Math 73/103: Fall 2020 Lecture 15

Dana P. Williams
Dartmouth College

October 16, 2020

Getting Started

- We should be recording!
- As usual, this a good time to ask questions about the previous lecture, complain, or tell a story.
- Our next homework will be due on the 21st.
- Legal Cheating on Homework: To construct counterexamples on homework, we can assume that we have defined Lebesgue measure m on ($\mathbf{R}, \mathcal{B}(\mathbf{R})$) such that the Lebesgue integral extends the Riemann integral. Thus $\mathbb{1}_{[-n, n]}$ has integral $2 n$ and $\mathbb{1}_{[0, \infty)}$ has infinite integral.
- If (X, \mathcal{M}, μ) is a measure space, then sets $N \in \mathcal{M}$ of measure 0 are called null sets.
- If $f, g: X \rightarrow \mathbf{C}$ are both measurable, then $N=\{x \in X: f(x) \neq g(x)\} \in \mathcal{M}$.
- If $\mu(N)=0$, then we say that $f=g$ almost everywhere and we write $f \sim g$.
- If $f \sim g$ and $g \sim h$, then $N_{1}=\{x: f(x) \neq g(x)\}$ and $N_{2}=\{x: g(x) \neq h(x)\}$ are null sets and $N_{3}=\{x: f(x) \neq h(x)\} \subset N_{1} \cup N_{2}$. Hence $f \sim h$ and \sim is an equivalence relation.
- If $f \sim g$, then
$\int_{E}|f-g| d \mu=\int_{E \cap N}|f-g| d \mu+\int_{E \backslash N}|f-g| d \mu=0+0$.
Thus $\int_{E} f d \mu=\int_{E} g d \mu$!

Disjointification

Lemma

Let $\left\{A_{n}\right\}_{n=1}^{\infty} \subset \mathcal{P}(X)$. Let $B_{1}=A_{1}$ and define $B_{n}=A_{n} \backslash \bigcup_{k=1}^{n-1} B_{k}$ for $n \geq 2$. Then the B_{n} are pairwise disjoint and for each $n, B_{n} \subset A_{n}$ and $\bigcup_{k=1}^{n} A_{n}=\bigcup_{k=1}^{n} B_{k}$. In particular, $\bigcup_{k=1}^{\infty} A_{k}=\bigcup_{k=1}^{\infty} B_{k}$. If (X, \mathcal{M}) is a measurable space and each $A_{n} \in \mathcal{M}$, then each $B_{n} \in \mathcal{M}$.

Proof.

Work this out for homework.

Proposition

Let (X, \mathcal{M}, μ) be a measure space. Then μ is countably subadditive; that is, if $\left\{A_{n}\right\}_{n=1}^{\infty} \subset \mathcal{M}$, then

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

Proof

Proof.

Use the lemma to find $\left\{B_{n}\right\}$ as in the lemma. Then

$$
\mu\left(\bigcup_{n} A_{n}\right)=\mu\left(\bigcup_{n} B_{n}\right)=\sum_{n=1}^{\infty} \mu\left(B_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

Corollary

If (X, \mathcal{M}, μ) is a measure space, then the countable union of null sets in X is a null set.

Complete Measures

Remark

Later in the term—once we have defined Lebesgue measure $(\mathbf{R}, \mathcal{B}(\mathbf{R}), m)$-we will see that there is a subset $C \subset[0,1]$ that has zero measure with cardinality $|C|=\mathfrak{c}:=|\mathbf{R}|$. If you accept that $|\mathcal{B}(\mathbf{R})|=\mathfrak{c}$, then C has subsets that are not Borel. This means that we can have a null set C not all of whose subsets are null sets. Note that any Borel subset of C would be a null set by monotonicty. This is annoying and counter-intuitive.

Definition

A measure space (X, \mathcal{M}, μ) is said to be complete if $\mu(N)=0$ implies that every subset of N is measurable (and hence null).

Remark

The point of the above remark is that it will turn out that $(\mathbf{R}, \mathcal{B}(\mathbf{R}), m)$ is not complete.

Completion

Theorem

Let (X, \mathcal{M}, μ) be a measure space. Let \mathcal{M}^{*} be the set of subsets $B \subset X$ such that there are $F, G \in \mathcal{M}$ such that $F \subset B \subset G$ and $\mu(G \backslash F)=0$. Then \mathcal{M}^{*} is a σ-algebra containing \mathcal{M} and there is a complete measure μ^{*} on \mathcal{M}^{*} extending μ such that $\mu^{*}(B)=\mu(F)$ whenever $F \subset B \subset G$ satisfies $\mu(G \backslash F)=0$ with $F, G \in \mathcal{M}$. We call $\left(X, \mathcal{M}^{*}, \mu^{*}\right)$ the completion of (X, \mathcal{M}, μ).

Proof

Proof.

Clearly, $\mathcal{M} \subset \mathcal{M}^{*}$, so $X \in \mathcal{M}^{*}$. If $B \in \mathcal{M}^{*}$, then let F, G be such that $F \subset B \subset G$ with $\mu(G \backslash F)=0$. Then $G^{C} \subset B^{C} \subset F^{C}$ and $\mu\left(F^{C} \backslash G^{C}\right)=\mu\left(F^{C} \cap G\right)=\mu(G \backslash F)=0$. Therefore $B^{C} \in \mathcal{M}^{*}$. Now suppose $\left\{B_{n}\right\} \subset \mathcal{M}^{*}$. Suppose that $F_{n} \subset B_{n} \subset G_{n}$ are such that $\mu\left(G_{n} \backslash F_{n}\right)=0$. Then $\bigcup F_{n} \subset \bigcup B_{n} \subset \bigcup G_{n}$ and

$$
\mu\left(\bigcup G_{n} \backslash \bigcup F_{n}\right)=\mu\left(\bigcup\left(G_{n} \backslash \bigcup F_{n}\right) \leq \mu\left(\bigcup\left(G_{n} \backslash F_{n}\right)\right)=0\right.
$$

This shows that \mathcal{M}^{*} is a σ-algebra containing \mathcal{M}.

Proof

Proof Continued.

We need to verify that μ^{*} is well-defined. Suppose that $F \subset B \subset G$ and $F^{\prime} \subset B \subset G^{\prime}$. Let $G^{\prime \prime}=G^{\prime} \cap G$. Then $\mu\left(G^{\prime \prime} \backslash F\right)=0=\mu\left(G^{\prime \prime} \backslash F^{\prime}\right)$. Suppose that $\mu\left(G^{\prime \prime}\right)=\infty$. Then $\mu\left(G^{\prime \prime}\right)=\mu(F)+\mu\left(G^{\prime \prime} \backslash F\right)=\mu(F)$ and $\mu(F)=\infty$. By symmetry, $\mu\left(F^{\prime}\right)=\infty$ as well. Now suppose that $\mu\left(G^{\prime \prime}\right)<\infty$. Then $\mu(F)=\mu\left(G^{\prime \prime}\right)=\mu\left(F^{\prime}\right)$. This shows that μ^{*} is a well defined set-function on \mathcal{M}^{*} which extends μ.

Suppose that $\left\{B_{n}\right\} \subset \mathcal{M}^{*}$ are pairwise disjoint. Let
$F_{n} \subset B_{n} \subset G_{n}$. Note that the F_{n} are also pairwise disjoint. Then

$$
\mu^{*}\left(\bigcup B_{n}\right)=\mu\left(\bigcup F_{n}\right)=\sum_{n} \mu\left(F_{n}\right)=\sum_{n} \mu^{*}\left(B_{n}\right)
$$

This completes the proof.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

The Importance of Being Complete

Lemma

Suppose that (X, \mathcal{M}, μ) is a complete measure space and that $g: X \rightarrow \mathbf{C}$ is measurable. If $f \sim g$, then f is measurable.

Proof.

Let $N=\{x: f(x) \neq g(x)\}$. If $V \subset \mathbf{C}$ is open, then

$$
f^{-1}(V)=g^{-1}(V) \cap N^{C} \cup f^{-1}(V) \cap N
$$

Since N is null, so is $f^{-1}(V) \cap N \subset N$. Hence $f^{-1}(V)$ is measurable.

Limits

Lemma

Suppose that (X, \mathcal{M}, μ) is a measure space (which may or may not be complete). Suppose that $f_{n}: X \rightarrow \mathbf{C}$ is measurable for all $n \in \mathbf{N}$. Then

$$
E:=\left\{x \in X: \lim _{n \rightarrow \infty} f_{n}(x) \text { exists }\right\}
$$

is measurable.

Proof.

Since we can consider the real and imaginary parts of f separately, we may as well assume that f is real-valued. Then $g=\lim \sup _{n} f_{n}$ and $h=\lim \inf _{n} f_{n}$ are measurable from X to $[-\infty, \infty]$. But then

$$
E=\{x: g(x)=h(x)\} \backslash(\{x: g(x)=\infty\} \cup\{x: h(x)=-\infty\}) .
$$

Thus suffices (with a little help from HW\#31.

Almost Everywhere Convergence

Corollary

Suppose that (X, \mathcal{M}, μ) is a complete measure space and that $f_{n}: X \rightarrow \mathbf{C}$ is measurable for all $n \in \mathbf{N}$. Suppose that $f: X \rightarrow \mathbf{C}$ is such that there is a null set N such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \notin N$. (We say that $\left(f_{n}\right)$ converges to f "pointwise almost everywhere" or "for almost all x ".) Then f is measurable.

Proof.

Let $E=\left\{x: \lim _{n} f_{n}(x)\right.$ exists $\}$. Now $\mathbb{1}_{E} \cdot f_{n} \rightarrow \mathbb{1}_{E} \cdot f$. Then $\mathbb{1}_{E} \cdot f$ is measurable and $\mathbb{1}_{E} \cdot f \sim f$.

LDCT Revisited

Theorem (LDCT Revisted)

Let (X, \mathcal{M}, μ) be a measure space and assume that $\left(f_{n}\right)$ is a sequence of complex-valued measurable functions on X converging almost everywhere to a function $f: X \rightarrow \mathbf{C}$. (If μ is not complete, then we must assume that f is measurable-otherwise this is automatic.) Suppose that there is a $g \in \mathcal{L}^{1}(X)$ such that for each $n \in \mathbf{N},\left|f_{n}(x)\right| \leq g(x)$ for almost all x. Then

$$
\lim _{n} \int_{X}\left|f_{n}-f\right| d \mu=0
$$

Proof

Proof.

Let N_{0} be a null set such that $f_{n}(x) \rightarrow f(x)$ if $x \notin N_{0}$. Let N_{n} be a null set such that $\left|f_{n}(x)\right| \leq g(x)$ if $x \notin N_{n}$. Let $N=\bigcup_{n=0}^{\infty} N_{n}$. Then N is a null set. Let $E=N^{C}=X \backslash N$. (We say that E is conull.) Then $\mathbb{1}_{E} \cdot f_{n} \rightarrow \mathbb{1}_{E} \cdot f$ pointwise and the $\mathbb{1}_{E} \cdot f_{n}$ are dominated by g. Since $\left|\mathbb{1}_{E} \cdot f_{n}-\mathbb{1}_{E} \cdot f\right| \sim\left|f_{n}-f\right|$, our previous version of the LDCT implies that

$$
\int_{X}\left|f_{n}-f\right| d \mu=\int_{X}\left|\mathbb{1}_{E} \cdot f_{n}-\mathbb{1}_{E} \cdot f\right| d \mu \rightarrow 0
$$

Remark

Clearly, the Monotone Convergence Theorem and Fatou's Lemma can also be spiced up with suitably sprinkled "almost everywhere"s as needed.

When is a Function (almost) the Zero Function

Proposition

Suppose that (X, \mathcal{M}, μ) is a measure space.
(1) If $f: X \rightarrow[0, \infty]$ is measurable and

$$
\int_{E} f(x) d \mu(x)=0
$$

then $f(x)=0$ for almost all $x \in E$.
(2) If $f: X \rightarrow \mathbf{C}$ is measurable and

$$
\int_{E} f(x) d \mu(x)=0
$$

for all $E \in \mathcal{M}$ then $f \sim 0$; that is, $f(x)=0$ for almost all $x \in X$.

Proof

Proof.

(1) Let $A_{n}=\left\{x \in E: f(x) \geq \frac{1}{n}\right\}$. Then

$$
\frac{1}{n} \mu\left(A_{n}\right) \leq \int_{A_{n}} f(x) d \mu(x) \leq \int_{E} f(x) d \mu(x)=0
$$

Therefore $\mu\left(A_{n}\right)=0$ for all $n \in \mathbf{N}$. But $A_{n} \subset A_{n+1}$ and

$$
\mu(\{x \in E: f(x)>0\})=\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\lim _{n} \mu\left(A_{n}\right)=0 .
$$

Proof

Proof Continued.

(2) Let $E=\{x: \operatorname{Re}(f(x))>0\}$. By assumption,

$$
\int_{E} f(x) d \mu(x)=0
$$

Hence

$$
\begin{aligned}
0 & =\int_{E} \operatorname{Re}(f(x)) d \mu(x) \\
& =\int_{E} \operatorname{Re}(f(x))^{+} d \mu(x)+\int_{E^{C}} \operatorname{Re}(f(x))^{+} d \mu(x) \\
& =\int_{X} \operatorname{Re}(f(x))^{+} d \mu(x)
\end{aligned}
$$

By part (1), $\operatorname{Re}(f(x))^{+} \sim 0$. Similarly, $\operatorname{Re}(f(x))^{-} \sim 0$ as well as $\operatorname{Im}(f(x))^{ \pm} \sim 0$. Hence $f \sim 0$ as claimed.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Time to Get a Real Measure

- In order to get a non-trivial measure-in our case, Lebesgue measure-we need to start with a weak substitute.

Definition

If X is a set, then an outer measure on X is a set function $\mu^{*}: \mathcal{P}(X) \rightarrow[0, \infty]$ such that
(1) (non-trivial) $\mu^{*}(\emptyset)=0$,
(2) (monotonic) $A \subset B$ implies $\mu^{*}(A) \leq \mu^{*}(B)$, and
(3) (countably subadditive) $\mu^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu^{*}\left(A_{n}\right)$.

Remark

If μ^{*} is an outer measure, then property (1) implies μ^{*} is finitely subadditive. Using "disjointification", it folows that a set function satisfying (1), (2), and (3) for disjoint unions is an outer measure.

Lebesgue Outer Measure

Definition

Define $m^{*}: \mathcal{P}(\mathbf{R}) \rightarrow[0, \infty]$ by

$$
m^{*}(A)=\inf \left\{\sum_{n=1}^{\infty} \ell\left(I_{n}\right): A \subset \bigcup_{n=1}^{\infty} I_{n} \quad\right. \text { where }
$$

each I_{n} is an open interval $\}$.

Remark

Here we allow unbounded open intervals $(a, \infty),(-\infty, a)$ and even $\mathbf{R}=(-\infty, \infty)$. Of course, if I is unbounded, then $\ell(I)=\infty$. We also allow $I=\emptyset$ with $\ell(I)=0$ in that case. Similarly, we can make sense out of $\ell(I)$ for any interval, open or not, in \mathbf{R}.

Lebesgue Outer Measure is an Outer Measure

Lemma

The function $m^{*}: \mathcal{P}(\mathbf{R}) \rightarrow[0, \infty]$ defined on the previous slide is an outer measure on \mathbf{R} which we call Lebesgue outer measure on \mathbf{R}.

Proof.

Clearly, $m^{*}(\emptyset)=0$. Let $\left\{A_{n}\right\}_{n=1}^{\infty} \subset \mathcal{P}(\mathbf{R})$. If $m^{*}\left(A_{n}\right)=\infty$ for some n, then (3) in the definition is clear. So we can assume $m^{*}\left(A_{n}\right)<\infty$ for each n and find open intervals $\left\{I_{n, k}\right\}$ such that $A_{n} \subset \bigcup_{k} I_{n, k}$ and $\sum_{k} \ell\left(I_{n, k}\right)<m^{*}\left(A_{n}\right)+\frac{\epsilon}{2^{n}}$. Then $\bigcup A_{n} \subset \bigcup_{n} \bigcup_{k} I_{n, k}$ and

$$
\begin{aligned}
m^{*}\left(\bigcup A_{n}\right) & \leq \sum_{n} \sum_{k} \ell\left(I_{n, k}\right)=\sum_{n} m^{*}\left(A_{n}\right)+\frac{\epsilon}{2^{n}} \\
& =\sum_{n=1}^{\infty} m^{*}\left(A_{n}\right)+\epsilon
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary, we're done.

Getting There

Proposition

Let I be an interval in \mathbf{R}. Then $m^{*}(I)=\ell(I)$.

Sketch of the Proof.

Suppose $I=[a, b]$. If $\epsilon>0$, then $[a, b] \subset(a-\epsilon, b+\epsilon)$, so $m^{*}([a, b]) \leq b-a+2 \epsilon$. Since $\epsilon>0$ is arbitray, $m^{*}([a, b]) \leq b-a$.
To get the reverse inequality, suppose $\left\{I_{k}\right\}$ is a cover of $[a, b]$ by open intervals. Since I is compact, there is a $n \in \mathbf{N}$ such that $[a, b] \subset \bigcup_{k=1}^{n} I_{k}$. It will suffice to prove that $\sum_{k=1}^{n} \ell\left(I_{k}\right) \geq b-a$. Since a must be in some I_{k}, there is a $\left(a_{1}, b_{1}\right) \in\left\{I_{k}\right\}$ such that $a_{1}<a<b_{1}$. If $b_{1}>b$, then $b-a \leq \ell\left(\left(a_{1}, b_{1}\right)\right) \leq \sum_{k} \ell\left(I_{k}\right)$ and we're done. Otherwise there is a $\left(a_{2}, b_{2}\right) \in\left\{I_{k}\right\}$ such that $a_{2}<b_{1}<b_{2}$. We can continue in this way until we get $a_{N}<b_{N-1}<b_{N}$ with $b<b_{N}$ and $N \leq n$. Then
$\sum_{k=1}^{n} \ell\left(I_{k}\right) \geq \sum_{k=1}^{N} \ell\left(\left(a_{k}, b_{k}\right)\right)=\left(b_{N}-a_{N}\right)+\cdots+\left(b_{1}-a_{1}\right)=$ $b_{N}-\left(a_{N}-b_{N-1}\right)-\cdots-\left(a_{2}-b_{1}\right)-a_{1} \geq b_{N}-a_{1} \geq b-a$.

Proof

Proof Continued.

Now if I is unbounded, then it contains closed intervals of arbitrary large length. My monotonicity, $m^{*}(I)=\infty=\ell(I)$ in this case.

Now if I is any bounded interval, then given $\epsilon>0$ we can find closed intervals J_{1} and J_{2} such that $J_{1} \subset I \subset J_{1}$ with $\ell(I)-\epsilon<\ell\left(J_{1}\right)$ and $\ell(I)=\ell\left(J_{2}\right)$. Then by monotonicity,

$$
\ell(I)-\epsilon<\ell\left(J_{1}\right)=m^{*}\left(J_{1}\right) \leq m^{*}(I) \leq m^{*}\left(J_{2}\right)=\ell\left(J_{2}\right)=\ell(I) .
$$

Since $\epsilon>0$ is arbitrary, it follows that $m^{*}(I)=\ell(I)$.

That's Enough for Today

- That is enough for now.

