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Getting Started

We should be recording!

Questions?

Our next homework is due today.
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Promises Kept

Theorem

Suppose that f is a bounded real-valued function on [a, b].

1 If f is Riemann integrable, then f is Lebesgue measurable and
f ∈ L1([a, b]). Furthermore,

R
∫ b

a
f =

∫
[a,b]

f (x) dm(x). (∗)

2 Furthermore, f is Riemann integrable if and only if the set of
discontinuities of f has measure zero.

Remark

In view of this result, we will retire the notation R
∫ b

a
f and simply

write

∫ b

a
f (x) dx in place of either side of (∗).
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Proof: Preliminaries

Proof.

Let f be a bounded real-valued function on [a, b]. If
P = { a = t0 < t1 < · · · < tn = b } is any partition of [a, b] let

lP :=
n∑

k=1

mk1(tk−1,tk ] and uP :=
n∑

k=1

Mk1(tk−1,tk ]

where mk = inf
x∈[tk−1,tk ]

f (x) and Mk = sup
x∈[tk−1,tk ]

f (x). Hence

∫
[a,b]

lP dm = L(f ,P) and

∫
[a,b]

uP dm = U(f ,P).

Since f is bounded, we can find partitions Qk and Rk such that

lim
k
L(f ,Qk) = R

∫ b

a
f and lim

k
U(f ,Rk) = R

∫ b

a
f . return (‡)
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Proof

Proof Continued.

Let Pk be a refinement of Qk , Rk , and Pk−1 such that ‖Pk‖ < 1
k . Then

(1) on the previous slide holds with Qk and Rk replaced by Pk . Since
Pk+1 is a refinement of Pk , we also have

lPk
≤ lPk+1

≤ f ≤ uPk+1
≤ uPk

.

Since f is bounded, we get bounded measurable functions
u = infk uPk

= limk uPk
and l = supk lPk

= limk lPk
such that l ≤ f ≤ u.

Since bounded measurable functions are integrable on [a, b], the LDCT
implies that∫

[a,b]

l dm = lim
k

∫
[a,b]

lPk
dm = lim

k
L(f ,Pk) = R

∫ b

a

f .

Similarly, ∫
[a,b]

u dm = R
∫ b

a

f .
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Proof of (1)

Proof Continued.

(1) Now assume f ∈ R[a, b]. Then∫
[a,b]

l dm = R
∫ b

a
f = R

∫ b

a
f =

∫
[a,b]

u dm. (1)

Since l ≤ f ≤ u, this implies u − l ≥ 0 and∫
[a,b]

(u − l) dm = 0

Therefore u − l is zero almost everywhere and l = f = u almost
everywhere. Since Lebesgue measure is complete, f is measurable
and

R
∫ b

a
f =

∫
[a,b]

l dm =

∫
[a,b]

f dm.

This proves part (1).
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Preliminaries

Before proving part (2) of the theorem, it will be useful to make
some observations. Note that as a function of δ > 0,
F (δ) = sup{ f (y) : |y − x | ≤ δ } is decreasing: that is, 0 < δ′ < δ
implies f (x) ≤ F (δ′) ≤ F (δ). Then we can define a function H on
[a, b] by

H(x) = lim
δ↘0

sup{ f (y) : |y − x | ≤ δ } = inf
δ>0

F (δ).

Similarly we get h defined on [a, b] by

h(x) = lim
δ↘0

inf{ f (y) : |y − x | ≤ δ }.

Notice that

h(x) ≤ f (x) ≤ H(x) for all x ∈ [a, b].
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Lemma 1

Lemma

f is continuous at x ∈ [a, b] if and only if h(x) = H(x).

Proof.

Suppose that f is continuous at x . Then given ε > 0, there is a δ > 0
such that |y − x | < δ implies f (x)− ε < f (y) < f (x) + ε. Then
H(x) ≤ f (x) + ε and f (x)− ε ≤ h(x). Since ε > 0 is arbitrary,
f (x) ≤ h(x) ≤ f (x) ≤ H(x) ≤ f (x), and h(x) = H(x).

Conversely, if h(x) = H(x), then they both must equal f (x). Then given
ε > 0 there is a δ > 0 such that

f (x) + ε = H(x) + ε > sup{ f (y) : |y − x | ≤ δ } and

f (x)− ε = h(x)− ε < inf{ f (y) : |y − x | ≤ δ }.

Therefore |y − x | < δ implies f (x)− ε < f (y) < f (x) + ε. That is,
|f (y)− f (x)| < ε.
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Lemma 2

Lemma

Both H and h are Lebesgue measurable and∫
[a,b]

H dm = R
∫ b

a
f and

∫
[a,b]

h dm = R
∫ b

a
f .

Proof.

Let {Pk } be the nested partitions from the first part of the proof.
Let N =

⋃
Pk . Then N is countable and has Lebesgue measure

zero. Fix k. If x /∈ N, then x /∈ Pk = { t0 = a < · · · < tn = b }
and there is a δ > 0 such that { y : |y − x | ≤ δ } ⊂ (ti−1, ti ). Then

Mi := sup{ f (y) : y ∈ [ti−1, ti ] } ≥ sup{ f (y) : |y−x | ≤ δ } ≥ H(x)

That is, uPk
(x) ≥ H(x). Since k was arbitrary,

u(x) = limk uPk
(x) ≥ H(x) provided x /∈ N.
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Proof

Proof of the Lemma Continued.

On the other hand, if x /∈ N and ε > 0, there is a δ > 0 such that

H(x) + ε > sup{ f (y) : |y − x | ≤ δ }

We can take k such that ‖Pk‖ < 1
k < δ. Since x /∈ Pk , x ∈ (ti−1, ti ) for

some interval determined by Pk and

Mi ≤ sup{ f (y) : |y − x | ≤ δ }.

Then
H(x) + ε > uPk

(x) ≥ u(x).

Since ε > 0 is arbitrary, we have shown that H(x) = u(x) if x /∈ N. Thus
H ∼ u and H is measurable (since m is complete). Moreover,∫

[a,b]

H dm =

∫
[a,b]

u dm = R
∫ b

a

f .

The argument for h is similar.
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Proof

Proof of Part (2).

Suppose that f is continuous almost everywhere. Then by our first
lemma, H = h almost everywhere. Then our second lemma implies
that the upper and lower Riemann integrals are equal. Hence
f ∈ R[a, b] as claimed.

On the other hand, if f ∈ R[a, b], then the upper and lower
Riemann integrals are equal. Using our second lemma, we have
H − h ≥ 0 and ∫

[a,b]
(H − h) dm = 0.

Hence H ∼ h and by our first lemma, f is continuous almost
everywhere.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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The Cantor Set

Definition

Let C0 = [0, 1], and let C1 = [0, 13 ] ∪ [23 , 1] be the closed set
obtained by “removing the middle third” of C0—that is C0 \ (13 ,

2
3).

Let C2 = [0, 19 ]∪ [29 ,
1
3 ]∪ [23 ,

5
9 ]∪ [89 , 1] be the closed set obtained by

removing the middle third of each of the two closed intervals in C1.
In general, for n ≥ 3 let Cn be the union of the 2n closed intervals
of length 1

3n obtained by removing the middle third of each of the
closed intervals in Cn−1. Then the Cantor set is defined to be

C =
∞⋂
n=1

Cn
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What’s in C

Proposition

The Cantor set, C is an uncountable compact subset of [0, 1] with
Lebesgue measure zero.

Proof.

Since C is the intersection of closed sets, it is closed in [0, 1] and
therefore compact. Note that m(Cn) = 2n · 1

3n . Since Cn+1 ⊂ Cn and

m(C1) = 2
3 <∞, m(C ) = m

(⋂
n Cn

)
= limn m(Cn) = 0. Since C is a

closed subset of R, it is a Baire space. Hence to show that C is
uncountable, it will suffice to see that C has no isolated points. Let ECn

be the 2n+1 endpoints of the 2n intervals making up Cn. Note that
ECn ⊂ ECn+1. Hence E =

⋃∞
n=0 ECn ⊂ C . Let x ∈ C and let r > 0. Let

n be such that 1
3n < r . Then x belongs to one of the intervals, I , making

up Cn and then both endpoints of I are in Br (x). This means
C ∩Br (x) \ {x} 6= ∅, and x . Since r > 0 is arbitrary, x is not isolated.
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Riemann Integrable

Remark

Let us suppose that the Cantor set C contains a subset that is not
Borel. Then if τ is the collection of open sets in R, we have

τ ( B(R) ( L ( P(R).

Let f : R→ R be a function. Then if f is continuous, it is
necessarily Borel. If f is Borel, then it is necessarily Lebesgue
measurable. However, the reverse implications all fail. It is
interesting to ask where Riemann integrable functions sit in this
hierarchy. But if A ⊂ C and A ∈ L \ B(R), then since C is closed,
f = 1A is continuous at all x /∈ C. Thus f is continuous almost
everywhere and hence f ∈ R[0, 1]. But f is not Borel.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Completeness is Good

Remark

If (X ,M, µ) is a measure space, then we would like to put a
natural norm on L1(X ,M, µ). The natural choice is

‖f ‖1 =

∫
X
|f (x)| dµ(x) (∗)

as then ‖fn − f ‖1 → 0 implies

lim
n

∫
X
fn(x) dµ(x) =

∫
X
f (x) dµ(x).

One small problem! In many cases—for example, for Lebesgue
measure on R—(∗) is not a norm. We have ‖αf ‖1 = |α|‖f ‖1 and
‖f + g‖1 ≤ ‖f ‖1 + ‖g‖1, but ‖f ‖1 = 0 does not imply f = 0.
Instead, we have ‖f ‖1 = 0 if and only if f = 0 almost everywhere.
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Easy Solution

Definition

If (X ,M, µ) is a measure space, then we let L1(X ,M, µ) be the
set of almost everywhere equivalence classes in L1(X ,M, µ). We
let [f ] be the class of f ∈ L1(X ) in L1(X ).

Proposition

With respect to the operations [f ] + [g ] = [f + g ] and α[f ] = [αf ],
L1(X ,M, µ) is a complex vector space and∥∥[f ]

∥∥
1

= ‖f ‖1

is a norm on L1(X ).

Sketch of the Proof.

The proof simply amounts to observing that the above operations
and definition of the norm are well-defined.
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Banach Spaces

Remark

Recall that a normed vector space (V , ‖ · ‖) is complete, if (V , ρ)
is complete in the induced metric ρ(v ,w) = ‖v − w‖. A complete
normed vector space is called a Banach space.

Definition

If (V , ‖ · ‖) is a normed vector space, then a series
∑∞

n=1 vn, with
each vn ∈ V , converges if the partial sums sn = v1 + · · ·+ vn
converge: that is, if there is a v ∈ V such that ‖sn − v‖ → 0 with
n. We say that

∑∞
k=1 vn converges absolutely if

∑∞
n=1 ‖vn‖ <∞.

Remark (Be Careful)

Despite the terminology, there is nothing that says an absolutely
convergent series is convergent.
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Absolute Convergence

Proposition

A normed vectors space (V , ‖ · ‖) is a Banach space (aka complete)
if and only if every absolutely convergent series in V converges.

Proof.

Suppose that V is complete and
∑∞

n=1 ‖vn‖ <∞. Let
sn = v1 + · · · vn. We want to show that (sn) is convergent. Since
V is complete, it suffices to see that it is Cauchy. Let ε > 0. Then
there is a N such that

∑∞
k=N ‖vk‖ < ε. Then if n ≥ m ≥ N,

‖sn − sm‖ =
∥∥∥ n∑
k=m+1

vk

∥∥∥ ≤ n∑
k=m+1

‖vk‖ ≤
∞∑

k=N

‖vk‖ < ε.

Therefore (sn) converges as required.
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Proof

Proof Continued.

Conversely, now suppose that absolutely convergent series are
convergent. Let (vn) be a Cauchy sequence in V . By HW#7, it
will suffice to find a convergent subsequence of (vn). Choose n1
such that n ≥ n1 implies ‖vn − vn1‖ < 1

2 . Choose n2 > n1 such
that n ≥ n2 implies ‖vn − vn2‖ < 1

22
. Notice that

‖vn2 − vn1‖ <
1

2
.

Continuing in this way, we find a subsequence (vnk ) such that

‖vnk+1
− vnk‖ <

1

2k
.
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Proof

Proof Continued.

Let g1 = vn1 and gk = vnk − vnk−1
if k ≥ 2. Then by construction

∞∑
k=1

‖gk‖ <∞.

By assumption
∑∞

k=1 gk is convergent. Therefore there is a v ∈ V
such that

v = lim
k→∞

k∑
j=1

gk = lim
k

vnk .

Thus (vnk ) the convergent subsequence of (vn) that we were
looking for.
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Previews of Coming Attractions

Theorem

If (X ,M, µ) is a measure space, then L1(X ,M, µ) is a Banach
space.

Example

If ν is counting measure on N, then L1(N,P(N), ν) is just `1, and
we have already seen that `1 is complete. More generally, now we
can define `1(X ) to be L1(X ,P(X ), ν) for counting measure on
any set X where ‖f ‖1 =

∑
x∈X |f (x)|. Note that in this case,

L1(X ,P(X ), ν) = L1(X ,P(X ), ν)

and every f ∈ L1(X , ν) vanishes off a countable set.
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That’s Enough for Today

That is enough for now.
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