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Getting Started

@ We should be recording!
@ Questions?

@ Our next homework is due today.
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Promises Kept

Suppose that f is a bounded real-valued function on [a, b].

@ If f is Riemann integrable, then f is Lebesgue measurable and
f € LY([a, b]). Furthermore,

R/ab f= /[a’b] f(x) dm(x). (%)

@ Furthermore, f is Riemann integrable if and only if the set of
discontinuities of f has measure zero.

b
In view of this result, we will retire the notation R / f and simply
a

b
write / f(x) dx in place of either side of (x).
a

Dana P. Williams Math 73/103: Fall 2020 Lecture 17



Proof: Preliminaries

Let f be a bounded real-valued function on [a, b]. If
P={a=ty<t; <---<t,=Db}is any partition of [a, b] let

bp i= Z mkl(tk—hfk] AL 9 = Z Mkl(tk_l’tk]

k=1 k=1
where my = inf  f(x) and My = sup f(x). Hence
X€E[tyk—1,tk] XE[tk—1,t]

/ Ip dm = L(f,P) and / updm =U(f,P).
[a,b] [a,b]

Since f is bounded, we can find partitions Q) and Ry such that

b b
Iilr(nﬁ(f,Qk):R/a f and Iilr(nL{(f,Rk):R/a f. (1)
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Proof

Proof Continued.

Let Px be a refinement of Q, Rx, and Pk_1 such that || Px|| < 1. Then
(1) on the holds with Q, and Ry replaced by Pj. Since
Pri1 is a refinement of Py, we also have

p, < /Pk+1 <f< Upy,y < Up,.
Since f is bounded, we get bounded measurable functions
u = infy up, = limy up, and | = sup, Ip, = limy Ip, such that | < f < u.

Since bounded measurable functions are integrable on [a, b], the LDCT
implies that

b
/ /dm:Iim/ /pkdm:IimE(f,Pk):E/ f.
[a,] Kk Jab] k a

b
/ udm:ﬁ/ f.
[a,b] a
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Proof of (1)

(1) Now assume f € R]a, b]. Then

b b
/ /dm:R/ f:R/ f:/ udm. (1)
[a,b] a a [a,b]

Since | < f < u, this implies u —/ > 0 and

/ (u—1)dm =0
(25

Therefore u — | is zero almost everywhere and / = f = u almost
everywhere. Since Lebesgue measure is complete, f is measurable

and
R/ f—/ ldm = / f dm.
[a,5] [a;5]

This proves part ( O




Preliminaries

Before proving part (2) of the theorem, it will be useful to make
some observations. Note that as a function of § > 0,

F(6) =sup{f(y):|y — x| <&} is decreasing: thatis, 0 < ¢ < 4§
implies f(x) < F(6") < F(d). Then we can define a function H on
[a, b] by

=i Sy — x| < =i .
H(x) = lim sup{ F(y) : |y = x| < 8} = inf F(0)
Similarly we get h defined on [a, b] by
h(x) = liminf{f(y): |y — x| <4d}.
(x) = liminf{ f(y) : [y = x| < 0}
Notice that

h(x) < f(x) < H(x) for all x € [a, b].

Dana P. Williams Math 73/103: Fall 2020 Lecture 17



f is continuous at x € [a, b] if and only if h(x) = H(x).

Proof.

Suppose that f is continuous at x. Then given € > 0, thereisa § > 0
such that |y — x| < § implies f(x) — e < f(y) < f(x) + €. Then

H(x) < f(x) + € and f(x) — € < h(x). Since € > 0 is arbitrary,

f(x) < h(x) < f(x) < H(x) < f(x), and h(x) = H(x).

Conversely, if h(x) = H(x), then they both must equal f(x). Then given
€ > 0 there is a 0 > 0 such that

f(x)+e=HXx)+e>sup{f(y):|ly—x|<d} and
f(x)—e=h(x)—e<inf{f(y):|ly—x|<d}.

Therefore |y — x| < ¢ implies f(x) — e < f(y) < f(x) + €. That is,
If(y) — f(x)| <e O
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Both H and h are Lebesgue measurable and

b b
/ Hdm:R/ f and / hdm:R/ f.
[avb] a [a,b] a

Let { Pk } be the nested partitions from the first part of the proof.
Let N =JPk. Then N is countable and has Lebesgue measure
zero. Fix k. If x¢ N, thenx ¢ Py ={to=a<---<t,=b}
and there isa § > 0 such that {y : |y — x| <¢d} C (ti—1,t;). Then

M; :=sup{ f(y) :y € [ti—1,t;]] } > sup{ f(y) : ly—x| <6} > H(x)

That is, up, (x) > H(x). Since k was arbitrary,
u(x) = limy up, (x) > H(x) provided x ¢ N.
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Proof
Proof of the Lemma Continued.

On the other hand, if x ¢ N and € > 0, there is a § > 0 such that

H(x) +e>sup{f(y): |y —x| <4}

We can take k such that |Px|| < + < §. Since x ¢ Py, x € (tji_1,t;) for
some interval determined by P, and

M; <sup{f(y):|ly —x| <d}.

Then
H(x) + € > up,(x) > u(x).

Since € > 0 is arbitrary, we have shown that H(x) = u(x) if x ¢ N. Thus
H ~ u and H is measurable (since m is complete). Moreover,

b
/ Hdm:/ udm:ﬁ/ f.
[avb] [a7b] a

The argument for h is similar. Ll
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Proof

Proof of Part (2).

Suppose that f is continuous almost everywhere. Then by our first
lemma, H = h almost everywhere. Then our second lemma implies
that the upper and lower Riemann integrals are equal. Hence

f € Rla, b] as claimed.

On the other hand, if f € R[a, b], then the upper and lower
Riemann integrals are equal. Using our second lemma, we have

H—h>0and
/ (H—h)dm = 0.
[a,b]

Hence H ~ h and by our first lemma, f is continuous almost
everywhere. O
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@ Definitely time for a break.
@ Questions?

@ Start recording again.
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The Cantor Set

Definition

Let Go = [0, 1] and let C; = [0, 3] U[2,1] be the closed set
obtained by “removing the middle third" of Co—that is G \ (3, 3
Let G = [0, 5]U[3, 3]U[3, 2] U[3, 1] be the closed set obtained by
removing the middle third of each of the two closed intervals in Cj.
In general, for n > 3 let C, be the union of the 2" closed intervals
of length % obtained by removing the middle third of each of the
closed intervals in C,_1. Then the Cantor set is defined to be
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What's in

Proposition

The Cantor set, € is an uncountable compact subset of [0, 1] with
Lebesgue measure zero.

Proof.

Since % is the intersection of closed sets, it is closed in [0,1] and
therefore compact. Note that m(C,) = 2" - 3—1n Since C,411 C C, and
m(Cy) = 2 < oo, m(¢) = m(ﬂn C,,) = lim, m(C,) = 0. Since € is a
closed subset of R, it is a Baire space. Hence to show that % is
uncountable, it will suffice to see that & has no isolated points. Let EC,
be the 2"*1 endpoints of the 2" intervals making up C,. Note that

EC, C EChy1. Hence E = J,2 o EC, C €. Let x € € and let r > 0. Let
n be such that % < r. Then x belongs to one of the intervals, /, making
up C, and then both endpoints of / are in B,(x). This means

% N B(x)\ {x} # 0, and x. Since r > 0 is arbitrary, x is not isolated. [
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Riemann Integrable

RENEILS

Let us suppose that the Cantor set € contains a subset that is not
Borel. Then if T is the collection of open sets in R, we have

7 C B(R) C L C P(R).

Let f : R — R be a function. Then if f is continuous, it is
necessarily Borel. If f is Borel, then it is necessarily Lebesgue
measurable. However, the reverse implications all fail. It is
interesting to ask where Riemann integrable functions sit in this
hierarchy. But if AC € and A € L\ B(R), then since € is closed,
f = 1, is continuous at all x ¢ C. Thus f is continuous almost
everywhere and hence f € R|0,1]. But f is not Borel.
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@ Definitely time for a break.
@ Questions?

@ Start recording again.
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Completeness is Good

RENEILS

If (X, M, i) is a measure space, then we would like to put a
natural norm on £LY(X, M, ). The natural choice is

Il = /X ()] dpa(x) (+)

as then ||f, — f|l1 — 0 implies

im /X fo(x) dpu(x) = /X F(x) dpu(x).

One small problem! In many cases—for example, for Lebesgue
measure on R—(x) is not a norm. We have |af||1 = |«|||f||1 and
If +gllr < |Iflli + |lgll1, but ||f]l1 = 0 does not imply f = 0.
Instead, we have ||f||1 = 0 if and only if f = 0 almost everywhere.

Dana P. Williams Math 73/103: Fall 2020 Lecture 17



Easy Solution

Definition

If (X, M, p) is a measure space, then we let L*(X, M, 1) be the
set of almost everywhere equivalence classes in £1(X, M, u). We
let [f] be the class of f € £}(X) in L}(X).

With respect to the operations [f] + [g] = [f + g]| and «a[f] = [af],
LY(X, M, p) is a complex vector space and

111l = £l

is a norm on L*(X).

Sketch of the Proof.

The proof simply amounts to observing that the above operations
and definition of the norm are well-defined. O

Dana P. Williams Math 73/103: Fall 2020 Lecture 17



Banach Spaces

Recall that a normed vector space (V, || - ||) is complete, if (V, p)
is complete in the induced metric p(v,w) = ||v — w||. A complete
normed vector space is called a Banach space.

If (V,||-1|) is a normed vector space, then a series > ° , v,, with
each v, € V, converges if the partial sums s, =v; +--- + v,

converge: that is, if there is a v € V such that ||s, — v|| — 0 with
n. We say that 72 ; v, converges absolutely if Y7 ||vp|| < oo.

Remark (Be Careful)

Despite the terminology, there is nothing that says an absolutely
convergent series is convergent.
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Absolute Convergence

A normed vectors space (V, || - ||) is a Banach space (aka complete)
if and only if every absolutely convergent series in V' converges.

Suppose that V is complete and »"77; ||vy|| < co. Let
Sn = vi + -+ v,. We want to show that (s,) is convergent. Since
V is complete, it suffices to see that it is Cauchy. Let € > 0. Then
there is a N such that > .2 [[vk]| <e. Thenif n>m> N,

n

n oo
oo =smll = 3= v < D vl <X vl <
k=N

k=m+1 k=m-+1

Therefore (s,) converges as required.
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Proof

Proof Continued.

Conversely, now suppose that absolutely convergent series are
convergent. Let (v,) be a Cauchy sequence in V. By HW+#7, it
will suffice to find a convergent subsequence of (v,). Choose n;
such that n > ny implies ||v, — vp, || < % Choose ny > np such
that n > ny implies [|v, — vy, || < 2% Notice that

anz - Vn1H <3

2

Continuing in this way, we find a subsequence (v, ) such that

||V”k+1 - Vnk” < 27
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Proof

Proof Continued.

Let g1 = Vs, and gk = Vi, — Vi, if K > 2. Then by construction

oo
> llgkll < oo
k=1
By assumption Y ; gk is convergent. Therefore there isa v € V

such that
k
v = lim E =limyv,,.
k—o0 < 1gk k AL
j:

Thus (v, ) the convergent subsequence of (v,) that we were
looking for. Ol
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Previews of Coming Attractions

If (X, M, i) is a measure space, then L*(X, M, 1) is a Banach
space.

Example

If v is counting measure on N, then L*(N,P(N),v) is just £*, and
we have already seen that ¢! is complete. More generally, now we
can define 2(X) to be L1(X,P(X),v) for counting measure on
any set X where [|f|l1 =) .y |f(x)|. Note that in this case,

LYX,P(X),v) = LY(X,P(X),v)

and every f € L}(X,v) vanishes off a countable set.
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That's Enough for Today

@ That is enough for now.
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