Math 73/103: Fall 2020 Lecture 16

Dana P. Williams

Dartmouth College

Monday, October 19, 2020

- We should be recording!
- Questions?
- Our next homework (problems 24-35) will be due Wednesday via gradescope.
- Legal Cheating on Homework: To construct counterexamples on homework, we can assume that we have defined Lebesgue measure *m* on (**R**, B(**R**)) such that the Lebesgue integral extends the Riemann integral. Thus 1_[−n,n] has integral 2*n* and 1_{[0,∞)} has infinite integral.
- I probably won't look at 33.2 at all. You need to work with integrals not-necessarily integrable real-valued functions and I promised you wouldn't have to do that. My bad.
- Do we really need a midterm?
- I added a discussion page in Canvas. Mostly for homework, but could be for anything.

μ^* -Measurable Sets

Definition

Suppose that μ^* is an outer measure on a set X. Then we say $E \subset X$ is μ^* -measurable if

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^{\mathcal{C}})$$
 for all $A \subset X$.

We write \mathcal{M}^* for the collection of all μ^* -measurable subsets of X.

Remark

By (finite) subadditivity, we always have $\mu^*(A) \leq \mu^*(A \cap E) + \mu^*(A \cap E^C)$. So to verify that $E \in \mathcal{M}^*$ we just need to see that

$$\mu^*(A) \geq \mu^*(A \cap E) + \mu^*(A \cap E^{\mathcal{C}}) \quad \textit{for all } A \subset X.$$
 (†)

Furthermore, we only have to consider (†) for A with $\mu^*(A) < \infty$.

Getting a Measure

Theorem

Suppose that μ^* is an outer measure on a set X and that \mathcal{M}^* is the collection of μ^* -measurable subsets. Then \mathcal{M}^* is a σ -algebra and $\mu = \mu^*|_{\mathcal{M}^*}$ is a complete measure on (X, \mathcal{M}^*) .

Proof.

Clearly $X \in \mathcal{M}^*$, and if $E \in \mathcal{M}^*$, then so is E^C . So it suffices to check countable subadditivity.

Let $E_1, E_2 \in \mathcal{M}^*$ and $A \subset X$. then

$$\mu^{*}(A) = \mu^{*}(A \cap E_{1}) + \mu^{*}(A \cap E_{1}^{C})$$
$$\mu^{*}(A \cap E_{1}^{C}) = \mu^{*}(A \cap E_{1}^{C} \cap E_{2}) + \mu^{*}(A \cap \underbrace{E_{1}^{C} \cap E_{2}^{C}}_{=(E_{1} \cup E_{2})^{C}})$$

▶ return

Proof Continued.

Note that $A \cap (E_1 \cup E_2) = (A \cap E_1) \cup [A \cap (E_2 \setminus E_1)] = (A \cap E_1) \cup [A \cap (E_2 \cap E_1^C)].$ Thus,

$$\mu^*(A \cap (E_1 \cup E_2)) \le \mu^*(A \cap E_1) + \mu^*(A \cap E_1^C \cap E_2).$$

Then, using the equalities on the previous slide,

$$\mu^{*}(A) = \mu^{*}(A \cap E_{1}) + \mu^{*}(A \cap E_{1}^{C} \cap E_{2}) + \mu^{*}(A \cap (E_{1} \cup E_{2})^{C})$$

$$\geq \mu^{*}(A \cap (E_{1} \cup E_{2})) + \mu^{*}(A \cap (E_{1} \cup E_{2})^{C}).$$

Since A was arbitrary, we have $E_1 \cup E_2 \in \mathcal{M}^*$. It follows that \mathcal{M}^* is an algebra—that is, \mathcal{M}^* satisfies the axioms of a σ -algebra except that it is only closed under finite unions. (Therefore it is also closed under finite intersections and set difference.)

Proof Continued.

Now assume $E = \bigcup_{n=1}^{\infty} E_n$ with $E_n \in \mathcal{M}^*$. Since \mathcal{M}^* is an algebra, $B_n = E_n \setminus \bigcup_{k=1}^{n-1} E_k \in \mathcal{M}^*$. Thus we can "disjointify" and assume from the onset that $E_n \cap E_m = \emptyset$ if $n \neq m$.

Let $G_n = \bigcup_{k=1}^n E_k$. Then $G_n \in \mathcal{M}^*$. Thus if $A \subset X$,

$$\mu^*(A) = \mu^*(A \cap G_n) + \mu^*(A \cap G_n^C)$$

$$\geq \mu^*(A \cap G_n) + \mu^*(A \cap E^C). \tag{\dagger}$$

Since $E_n \in \mathcal{M}^*$,

$$\mu^*(A\cap G_n) = \mu^*(A\cap G_n\cap E_n) + \mu^*(A\cap G_n\cap E_n^C)
onumber \ = \mu^*(A\cap E_n) + \mu^*(A\cap G_{n-1}).$$

By induction,

$$\mu^*(A \cap G_n) = \sum_{k=1}^n \mu^*(A \cap E_k).$$
 (‡)

Combining (†) with (‡) gives

Proof Continued.

$$\mu^*(A) \ge \sum_{k=1}^n \mu^*(A \cap E_k) + \mu^*(A \cap E^C).$$

Since this holds for all n,

$$\mu^*(A) \ge \sum_{k=1}^{\infty} \mu^*(A \cap E_k) + \mu^*(A \cap E^C)$$
$$\ge \mu^*\left(\bigcup_{k=1}^{\infty} A \cap E_k\right) + \mu^*(A \cap E^C)$$
$$= \mu^*(A \cap E) + \mu^*(A \cap E^C).$$

This shows that \mathcal{M}^* is a σ -algebra. All that remains is to show that $\mu = \mu^*|_{\mathcal{M}^*}$ is a measure. Since $\mu(\emptyset) = \mu^*(\emptyset) = 0$, we need to see that μ is countably additive.

Proof Continued.

Suppose that $\set{E_k} \subset \mathcal{M}^*$ are pairwise disjoint. Then

$$\mu(E_1 \cup E_2) = \mu^*(E_1 \cup E_2)$$

= $\mu^*((E_1 \cup E_2) \cap E_1) + \mu^*((E_1 \cup E_2) \cap E_1^C)$
= $\mu^*(E_1) + \mu^*(E_2)$
= $\mu(E_1) + \mu(E_2).$

Therefore μ is finitely additive.

Proof Continued.

Let $E = \bigcup_{k=1}^{\infty} E_k$. On the one hand,

$$\mu(E) = \mu^* \left(\bigcup E_k \right) \leq \sum_k \mu^*(E_k) = \sum_k \mu(E_k).$$

On the other hand, for every n,

$$\mu(E) \geq \mu\left(\bigcup_{k=1}^{n} E_{k}\right) = \sum_{k=1}^{n} \mu(E_{k}).$$

Thus

$$\mu(E) \geq \sum_{k=1}^{\infty} \mu(E_k).$$

Therefore we have shown that μ is a measure.

Proof Continued.

To see that μ is complete, it suffice to see that $\mu^*(E) = 0$ implies that $E \in \mathcal{M}^*$. But if $A \subset X$, then

$$egin{aligned} \mu^*(\mathcal{A}) &= \mu^*(\mathcal{E}) + \mu^*(\mathcal{A}) \ &\geq \mu^*(\mathcal{A} \cap \mathcal{E}) + \mu^*(\mathcal{A} \cap \mathcal{E}^{\mathsf{C}}). \end{aligned}$$

Since A was arbitrary, this shows $E \in \mathcal{M}^*$ and we're done.

- Definitely time for a break.
- Questions?
- Start recording again.

Definition

Let m^* be Lebesgue outer measure on **R** and let \mathcal{L} be the σ -algebra of m^* -measurable sets in **R**. We call \mathcal{L} the Lebesgue measurable sets and $m = m^*|_{\mathcal{L}}$ Lebesgue measure on $(\mathbf{R}, \mathcal{L})$.

Lemma

For all $a \in \mathbf{R}$, $(a, \infty) \in \mathcal{L}$.

Proof.

Fix $a \in \mathbf{R}$. Since points have zero outer measure, note that for any $A' \subset \mathbf{R}$ and $A := A' \setminus \{a\}$,

$$m^*(A) \le m^*(A') \le m^*(A) + m^*(\{a\}) = m^*(A).$$

Hence $m^*(A) = m^*(A')$.

Proof Continued.

To see that (a,∞) is m^* -measurable, we need to see that for any $A\subset {f R},$

$$m^*(A) \geq m^*(A \cap (a,\infty)) + m^*(A \cap (-\infty,a]))$$

Using the observation on the previous slide, we can replace A by $A \setminus \{a\}$ and assume $a \notin A$. Then we need to show that

$$m^*(A) \ge m^*(A \cap (a,\infty)) + m^*(A \cap (-\infty,a)))$$

Thus is $\{I_k\}$ is a collection of open intervals covering A, it will suffice to see that

$$\sum_k \ell(I_k) \geq m^*(A \cap (a, \infty)) + m^*(A \cap (-\infty, a))).$$

Proof Continued.

Let
$$I'_k = I_k \cap (a, \infty)$$
 and $I''_k = I_k \cap (-\infty, a)$. Then $\ell(I_k) = \ell(I'_k) + \ell(I''_k)$. Furthermore,

$$m^*(A\cap(a,\infty))\leq \sum_k\ell(I'_k) ext{ and } m^*(A\cap(-\infty,a))\leq \sum_k\ell(I''_k).$$

Therefore

$$egin{aligned} m^*(A\cap(a,\infty))+m^*(A\cap(-\infty,a))&\leq\sum_k\ell(I'_k)+\sum_k\ell(I''_k)\ &=\sum_k\ell(I_k). \end{aligned}$$

This completes the proof.

Proposition

Every Borel subset of **R** is Lebesgue measurable. In particular, every interval $I \subset \mathbf{R}$ is Lebesgue measurable and $m(I) = \ell(I)$.

Proof.

Since \mathcal{L} is a σ -algebra containing (a, ∞) for all a, we also have $(-\infty, a] \in \mathcal{L}$ for all a. Then so is

$$(-\infty, a) = \bigcup_{n=1}^{\infty} (-\infty, a - \frac{1}{n}].$$

Then $(a, b) = (-\infty, b) \cap (a, \infty) \in \mathcal{L}$ for a < b. Since every open set is a countable union of intervals, every open set is in \mathcal{L} . Since \mathcal{L} is a σ -algebra, $\mathcal{B}(\mathbf{R}) \subset \mathcal{L}$. Since every interval is Borel (why?) and $m^*(I) = \ell(I) = m(I)$ for every interval, we're done.

Translation Invariant

Proposition

Let *m* be Lebesgue measure on $(\mathbf{R}, \mathcal{L})$. Then *m* is translation invariant. That is if $E \in \mathcal{L}$ and $E + y = \{x + y : x \in E\}$, then $E + y \in \mathcal{L}$ and m(E + y) = m(E).

Proof.

Since it is clear that the $m^*(E) = m^*(E + y)$ for any $E \subset \mathbf{R}$, it suffices to see that $E + y \in \mathcal{L}$ if $E \in \mathcal{L}$. If $A \subset \mathbf{R}$, then since $E \in \mathcal{L}$

$$m^{*}(A) = m^{*}(A - y)$$

= $m^{*}((A - y) \cap E) + m^{*}(A - y) \cap E^{C})$
= $m^{*}(A \cap (E + y)) + m^{*}(A \cap (E^{C} + y))$
= $m^{*}(A \cap (E + y)) + m^{*}(A \cap (E + y)^{C})$

Since A was arbitrary, $E + y \in \mathcal{L}$.

Remark

We know that $(\mathbf{R}, \mathcal{L}, m)$ is a complete measure space with $\mathcal{B}(\mathbf{R}) \subset \mathcal{L}$. So if we accept that $(\mathbf{R}, \mathcal{B}(\mathbf{R}), m)$ (really $m|_{\mathcal{B}(\mathbf{R})}$) can't be complete for cardinality reasons, then we have

 $\mathcal{B}(\mathbf{R}) \subsetneq \mathcal{L}.$

At the moment, it is possible that $\mathcal{L} = \mathcal{P}(\mathbf{R})$. Very shortly we will see that—assuming the axiom of choice— $\mathcal{L} \subsetneq \mathcal{P}(\mathbf{R})$. But we are getting ahead of ourselves.

Remark

If (X, \mathcal{M}, μ) is a measure space and if $E \in \mathcal{M}$, then $\mathcal{M}(E) = \{A \cap E : A \in \mathcal{M}\}\$ is a σ -algebra in E which we can also view as a subset of \mathcal{M} . In particular, $\mu' = \mu|_{\mathcal{M}(E)}$ is a measure on $(E, \mathcal{M}(E))$. Therefore if $E \in \mathcal{L}$, then we get, by restriction, a measure on $(E, \mathcal{L}(E))$ which is also called Lebesgue measure. I will usually just write m for this measure as well. For example, we can speak of Lebesgue measure on $([a, b], \mathcal{L}([a, b]))$.

- Definitely time for a break.
- Questions?
- Start recording again.

Let X = [0, 1) and define $\oplus : X \times X \to X$ by

$$x \oplus y = egin{cases} x+y & ext{if } x+y < 1, ext{ and} \ x+y-1 & ext{if } x+y \geq 1. \end{cases}$$

Remark

This is all a bit easier to visualize if we identify X = [0, 1) with the circle $x^2 + y^2 = 1$ in the plane.

Lemma

If $E \subset [0,1)$ is (Lebesgue) measurable, then so is $E \oplus y = \{x \oplus y : x \in E\}$ for any $y \in [0,1)$. Furthermore, $m(E \oplus y) = m(E)$.

Proof.

Let
$$E_1 = E \cap [0, 1 - y)$$
 and $E_2 = E \cap [1 - y, 1)$. Then
 $m(E) = m(E_1) + m(E_2)$. But $E_1 \oplus y = E_1 + y$ and
 $E_2 \oplus y = E_2 + y - 1$. Therefore $E \oplus y \in \mathcal{L}$ and
 $(E_1 \oplus y) \cap (E_2 \oplus y) = \emptyset$. Thus
 $m(E \oplus y) = m(E_1 \oplus y) + m(E_2 \oplus y)$
 $= m(E_1) + m(E_2)$
 $= m(E)$.

- Define an equivalence relation on [0,1) by $x \sim y$ if $x y \in \mathbf{Q}$.
- Using the axiom of choice, we can form a set P ⊂ [0, 1) such that P contains exactly one member of each equivalence class in [0, 1).
- Let $\{r_k\}_{k=0}^{\infty}$ be an enumeration of the rationals in [0, 1) with $r_0 = 0$.
- Let $P_k = P \oplus r_k$.

Lemma

The $\{P_k\}_{k=0}^{\infty}$ form a countable partition of [0, 1).

Proof.

Suppose $x \in P_i \cap P_j$. Ten $x = p_i \oplus r_i = p_j \oplus r_j$. Then $p_i - p_j \in \mathbf{Q}$. This means that $p_i \sim p_j$ and hence that i = j. Therefore the P_k are pairwise disjoint. However if $x \in [0, 1)$, then x belongs to some equivalence class. Thus there is a $p \in P$ such that $x - p = r \in \mathbf{Q}$. If $r \ge 0$, then $r = r_k \in [0, 1) \cap \mathbf{Q}$ and $x = p \oplus r_k \in P_k$ for some k. If r < 0, then $1 + r = r_k \in [0, 1) \cap \mathbf{Q}$ and $p \oplus r_k = p + r_k - 1 = p + r = x$ and $x \in P_k$. Therefore $\bigcup_{k=0}^{\infty} P_k = [0, 1)$.

Theorem

The set $P \subset [0,1)$ constructed on the previous slide is not in \mathcal{L} . Therefore the Lebesgue measurable sets are a proper subset of $\mathcal{P}(\mathbf{R})$.

Proof.

Suppose to the contrary that $P \in \mathcal{L}$. Then $P_k \in \mathcal{L}$ for all $k \ge 0$ and $m(P_k) = m(P)$ for all k. Then

$$1 = m([0,1)) = m(\bigcup P_k) = \sum_{k=0}^{\infty} m(P_k) = \sum_{k=0}^{\infty} m(P).$$

This leads to a contradiction. Hence $P \notin \mathcal{L}$.

Lemma

Let $P \subset [0,1)$ be our non-measurable set from the previous slide. If $E \subset P$ is measurable, them m(E) = 0.

Proof.

Let
$$E_k = E \oplus r_k \subset P \oplus r_k = P_k$$
. Then
 $1 = m([0,1)) \ge m(\bigcup E_k) = \sum_{k=0}^{\infty} m(E)$. Hence $m(E) = 0$.

Lemma

Suppose that $m^*(A) > 0$. Then A contains a nonmeasurable set.

Suppose $A \subset [0,1)$. Let $A_k = A \cap P_k$. if $A_k \in \mathcal{L}$ for all k, then $m(A_k) = 0$ and

$$0=\sum_{k=0}^{\infty}m(A_k)=m\left(\bigcup A_k\right)=m(A)=m^*(A)>0.$$

This is a contradiction, so the result holds in this case.

In general, let $E_n = A \cap [n, n+1)$. Then for some $n, m^*(E_n) > 0$. Let $A' = E_n - n \subset [0, 1)$. Then by the first part of the proof, there is a nonmeasurable subset $B \subset A'$. But then $B + n \subset E_n \subset A$ is also not measurable. • That is enough for now.