Math 73/103: Fall 2020 Lecture 16

Dana P. Williams
Dartmouth College

Monday, October 19, 2020

Getting Started

- We should be recording!
- Questions?
- Our next homework (problems 24-35) will be due Wednesday via gradescope.
- Legal Cheating on Homework: To construct counterexamples on homework, we can assume that we have defined Lebesgue measure m on ($\mathbf{R}, \mathcal{B}(\mathbf{R})$) such that the Lebesgue integral extends the Riemann integral. Thus $\mathbb{1}_{[-n, n]}$ has integral $2 n$ and $\mathbb{1}_{[0, \infty)}$ has infinite integral.
- I probably won't look at 33.2 at all. You need to work with integrals not-necessarily integrable real-valued functions and I promised you wouldn't have to do that. My bad.
- Do we really need a midterm?
- I added a discussion page in Canvas. Mostly for homework, but could be for anything.

μ^{*}-Measurable Sets

Definition

Suppose that μ^{*} is an outer measure on a set X. Then we say $E \subset X$ is μ^{*}-measurable if

$$
\mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{C}\right) \quad \text { for all } A \subset X
$$

We write \mathcal{M}^{*} for the collection of all μ^{*}-measurable subsets of X.

Remark

By (finite) subadditivity, we always have $\mu^{*}(A) \leq \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{C}\right)$. So to verify that $E \in \mathcal{M}^{*}$ we just need to see that

$$
\mu^{*}(A) \geq \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{C}\right) \quad \text { for all } A \subset X
$$

Furthermore, we only have to consider (\dagger) for A with $\mu^{*}(A)<\infty$.

Getting a Measure

Theorem

Suppose that μ^{*} is an outer measure on a set X and that \mathcal{M}^{*} is the collection of μ^{*}-measurable subsets. Then \mathcal{M}^{*} is a σ-algebra and $\mu=\left.\mu^{*}\right|_{\mathcal{M}^{*}}$ is a complete measure on $\left(X, \mathcal{M}^{*}\right)$.

Proof.

Clearly $X \in \mathcal{M}^{*}$, and if $E \in \mathcal{M}^{*}$, then so is E^{C}. So it suffices to check countable subadditivity.

Let $E_{1}, E_{2} \in \mathcal{M}^{*}$ and $A \subset X$. then

$$
\begin{aligned}
\mu^{*}(A) & =\mu^{*}\left(A \cap E_{1}\right)+\mu^{*}\left(A \cap E_{1}^{C}\right) \\
\mu^{*}\left(A \cap E_{1}^{C}\right) & =\mu^{*}\left(A \cap E_{1}^{C} \cap E_{2}\right)+\mu^{*}(A \cap \underbrace{E_{1}^{C} \cap E_{2}^{C}}_{=\left(E_{1} \cup E_{2}\right)^{C}})
\end{aligned}
$$

Proof

Proof Continued.

Note that
$A \cap\left(E_{1} \cup E_{2}\right)=\left(A \cap E_{1}\right) \cup\left[A \cap\left(E_{2} \backslash E_{1}\right)\right]=\left(A \cap E_{1}\right) \cup\left[A \cap\left(E_{2} \cap E_{1}^{C}\right)\right]$. Thus,

$$
\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right) \leq \mu^{*}\left(A \cap E_{1}\right)+\mu^{*}\left(A \cap E_{1}^{C} \cap E_{2}\right)
$$

Then, using the equalities on the \rightarrow previous slide

$$
\begin{aligned}
\mu^{*}(A) & =\mu^{*}\left(A \cap E_{1}\right)+\mu^{*}\left(A \cap E_{1}^{C} \cap E_{2}\right)+\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)^{C}\right) \\
& \geq \mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right)+\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)^{C}\right)
\end{aligned}
$$

Since A was arbitrary, we have $E_{1} \cup E_{2} \in \mathcal{M}^{*}$. It follows that \mathcal{M}^{*} is an algebra-that is, \mathcal{M}^{*} satisfies the axioms of a σ-algebra except that it is only closed under finite unions. (Therefore it is also closed under finite intersections and set difference.)

Proof Continued.

Now assume $E=\bigcup_{n=1}^{\infty} E_{n}$ with $E_{n} \in \mathcal{M}^{*}$. Since \mathcal{M}^{*} is an algebra, $B_{n}=E_{n} \backslash \bigcup_{k=1}^{n-1} E_{k} \in \mathcal{M}^{*}$. Thus we can "disjointify" and assume from the onset that $E_{n} \cap E_{m}=\emptyset$ if $n \neq m$.
Let $G_{n}=\bigcup_{k=1}^{n} E_{k}$. Then $G_{n} \in \mathcal{M}^{*}$. Thus if $A \subset X$,

$$
\begin{align*}
\mu^{*}(A) & =\mu^{*}\left(A \cap G_{n}\right)+\mu^{*}\left(A \cap G_{n}^{C}\right) \\
& \geq \mu^{*}\left(A \cap G_{n}\right)+\mu^{*}\left(A \cap E^{C}\right)
\end{align*}
$$

Since $E_{n} \in \mathcal{M}^{*}$,

$$
\begin{aligned}
\mu^{*}\left(A \cap G_{n}\right) & =\mu^{*}\left(A \cap G_{n} \cap E_{n}\right)+\mu^{*}\left(A \cap G_{n} \cap E_{n}^{C}\right) \\
& =\mu^{*}\left(A \cap E_{n}\right)+\mu^{*}\left(A \cap G_{n-1}\right) .
\end{aligned}
$$

By induction,

$$
\mu^{*}\left(A \cap G_{n}\right)=\sum_{k=1}^{n} \mu^{*}\left(A \cap E_{k}\right) .
$$

Combining (\dagger) with (\ddagger) gives

Proof

Proof Continued.

$$
\mu^{*}(A) \geq \sum_{k=1}^{n} \mu^{*}\left(A \cap E_{k}\right)+\mu^{*}\left(A \cap E^{C}\right)
$$

Since this holds for all n,

$$
\begin{aligned}
\mu^{*}(A) & \geq \sum_{k=1}^{\infty} \mu^{*}\left(A \cap E_{k}\right)+\mu^{*}\left(A \cap E^{C}\right) \\
& \geq \mu^{*}\left(\bigcup_{k=1}^{\infty} A \cap E_{k}\right)+\mu^{*}\left(A \cap E^{C}\right) \\
& =\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{C}\right)
\end{aligned}
$$

This shows that \mathcal{M}^{*} is a σ-algebra. All that remains is to show that $\mu=\left.\mu^{*}\right|_{\mathcal{M}^{*}}$ is a measure. Since $\mu(\emptyset)=\mu^{*}(\emptyset)=0$, we need to see that μ is countably additive.

Proof

Proof Continued.

Suppose that $\left\{E_{k}\right\} \subset \mathcal{M}^{*}$ are pairwise disjoint. Then

$$
\begin{aligned}
\mu\left(E_{1} \cup E_{2}\right) & =\mu^{*}\left(E_{1} \cup E_{2}\right) \\
& =\mu^{*}\left(\left(E_{1} \cup E_{2}\right) \cap E_{1}\right)+\mu^{*}\left(\left(E_{1} \cup E_{2}\right) \cap E_{1}^{C}\right) \\
& =\mu^{*}\left(E_{1}\right)+\mu^{*}\left(E_{2}\right) \\
& =\mu\left(E_{1}\right)+\mu\left(E_{2}\right) .
\end{aligned}
$$

Therefore μ is finitely additive.

Proof

Proof Continued.

Let $E=\bigcup_{k=1}^{\infty} E_{k}$. On the one hand,

$$
\mu(E)=\mu^{*}\left(\bigcup E_{k}\right) \leq \sum_{k} \mu^{*}\left(E_{k}\right)=\sum_{k} \mu\left(E_{k}\right) .
$$

On the other hand, for every n,

$$
\mu(E) \geq \mu\left(\bigcup_{k=1}^{n} E_{k}\right)=\sum_{k=1}^{n} \mu\left(E_{k}\right)
$$

Thus

$$
\mu(E) \geq \sum_{k=1}^{\infty} \mu\left(E_{k}\right)
$$

Therefore we have shown that μ is a measure.

Completeness

Proof Continued.

To see that μ is complete, it suffice to see that $\mu^{*}(E)=0$ implies that $E \in \mathcal{M}^{*}$. But if $A \subset X$, then

$$
\begin{aligned}
\mu^{*}(A) & =\mu^{*}(E)+\mu^{*}(A) \\
& \geq \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{C}\right)
\end{aligned}
$$

Since A was arbitrary, this shows $E \in \mathcal{M}^{*}$ and we're done.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Lebesgue Measure

Definition

Let m^{*} be Lebesgue outer measure on \mathbf{R} and let \mathcal{L} be the σ-algebra of m^{*}-measurable sets in \mathbf{R}. We call \mathcal{L} the Lebesgue measurable sets and $m=\left.m^{*}\right|_{\mathcal{L}}$ Lebesgue measure on $(\mathbf{R}, \mathcal{L})$.

Lemma

For all $a \in \mathbf{R},(a, \infty) \in \mathcal{L}$.

Proof.

Fix $a \in \mathbf{R}$. Since points have zero outer measure, note that for any $A^{\prime} \subset \mathbf{R}$ and $A:=A^{\prime} \backslash\{a\}$,

$$
m^{*}(A) \leq m^{*}\left(A^{\prime}\right) \leq m^{*}(A)+m^{*}(\{a\})=m^{*}(A)
$$

Hence $m^{*}(A)=m^{*}\left(A^{\prime}\right)$.

Proof

Proof Continued.

To see that (a, ∞) is m^{*}-measurable, we need to see that for any $A \subset \mathbf{R}$,

$$
\left.m^{*}(A) \geq m^{*}(A \cap(a, \infty))+m^{*}(A \cap(-\infty, a])\right)
$$

Using the observation on the previous slide, we can replace A by $A \backslash\{a\}$ and assume $a \notin A$. Then we need to show that

$$
\left.m^{*}(A) \geq m^{*}(A \cap(a, \infty))+m^{*}(A \cap(-\infty, a))\right)
$$

Thus is $\left\{I_{k}\right\}$ is a collection of open intervals covering A, it will suffice to see that

$$
\left.\sum_{k} \ell\left(I_{k}\right) \geq m^{*}(A \cap(a, \infty))+m^{*}(A \cap(-\infty, a))\right)
$$

Proof

Proof Continued.

Let $I_{k}^{\prime}=I_{k} \cap(a, \infty)$ and $I_{k}^{\prime \prime}=I_{k} \cap(-\infty, a)$. Then $\ell\left(I_{k}\right)=\ell\left(I_{k}^{\prime}\right)+\ell\left(I_{k}^{\prime \prime}\right)$. Furthermore, $m^{*}(A \cap(a, \infty)) \leq \sum_{k} \ell\left(I_{k}^{\prime}\right) \quad$ and $\quad m^{*}(A \cap(-\infty, a)) \leq \sum_{k} \ell\left(I_{k}^{\prime \prime}\right)$.
Therefore

$$
\begin{aligned}
m^{*}(A \cap(a, \infty))+m^{*}(A \cap(-\infty, a)) & \leq \sum_{k} \ell\left(I_{k}^{\prime}\right)+\sum_{k} \ell\left(I_{k}^{\prime \prime}\right) \\
& =\sum_{k} \ell\left(I_{k}\right) .
\end{aligned}
$$

This completes the proof.

Proposition

Every Borel subset of \mathbf{R} is Lebesgue measurable. In particular, every interval $I \subset \mathbf{R}$ is Lebesgue measurable and $m(I)=\ell(I)$.

Proof.

Since \mathcal{L} is a σ-algebra containing (a, ∞) for all a, we also have $(-\infty, a] \in \mathcal{L}$ for all a. Then so is

$$
(-\infty, a)=\bigcup_{n=1}^{\infty}\left(-\infty, a-\frac{1}{n}\right]
$$

Then $(a, b)=(-\infty, b) \cap(a, \infty) \in \mathcal{L}$ for $a<b$. Since every open set is a countable union of intervals, every open set is in \mathcal{L}. Since \mathcal{L} is a σ-algebra, $\mathcal{B}(\mathbf{R}) \subset \mathcal{L}$. Since every interval is Borel (why?) and $m^{*}(I)=\ell(I)=m(I)$ for every interval, we're done.

Translation Invariant

Proposition

Let m be Lebesgue measure on $(\mathbf{R}, \mathcal{L})$. Then m is translation invariant. That is if $E \in \mathcal{L}$ and $E+y=\{x+y: x \in E\}$, then $E+y \in \mathcal{L}$ and $m(E+y)=m(E)$.

Proof.

Since it is clear that the $m^{*}(E)=m^{*}(E+y)$ for any $E \subset \mathbf{R}$, it suffices to see that $E+y \in \mathcal{L}$ if $E \in \mathcal{L}$. If $A \subset \mathbf{R}$, then since $E \in \mathcal{L}$

$$
\begin{aligned}
m^{*}(A) & =m^{*}(A-y) \\
& \left.=m^{*}((A-y) \cap E)+m^{*}(A-y) \cap E^{C}\right) \\
& =m^{*}(A \cap(E+y))+m^{*}\left(A \cap\left(E^{C}+y\right)\right) \\
& =m^{*}(A \cap(E+y))+m^{*}\left(A \cap(E+y)^{C}\right) .
\end{aligned}
$$

Since A was arbitrary, $E+y \in \mathcal{L}$.

So What Do We Know?

Remark

We know that $(\mathbf{R}, \mathcal{L}, m)$ is a complete measure space with $\mathcal{B}(\mathbf{R}) \subset \mathcal{L}$. So if we accept that $(\mathbf{R}, \mathcal{B}(\mathbf{R}), m)$ (really $\left.m\right|_{\mathcal{B}(\mathbf{R})}$) can't be complete for cardinality reasons, then we have

$$
\mathcal{B}(\mathbf{R}) \subsetneq \mathcal{L} .
$$

At the moment, it is possible that $\mathcal{L}=\mathcal{P}(\mathbf{R})$. Very shortly we will see that-assuming the axiom of choice- $\mathcal{L} \subsetneq \mathcal{P}(\mathbf{R})$. But we are getting ahead of ourselves.

Restriction

Remark

If (X, \mathcal{M}, μ) is a measure space and if $E \in \mathcal{M}$, then $\mathcal{M}(E)=\{A \cap E: A \in \mathcal{M}\}$ is a σ-algebra in E which we can also view as a subset of \mathcal{M}. In particular, $\mu^{\prime}=\left.\mu\right|_{\mathcal{M}(E)}$ is a measure on $(E, \mathcal{M}(E))$. Therefore if $E \in \mathcal{L}$, then we get, by restriction, a measure on $(E, \mathcal{L}(E))$ which is also called Lebesgue measure. I will usually just write m for this measure as well. For example, we can speak of Lebesgue measure on $([a, b], \mathcal{L}([a, b]))$.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

A Non-Measurable Set

Let $X=[0,1)$ and define $\oplus: X \times X \rightarrow X$ by

$$
x \oplus y= \begin{cases}x+y & \text { if } x+y<1, \text { and } \\ x+y-1 & \text { if } x+y \geq 1\end{cases}
$$

Remark

This is all a bit easier to visualize if we identify $X=[0,1)$ with the circle $x^{2}+y^{2}=1$ in the plane.

Translation Invariance Again

Lemma

If $E \subset[0,1)$ is (Lebesgue) measurable, then so is
$E \oplus y=\{x \oplus y: x \in E\}$ for any $y \in[0,1)$. Furthermore, $m(E \oplus y)=m(E)$.

Proof.

Let $E_{1}=E \cap[0,1-y)$ and $E_{2}=E \cap[1-y, 1)$. Then $m(E)=m\left(E_{1}\right)+m\left(E_{2}\right)$. But $E_{1} \oplus y=E_{1}+y$ and $E_{2} \oplus y=E_{2}+y-1$. Therefore $E \oplus y \in \mathcal{L}$ and $\left(E_{1} \oplus y\right) \cap\left(E_{2} \oplus y\right)=\emptyset$. Thus

$$
\begin{aligned}
m(E \oplus y) & =m\left(E_{1} \oplus y\right)+m\left(E_{2} \oplus y\right) \\
& =m\left(E_{1}\right)+m\left(E_{2}\right) \\
& =m(E)
\end{aligned}
$$

Axiom of Choice

- Define an equivalence relation on $[0,1)$ by $x \sim y$ if $x-y \in \mathbf{Q}$.
- Using the axiom of choice, we can form a set $P \subset[0,1)$ such that P contains exactly one member of each equivalence class in $[0,1)$.
- Let $\left\{r_{k}\right\}_{k=0}^{\infty}$ be an enumeration of the rationals in $[0,1)$ with $r_{0}=0$.
- Let $P_{k}=P \oplus r_{k}$.

The P's Have it.

Lemma

The $\left\{P_{k}\right\}_{k=0}^{\infty}$ form a countable partition of $[0,1)$.

Proof.

Suppose $x \in P_{i} \cap P_{j}$. Ten $x=p_{i} \oplus r_{i}=p_{j} \oplus r_{j}$. Then $p_{i}-p_{j} \in \mathbf{Q}$. This means that $p_{i} \sim p_{j}$ and hence that $i=j$. Therefore the P_{k} are pairwise disjoint. However if $x \in[0,1)$, then x belongs to some equivalence class. Thus there is a $p \in P$ such that $x-p=r \in \mathbf{Q}$. If $r \geq 0$, then $r=r_{k} \in[0,1) \cap \mathbf{Q}$ and $x=p \oplus r_{k} \in P_{k}$ for some k. If $r<0$, then $1+r=r_{k} \in[0,1) \cap \mathbf{Q}$ and
$p \oplus r_{k}=p+r_{k}-1=p+r=x$ and $x \in P_{k}$. Therefore
$\bigcup_{k=0}^{\infty} P_{k}=[0,1)$.

The Punchline

Theorem

The set $P \subset[0,1)$ constructed on the previous slide is not in \mathcal{L}. Therefore the Lebesgue measurable sets are a proper subset of $\mathcal{P}(\mathbf{R})$.

Proof.

Suppose to the contrary that $P \in \mathcal{L}$. Then $P_{k} \in \mathcal{L}$ for all $k \geq 0$ and $m\left(P_{k}\right)=m(P)$ for all k. Then

$$
1=m([0,1))=m\left(\bigcup P_{k}\right)=\sum_{k=0}^{\infty} m\left(P_{k}\right)=\sum_{k=0}^{\infty} m(P)
$$

This leads to a contradiction. Hence $P \notin \mathcal{L}$.

The Darn Things are Everywhere

Lemma

Let $P \subset[0,1)$ be our non-measurable set from the previous slide. If $E \subset P$ is measurable, them $m(E)=0$.

Proof.

Let $E_{k}=E \oplus r_{k} \subset P \oplus r_{k}=P_{k}$. Then
$1=m([0,1)) \geq m\left(\bigcup E_{k}\right)=\sum_{k=0}^{\infty} m(E)$. Hence $m(E)=0$.

Lemma

Suppose that $m^{*}(A)>0$. Then A contains a nonmeasurable set.

Proof

Proof.

Suppose $A \subset[0,1)$. Let $A_{k}=A \cap P_{k}$. if $A_{k} \in \mathcal{L}$ for all k, then $m\left(A_{k}\right)=0$ and

$$
0=\sum_{k=0}^{\infty} m\left(A_{k}\right)=m\left(\bigcup A_{k}\right)=m(A)=m^{*}(A)>0
$$

This is a contradiction, so the result holds in this case.
In general, let $E_{n}=A \cap[n, n+1)$. Then for some $n, m^{*}\left(E_{n}\right)>0$. Let $A^{\prime}=E_{n}-n \subset[0,1)$. Then by the first part of the proof, there is a nonmeasurable subset $B \subset A^{\prime}$. But then $B+n \subset E_{n} \subset A$ is also not measurable.

That's Enough for Today

- That is enough for now.

