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Getting Started

We should be recording!

Questions?

Our next homework (problems 24-35) will be due Wednesday
via gradescope.

Legal Cheating on Homework: To construct counterexamples
on homework, we can assume that we have defined Lebesgue
measure m on (R,B(R)) such that the Lebesgue integral
extends the Riemann integral. Thus 1[−n,n] has integral 2n
and 1[0,∞) has infinite integral.

I probably won’t look at 33.2 at all. You need to work with
integrals not-necessarily integrable real-valued functions and I
promised you wouldn’t have to do that. My bad.

Do we really need a midterm?

I added a discussion page in Canvas. Mostly for homework,
but could be for anything.
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µ∗-Measurable Sets

Definition

Suppose that µ∗ is an outer measure on a set X . Then we say
E ⊂ X is µ∗-measurable if

µ∗(A) = µ∗(A ∩ E ) + µ∗(A ∩ EC ) for all A ⊂ X .

We write M∗ for the collection of all µ∗-measurable subsets of X .

Remark

By (finite) subadditivity, we always have
µ∗(A) ≤ µ∗(A ∩ E ) + µ∗(A ∩ EC ). So to verify that E ∈M∗ we
just need to see that

µ∗(A) ≥ µ∗(A ∩ E ) + µ∗(A ∩ EC ) for all A ⊂ X . (†)

Furthermore, we only have to consider (†) for A with µ∗(A) <∞.
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Getting a Measure

Theorem

Suppose that µ∗ is an outer measure on a set X and that M∗ is
the collection of µ∗-measurable subsets. Then M∗ is a σ-algebra
and µ = µ∗|M∗ is a complete measure on (X ,M∗).

Proof.

Clearly X ∈M∗, and if E ∈M∗, then so is EC . So it suffices to
check countable subadditivity.

Let E1,E2 ∈M∗ and A ⊂ X . then

µ∗(A) = µ∗(A ∩ E1) + µ∗(A ∩ EC
1 )

µ∗(A ∩ EC
1 ) = µ∗(A ∩ EC

1 ∩ E2) + µ∗(A ∩ EC
1 ∩ EC

2︸ ︷︷ ︸
=(E1∪E2)C

)

return
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Proof

Proof Continued.

Note that
A∩(E1∪E2) = (A∩E1)∪[A∩(E2\E1)] = (A∩E1)∪[A∩(E2∩EC

1 )].
Thus,

µ∗(A ∩ (E1 ∪ E2)) ≤ µ∗(A ∩ E1) + µ∗(A ∩ EC
1 ∩ E2).

Then, using the equalities on the previous slide ,

µ∗(A) = µ∗(A ∩ E1) + µ∗(A ∩ EC
1 ∩ E2) + µ∗(A ∩ (E1 ∪ E2)C )

≥ µ∗(A ∩ (E1 ∪ E2)) + µ∗(A ∩ (E1 ∪ E2)C ).

Since A was arbitrary, we have E1 ∪ E2 ∈M∗. It follows that M∗
is an algebra—that is, M∗ satisfies the axioms of a σ-algebra
except that it is only closed under finite unions. (Therefore it is
also closed under finite intersections and set difference.)
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Proof Continued.

Now assume E =
⋃∞

n=1 En with En ∈M∗. Since M∗ is an algebra,

Bn = En \
⋃n−1

k=1 Ek ∈M∗. Thus we can “disjointify” and assume from
the onset that En ∩ Em = ∅ if n 6= m.

Let Gn =
⋃n

k=1 Ek . Then Gn ∈M∗. Thus if A ⊂ X ,

µ∗(A) = µ∗(A ∩ Gn) + µ∗(A ∩ GC
n )

≥ µ∗(A ∩ Gn) + µ∗(A ∩ EC ). (†)

Since En ∈M∗,

µ∗(A ∩ Gn) = µ∗(A ∩ Gn ∩ En) + µ∗(A ∩ Gn ∩ EC
n )

= µ∗(A ∩ En) + µ∗(A ∩ Gn−1).

By induction,

µ∗(A ∩ Gn) =
n∑

k=1

µ∗(A ∩ Ek). (‡)

Combining (†) with (‡) gives
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Proof

Proof Continued.

µ∗(A) ≥
n∑

k=1

µ∗(A ∩ Ek) + µ∗(A ∩ EC ).

Since this holds for all n,

µ∗(A) ≥
∞∑
k=1

µ∗(A ∩ Ek) + µ∗(A ∩ EC )

≥ µ∗
( ∞⋃
k=1

A ∩ Ek

)
+ µ∗(A ∩ EC )

= µ∗(A ∩ E ) + µ∗(A ∩ EC ).

This shows that M∗ is a σ-algebra. All that remains is to show
that µ = µ∗|M∗ is a measure. Since µ(∅) = µ∗(∅) = 0, we need to
see that µ is countably additive.
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Proof

Proof Continued.

Suppose that {Ek } ⊂ M∗ are pairwise disjoint. Then

µ(E1 ∪ E2) = µ∗(E1 ∪ E2)

= µ∗((E1 ∪ E2) ∩ E1) + µ∗((E1 ∪ E2) ∩ EC
1 )

= µ∗(E1) + µ∗(E2)

= µ(E1) + µ(E2).

Therefore µ is finitely additive.
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Proof

Proof Continued.

Let E =
⋃∞

k=1 Ek . On the one hand,

µ(E ) = µ∗
(⋃

Ek

)
≤
∑
k

µ∗(Ek) =
∑
k

µ(Ek).

On the other hand, for every n,

µ(E ) ≥ µ
( n⋃
k=1

Ek

)
=

n∑
k=1

µ(Ek).

Thus

µ(E ) ≥
∞∑
k=1

µ(Ek).

Therefore we have shown that µ is a measure.
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Completeness

Proof Continued.

To see that µ is complete, it suffice to see that µ∗(E ) = 0 implies
that E ∈M∗. But if A ⊂ X , then

µ∗(A) = µ∗(E ) + µ∗(A)

≥ µ∗(A ∩ E ) + µ∗(A ∩ EC ).

Since A was arbitrary, this shows E ∈M∗ and we’re done.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Lebesgue Measure

Definition

Let m∗ be Lebesgue outer measure on R and let L be the
σ-algebra of m∗-measurable sets in R. We call L the Lebesgue
measurable sets and m = m∗|L Lebesgue measure on (R,L).

Lemma

For all a ∈ R, (a,∞) ∈ L.

Proof.

Fix a ∈ R. Since points have zero outer measure, note that for any
A′ ⊂ R and A := A′ \ {a},

m∗(A) ≤ m∗(A′) ≤ m∗(A) + m∗({a}) = m∗(A).

Hence m∗(A) = m∗(A′).
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Proof

Proof Continued.

To see that (a,∞) is m∗-measurable, we need to see that for any
A ⊂ R,

m∗(A) ≥ m∗(A ∩ (a,∞)) + m∗(A ∩ (−∞, a]))

Using the observation on the previous slide, we can replace A by
A \ {a} and assume a /∈ A. Then we need to show that

m∗(A) ≥ m∗(A ∩ (a,∞)) + m∗(A ∩ (−∞, a)))

Thus is { Ik } is a collection of open intervals covering A, it will
suffice to see that∑

k

`(Ik) ≥ m∗(A ∩ (a,∞)) + m∗(A ∩ (−∞, a))).
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Proof

Proof Continued.

Let I ′k = Ik ∩ (a,∞) and I ′′k = Ik ∩ (−∞, a). Then
`(Ik) = `(I ′k) + `(I ′′k ). Furthermore,

m∗(A ∩ (a,∞)) ≤
∑
k

`(I ′k) and m∗(A ∩ (−∞, a)) ≤
∑
k

`(I ′′k ).

Therefore

m∗(A ∩ (a,∞)) + m∗(A ∩ (−∞, a)) ≤
∑
k

`(I ′k) +
∑
k

`(I ′′k )

=
∑
k

`(Ik).

This completes the proof.
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Ta Da

Proposition

Every Borel subset of R is Lebesgue measurable. In particular,
every interval I ⊂ R is Lebesgue measurable and m(I ) = `(I ).

Proof.

Since L is a σ-algebra containing (a,∞) for all a, we also have
(−∞, a] ∈ L for all a. Then so is

(−∞, a) =
∞⋃
n=1

(−∞, a− 1
n ].

Then (a, b) = (−∞, b) ∩ (a,∞) ∈ L for a < b. Since every open
set is a countable union of intervals, every open set is in L. Since
L is a σ-algebra, B(R) ⊂ L. Since every interval is Borel (why?)
and m∗(I ) = `(I ) = m(I ) for every interval, we’re done.
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Translation Invariant

Proposition

Let m be Lebesgue measure on (R,L). Then m is translation
invariant. That is if E ∈ L and E + y = { x + y : x ∈ E }, then
E + y ∈ L and m(E + y) = m(E ).

Proof.

Since it is clear that the m∗(E ) = m∗(E + y) for any E ⊂ R, it
suffices to see that E + y ∈ L if E ∈ L. If A ⊂ R, then since E ∈ L

m∗(A) = m∗(A− y)

= m∗((A− y) ∩ E ) + m∗(A− y) ∩ EC )

= m∗(A ∩ (E + y)) + m∗(A ∩ (EC + y))

= m∗(A ∩ (E + y)) + m∗(A ∩ (E + y)C ).

Since A was arbitrary, E + y ∈ L.
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So What Do We Know?

Remark

We know that (R,L,m) is a complete measure space with
B(R) ⊂ L. So if we accept that (R,B(R),m) (really m|B(R)) can’t
be complete for cardinality reasons, then we have

B(R) ( L.

At the moment, it is possible that L = P(R). Very shortly we will
see that—assuming the axiom of choice—L ( P(R). But we are
getting ahead of ourselves.
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Restriction

Remark

If (X ,M, µ) is a measure space and if E ∈M, then
M(E ) = {A ∩ E : A ∈M} is a σ-algebra in E which we can also
view as a subset of M. In particular, µ′ = µ|M(E) is a measure on
(E ,M(E )). Therefore if E ∈ L, then we get, by restriction, a
measure on (E ,L(E )) which is also called Lebesgue measure. I will
usually just write m for this measure as well. For example, we can
speak of Lebesgue measure on

(
[a, b],L([a, b])

)
.

Dana P. Williams Math 73/103: Fall 2020 Lecture 16



Break Time

Definitely time for a break.

Questions?

Start recording again.
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A Non-Measurable Set

Let X = [0, 1) and define ⊕ : X × X → X by

x ⊕ y =

{
x + y if x + y < 1, and

x + y − 1 if x + y ≥ 1.

Remark

This is all a bit easier to visualize if we identify X = [0, 1) with the
circle x2 + y2 = 1 in the plane.
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Translation Invariance Again

Lemma

If E ⊂ [0, 1) is (Lebesgue) measurable, then so is
E ⊕ y = { x ⊕ y : x ∈ E } for any y ∈ [0, 1). Furthermore,
m(E ⊕ y) = m(E ).

Proof.

Let E1 = E ∩ [0, 1− y) and E2 = E ∩ [1− y , 1). Then
m(E ) = m(E1) + m(E2). But E1 ⊕ y = E1 + y and
E2 ⊕ y = E2 + y − 1. Therefore E ⊕ y ∈ L and
(E1 ⊕ y) ∩ (E2 ⊕ y) = ∅. Thus

m(E ⊕ y) = m(E1 ⊕ y) + m(E2 ⊕ y)

= m(E1) + m(E2)

= m(E ).
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Axiom of Choice

Define an equivalence relation on [0, 1) by x ∼ y if x − y ∈ Q.

Using the axiom of choice, we can form a set P ⊂ [0, 1) such
that P contains exactly one member of each equivalence class
in [0, 1).

Let { rk }∞k=0 be an enumeration of the rationals in [0, 1) with
r0 = 0.

Let Pk = P ⊕ rk .
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The P’s Have it.

Lemma

The {Pk }∞k=0 form a countable partition of [0, 1).

Proof.

Suppose x ∈ Pi ∩ Pj . Ten x = pi ⊕ ri = pj ⊕ rj . Then pi − pj ∈ Q.
This means that pi ∼ pj and hence that i = j . Therefore the Pk

are pairwise disjoint. However if x ∈ [0, 1), then x belongs to some
equivalence class. Thus there is a p ∈ P such that x − p = r ∈ Q.
If r ≥ 0, then r = rk ∈ [0, 1) ∩Q and x = p ⊕ rk ∈ Pk for some k.
If r < 0, then 1 + r = rk ∈ [0, 1) ∩Q and
p ⊕ rk = p + rk − 1 = p + r = x and x ∈ Pk . Therefore⋃∞

k=0 Pk = [0, 1).
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The Punchline

Theorem

The set P ⊂ [0, 1) constructed on the previous slide is not in L.
Therefore the Lebesgue measurable sets are a proper subset of
P(R).

Proof.

Suppose to the contrary that P ∈ L. Then Pk ∈ L for all k ≥ 0
and m(Pk) = m(P) for all k . Then

1 = m([0, 1)) = m
(⋃

Pk

)
=
∞∑
k=0

m(Pk) =
∞∑
k=0

m(P).

This leads to a contradiction. Hence P /∈ L.
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The Darn Things are Everywhere

Lemma

Let P ⊂ [0, 1) be our non-measurable set from the previous slide.
If E ⊂ P is measurable, them m(E ) = 0.

Proof.

Let Ek = E ⊕ rk ⊂ P ⊕ rk = Pk . Then

1 = m([0, 1)) ≥ m
(⋃

Ek

)
=
∑∞

k=0m(E ). Hence m(E ) = 0.

Lemma

Suppose that m∗(A) > 0. Then A contains a nonmeasurable set.

Dana P. Williams Math 73/103: Fall 2020 Lecture 16



Proof

Proof.

Suppose A ⊂ [0, 1). Let Ak = A ∩ Pk . if Ak ∈ L for all k , then
m(Ak) = 0 and

0 =
∞∑
k=0

m(Ak) = m
(⋃

Ak

)
= m(A) = m∗(A) > 0.

This is a contradiction, so the result holds in this case.

In general, let En = A ∩ [n, n + 1). Then for some n, m∗(En) > 0.
Let A′ = En − n ⊂ [0, 1). Then by the first part of the proof, there
is a nonmeasurable subset B ⊂ A′. But then B + n ⊂ En ⊂ A is
also not measurable.

Dana P. Williams Math 73/103: Fall 2020 Lecture 16



That’s Enough for Today

That is enough for now.
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