Math 73/103: Fall 2020

Lecture 15

Dana P. Williams

Dartmouth College

October 16, 2020

Dana P. Williams Math 73/103: Fall 2020 Lecture 15



Getting Started

@ We should be recording!

@ As usual, this a good time to ask questions about the previous
lecture, complain, or tell a story.

@ Our next homework will be due on the 21st.

@ Legal Cheating on Homework: To construct counterexamples
on homework, we can assume that we have defined Lebesgue
measure m on (R, B(R)) such that the Lebesgue integral
extends the Riemann integral. Thus 1[_, ; has integral 2n
and 1jg ) has infinite integral.
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Sets of Measure Zero

If (X, M, ) is a measure space, then sets N € M of measure
0 are called null sets.

If f,g: X — C are both measurable, then
N={xeX:f(x)#g(x)}eM.

If (N) =0, then we say that f = g almost everywhere and
we write f ~ g.

If f ~gand g~ h, then Ny = {x: f(x) # g(x) } and

Ny = { x : g(x) # h(x) } are null sets and

N3 = {x:f(x)# h(x)} C Ny UN,. Hence f ~ h and ~ is an
equivalence relation.

If f ~ g, then

/If—glduz/ If—gldu+/ |f —g|du=0+0.
E ENN E\N

Thus/fd,u—/gd,u!
E E
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Disjointification

Let { A, }52, C P(X). Let By = A; and define B, = A, \ UZ: By for
n > 2. Then the B, are pairwise disjoint and for each n, B, C A, and

Ur—1 An = U,_; Bk. In particular, \J;—; Ak = Uy Bk IF (X, M) is a
measurable space and each A, € M, then each B, € M.

Work this out for homework. O

Proposition

Let (X, M, ) be a measure space. Then y is countably subadditive; that
is, if { Ap }02, C M, then

u(G An) < iu(/\n)-
n=1 n=1
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Use the lemma to find { B, } as in the lemma. Then

o(Unn) = (U ) = 28 <

If (X, M, 1) is a measure space, then the countable union of null
sets in X is a null set.
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Complete Measures

Later in the term—once we have defined Lebesgue measure

(R, B(R), m)—we will see that there is a subset C C [0,1] that has
zero measure with cardinality |C| = ¢ := |R|. If you accept that
IB(R)| = ¢, then C has subsets that are not Borel. This means
that we can have a null set C not all of whose subsets are null
sets. Note that any Borel subset of C would be a null set by
monotonicty. This is annoying and counter-intuitive.

A measure space (X, M, u) is said to be complete if u(N) =0
implies that every subset of N is measurable (and hence null).

The point of the above remark is that it will turn out that
(R, B(R), m) is not complete.
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Completion

Theorem

Let (X, M, 1) be a measure space. Let M* be the set of subsets
B C X such that there are F, G € M such that F C B C G and
u(G\ F) =0. Then M* is a o-algebra containing M and there is
a complete measure * on M™ extending p such that

w*(B) = u(F) whenever F C B C G satisfies (G \ F) = 0 with
F,G e M. We call (X, M*, u*) the completion of (X, M, ).
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Proof

Proof.

Clearly, M C M*, so X € M*. If B € M*, then let F, G be such
that F C B C G with u(G\ F) =0. Then G¢ ¢ B¢ ¢ F€ and
uW(FE\ GC) = u(F¢ N G) = u(G\ F) = 0. Therefore B¢ € M*.

Now suppose { B, } € M*. Suppose that F, C B, C G, are such
that 4(G, \ Fp) =0. Then JF, C UB, C |J G, and

p(Uen\UR) =n(UG\UF) < (UG \ F) =0.

This shows that M* is a o-algebra containing M.
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Proof

Proof Continued

We need to verify that p* is well-defined. Suppose that
FcBcCGand FFCBCG' Let G"=G'NG. Then

w(G"\ F) =0= pu(G"\ F'). Suppose that u(G") = co. Then
u(G") = p(F) + u(G" \ F) = u(F) and p(F) = co. By symmetry,
wu(F'") = oo as well. Now suppose that u(G"”) < oco. Then

w(F) = u(G") = u(F"). This shows that u* is a well defined
set-function on M™* which extends p.

Suppose that { B, } C M* are pairwise disjoint. Let
Fn C B, C G,. Note that the F, are also pairwise disjoint. Then

w(UBn) =n(UA) = Zur =3 we

This completes the proof. O

Dana P. Williams Math 73/103: Fall 2020 Lecture 15



@ Definitely time for a break.
@ Questions?

@ Start recording again.
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The Importance of Being Complete

Suppose that (X, M, ) is a complete measure space and that
g : X — C is measurable. If f ~ g, then f is measurable.

Let N={x:f(x)# g(x)}. If V.C Cis open, then

FAV)=g {(V)NN UL (V)nN.

Since N is null, so is f~}(V)N N C N. Hence f1(V) is
measurable. O
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Suppose that (X, M, i) is a measure space (which may or may not be
complete). Suppose that f, : X — C is measurable for all n € N. Then

E:={xeX: lim f,(x) exists }
n—oo

is measurable.

Since we can consider the real and imaginary parts of f separately, we
may as well assume that f is real-valued. Then g = limsup,, f, and
h = liminf, f, are measurable from X to [—oc0, c0]. But then

E={x:g(x)=h()}\ ({x:g(x) =00} U{x: h(x) = —o0}).

Thus suffices (with a little help from HW#31. [
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Almost Everywhere Convergence

Corollary

Suppose that (X, M, u) is a complete measure space and that

fn, : X — C is measurable for all n € N. Suppose that f : X — C is
such that there is a null set N such that lim,_,« n(x) = f(x) for
all x ¢ N. (We say that (f,) converges to f “pointwise almost
everywhere” or “for almost all x".) Then f is measurable.

Let E = { x : lim, f,(x) exists }. Now 1g-f, — 1g-f. Then 1g-f
is measurable and 1g - f ~ f. O
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LDCT Revisited

Theorem (LDCT Revisted)

Let (X, M, 1) be a measure space and assume that (f,) is a
sequence of complex-valued measurable functions on X converging
almost everywhere to a function f : X — C. (If u is not complete,
then we must assume that f is measurable—otherwise this is
automatic.) Suppose that there is a g € L*(X) such that for each
n€ N, |fo(x)| < g(x) for almost all x. Then

Iim/ |fp — f|dp = 0.
nJx
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Let Np be a null set such that f,(x) — f(x) if x ¢ Ny. Let N, be a
null set such that |f(x)| < g(x) if x ¢ N,. Let N = ;2 Ny
Then N is a null set. Let E = N© = X \ N. (We say that E is
conull.) Then 1g - f, — 1g - f pointwise and the 1g - f, are
dominated by g. Since |1g - f, — 1g - f| ~ |f, — f]|, our previous
version of the LDCT implies that

/\fn—f|d,u=/’1E-fn—1E'f]d,u—>O. O
X X

Clearly, the Monotone Convergence Theorem and Fatou's Lemma
can also be spiced up with suitably sprinkled “almost everywhere”s
as needed.
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When is a Function (almost) the Zero Function

Suppose that (X, M, ) is a measure space.
Q@ I/ff: X — [0,00] is measurable and

/ F(x) du(x) = 0,
E

then f(x) = 0 for almost all x € E.
Q@ I/ff: X — C is measurable and

/ f(x)du(x) =0
E

for all E € M then f ~ 0, that is, f(x) = 0 for almost all
x € X.
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Proof

(1) Let Ay ={x € E:f(x)>1} Then

A < [ Fdut) < [ Fdut) =0,

Therefore p(Ap) =0 for all n € N. But A, C Ap41 and

p({x € E:f(x)>0}) :,u<U A,,) = Ii’r;n,u(A,,) =0

n=1
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Proof
Proof Continued.

(2) Let E = {x:Re(f(x)) > 0}. By assumption,

/ f(x)du(x) =0.
E

Hence
0_/ERe(f(x)) dp(x)
— [ Re(F()* duto) + [ | Re(F(x))" du(x)
E E€
_ / R i)
X

By part (1), Re(f(x))™ ~ 0. Similarly, Re(f(x))~ ~ 0 as well as
Im(f(x))* ~ 0. Hence f ~ 0 as claimed. O
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@ Definitely time for a break.
@ Questions?

@ Start recording again.
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Time to Get a Real Measure

@ In order to get a non-trivial measure—in our case, Lebesgue
measure—we need to start with a weak substitute.

If X is a set, then an outer measure on X is a set function
w* : P(X) — [0, 00] such that

@ (non-trivial) p*(0) =0,

@ (monotonic) A C B implies p*(A) < p*(B), and

© (countably subadditive) p* (Uney An) < D oneq ¥ (An).

If u* is an outer measure, then property (1) implies p* is finitely
subadditive. Using “disjointification”, it folows that a set function
satisfying (1), (2), and (3) for disjoint unions is an outer measure.
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Lebesgue Outer Measure

Define m* : P(R) — [0, o] by

m*(A) = inf{ ie(/n) A C fj I, where
n=1 n=1

each /, is an open interval }

Here we allow unbounded open intervals (a,c0), (—oc, a) and even
R = (—00,00). Of course, if | is unbounded, then ¢(I) = oo. We
also allow | = () with ¢(1) = 0 in that case. Similarly, we can make
sense out of {(I) for any interval, open or not, in R.
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Lebesgue Outer Measure is an Outer Measure

Lemma

The function m* : P(R) — [0, o] defined on the previous slide is an
outer measure on R which we call Lebesgue outer measure on R.

| A

Proof.
Clearly, m*(0) = 0. Let { A, }2; € P(R). If m*(A,) = oo for some n,
then (3) in the is clear. So we can assume m*(A,) < oo for

each n and find open intervals { /, x } such that A, C J, l»x and
D i llnk) < m*(An) + 5. Then JA, C U, U Ink and

m* (UAn) < 30D the) = D m(An) + o

= Z m*(A,) + e.

n=1

Since € > 0 is arbitrary, we're done. 0l

v
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Getting There

Proposition
Let | be an interval in R. Then m*(1) = £(/).

Sketch of the Proof.

Suppose | = [a, b]. If € > 0, then [a,b] C (a —€,b+€), so
m*([a, b]) < b— a+ 2¢. Since € > 0 is arbitray, m*([a, b]) < b — a.
To get the reverse inequality, suppose { I } is a cover of [a, b] by
open intervals. Since / is compact, there is a n € N such that
[a,b] C Ujk—q Ik It will suffice to prove that > ;_; ¢(Ix) > b — a.
Since a must be in some I, there is a (a1, b1) € { Ik } such that
ay < a<by. If by > b, then b—a < {((a1,b1)) <>, £(lk) and
we're done. Otherwise there is a (a2, b2) € { Ix } such that

ax < by < by. We can continue in this way until we get

an < by—1 < by with b < by and N < n. Then

> oher £0k) > 33y (ak, b)) = (by — aw) + -+ + (b1 — a1) =
by —(ay — by—1) — -+ —(a2—b1) —a1 > by —a1 > b—a.
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Proof

Proof Continued.

Now if / is unbounded, then it contains closed intervals of arbitrary
large length. My monotonicity, m*(/) = oo = £(/) in this case.
Now if / is any bounded interval, then given ¢ > 0 we can find

closed intervals J; and J, such that J; C | C J; with
(1) —e < £(h) and £(1) = £(J2). Then by monotonicity,

U1) — e < 6(Jy) = m*(h) < m*(1) < m* () = £(J) = €(1).

Since € > 0 is arbitrary, it follows that m*(/) = ¢(1). O
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That's Enough for Today

@ That is enough for now.
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