. Then
µ(F ) = µ(G ′′) = µ(F ′). This shows that µ∗ is a well defined
set-function on M∗ which extends µ.

Suppose that {Bn } ⊂ M∗ are pairwise disjoint. Let
Fn ⊂ Bn ⊂ Gn. Note that the Fn are also pairwise disjoint. Then

µ∗
(⋃

Bn

)
= µ

(⋃
Fn
)

=
∑
n

µ(Fn) =
∑
n

µ∗(Bn).

This completes the proof.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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The Importance of Being Complete

Lemma

Suppose that (X ,M, µ) is a complete measure space and that
g : X → C is measurable. If f ∼ g , then f is measurable.

Proof.

Let N = { x : f (x) 6= g(x) }. If V ⊂ C is open, then

f −1(V ) = g−1(V ) ∩ NC ∪ f −1(V ) ∩ N.

Since N is null, so is f −1(V ) ∩ N ⊂ N. Hence f −1(V ) is
measurable.
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Limits

Lemma

Suppose that (X ,M, µ) is a measure space (which may or may not be
complete). Suppose that fn : X → C is measurable for all n ∈ N. Then

E := { x ∈ X : lim
n→∞

fn(x) exists }

is measurable.

Proof.

Since we can consider the real and imaginary parts of f separately, we
may as well assume that f is real-valued. Then g = lim supn fn and
h = lim infn fn are measurable from X to [−∞,∞]. But then

E = { x : g(x) = h(x) } \
(
{ x : g(x) =∞} ∪ { x : h(x) = −∞}

)
.

Thus suffices (with a little help from HW#31.

Dana P. Williams Math 73/103: Fall 2020 Lecture 15



Almost Everywhere Convergence

Corollary

Suppose that (X ,M, µ) is a complete measure space and that
fn : X → C is measurable for all n ∈ N. Suppose that f : X → C is
such that there is a null set N such that limn→∞ fn(x) = f (x) for
all x /∈ N. (We say that (fn) converges to f “pointwise almost
everywhere” or “for almost all x”.) Then f is measurable.

Proof.

Let E = { x : limn fn(x) exists }. Now 1E · fn → 1E · f . Then 1E · f
is measurable and 1E · f ∼ f .
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LDCT Revisited

Theorem (LDCT Revisted)

Let (X ,M, µ) be a measure space and assume that (fn) is a
sequence of complex-valued measurable functions on X converging
almost everywhere to a function f : X → C. (If µ is not complete,
then we must assume that f is measurable—otherwise this is
automatic.) Suppose that there is a g ∈ L1(X ) such that for each
n ∈ N, |fn(x)| ≤ g(x) for almost all x . Then

lim
n

∫
X
|fn − f | dµ = 0.
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Proof

Proof.

Let N0 be a null set such that fn(x)→ f (x) if x /∈ N0. Let Nn be a
null set such that |fn(x)| ≤ g(x) if x /∈ Nn. Let N =

⋃∞
n=0 Nn.

Then N is a null set. Let E = NC = X \ N. (We say that E is
conull.) Then 1E · fn → 1E · f pointwise and the 1E · fn are
dominated by g . Since |1E · fn − 1E · f | ∼ |fn − f |, our previous
version of the LDCT implies that∫

X
|fn − f | dµ =

∫
X
|1E · fn − 1E · f | dµ→ 0.

Remark

Clearly, the Monotone Convergence Theorem and Fatou’s Lemma
can also be spiced up with suitably sprinkled “almost everywhere”s
as needed.
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When is a Function (almost) the Zero Function

Proposition

Suppose that (X ,M, µ) is a measure space.

1 If f : X → [0,∞] is measurable and∫
E
f (x) dµ(x) = 0,

then f (x) = 0 for almost all x ∈ E .

2 If f : X → C is measurable and∫
E
f (x) dµ(x) = 0

for all E ∈M then f ∼ 0; that is, f (x) = 0 for almost all
x ∈ X .
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Proof

Proof.

(1) Let An = { x ∈ E : f (x) ≥ 1
n }. Then

1

n
µ(An) ≤

∫
An

f (x) dµ(x) ≤
∫
E
f (x) dµ(x) = 0.

Therefore µ(An) = 0 for all n ∈ N. But An ⊂ An+1 and

µ
(
{ x ∈ E : f (x) > 0 }

)
= µ

( ∞⋃
n=1

An

)
= lim

n
µ(An) = 0.
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Proof

Proof Continued.

(2) Let E = { x : Re(f (x)) > 0 }. By assumption,∫
E
f (x) dµ(x) = 0.

Hence

0 =

∫
E

Re(f (x)) dµ(x)

=

∫
E

Re(f (x))+ dµ(x) +

∫
EC

Re(f (x))+ dµ(x)

=

∫
X

Re(f (x))+ dµ(x).

By part (1), Re(f (x))+ ∼ 0. Similarly, Re(f (x))− ∼ 0 as well as
Im(f (x))± ∼ 0. Hence f ∼ 0 as claimed.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Time to Get a Real Measure

In order to get a non-trivial measure—in our case, Lebesgue
measure—we need to start with a weak substitute.

Definition

If X is a set, then an outer measure on X is a set function
µ∗ : P(X )→ [0,∞] such that

1 (non-trivial) µ∗(∅) = 0,

2 (monotonic) A ⊂ B implies µ∗(A) ≤ µ∗(B), and

3 (countably subadditive) µ∗
(⋃∞

n=1 An

)
≤
∑∞

n=1 µ
∗(An).

return

Remark

If µ∗ is an outer measure, then property (1) implies µ∗ is finitely
subadditive. Using “disjointification”, it folows that a set function
satisfying (1), (2), and (3) for disjoint unions is an outer measure.
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Lebesgue Outer Measure

Definition

Define m∗ : P(R)→ [0,∞] by

m∗(A) = inf
{ ∞∑

n=1

`(In) : A ⊂
∞⋃
n=1

In where

each In is an open interval
}
.

Remark

Here we allow unbounded open intervals (a,∞), (−∞, a) and even
R = (−∞,∞). Of course, if I is unbounded, then `(I ) =∞. We
also allow I = ∅ with `(I ) = 0 in that case. Similarly, we can make
sense out of `(I ) for any interval, open or not, in R.
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Lebesgue Outer Measure is an Outer Measure

Lemma

The function m∗ : P(R)→ [0,∞] defined on the previous slide is an
outer measure on R which we call Lebesgue outer measure on R.

Proof.

Clearly, m∗(∅) = 0. Let {An }∞n=1 ⊂ P(R). If m∗(An) =∞ for some n,
then (3) in the definition is clear. So we can assume m∗(An) <∞ for
each n and find open intervals { In,k } such that An ⊂

⋃
k In,k and∑

k `(In,k) < m∗(An) + ε
2n . Then

⋃
An ⊂

⋃
n

⋃
k In,k and

m∗
(⋃

An

)
≤
∑
n

∑
k

`(In,k) =
∑
n

m∗(An) +
ε

2n

=
∞∑
n=1

m∗(An) + ε.

Since ε > 0 is arbitrary, we’re done.
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Getting There

Proposition

Let I be an interval in R. Then m∗(I ) = `(I ).

Sketch of the Proof.

Suppose I = [a, b]. If ε > 0, then [a, b] ⊂ (a− ε, b + ε), so
m∗([a, b]) ≤ b− a + 2ε. Since ε > 0 is arbitray, m∗([a, b]) ≤ b− a.
To get the reverse inequality, suppose { Ik } is a cover of [a, b] by
open intervals. Since I is compact, there is a n ∈ N such that
[a, b] ⊂

⋃n
k=1 Ik . It will suffice to prove that

∑n
k=1 `(Ik) ≥ b − a.

Since a must be in some Ik , there is a (a1, b1) ∈ { Ik } such that
a1 < a < b1. If b1 > b, then b − a ≤ `((a1, b1)) ≤

∑
k `(Ik) and

we’re done. Otherwise there is a (a2, b2) ∈ { Ik } such that
a2 < b1 < b2. We can continue in this way until we get
aN < bN−1 < bN with b < bN and N ≤ n. Then∑n

k=1 `(Ik) ≥
∑N

k=1 `((ak , bk)) = (bN − aN) + · · ·+ (b1 − a1) =
bN − (aN − bN−1)− · · · − (a2 − b1)− a1 ≥ bN − a1 ≥ b − a.
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Proof

Proof Continued.

Now if I is unbounded, then it contains closed intervals of arbitrary
large length. My monotonicity, m∗(I ) =∞ = `(I ) in this case.

Now if I is any bounded interval, then given ε > 0 we can find
closed intervals J1 and J2 such that J1 ⊂ I ⊂ J1 with
`(I )− ε < `(J1) and `(I ) = `(J2). Then by monotonicity,

`(I )− ε < `(J1) = m∗(J1) ≤ m∗(I ) ≤ m∗(J2) = `(J2) = `(I ).

Since ε > 0 is arbitrary, it follows that m∗(I ) = `(I ).
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That’s Enough for Today

That is enough for now.
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