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Getting Started

We should be recording!

Questions?

Dana P. Williams Math 73/103: Fall 2020 Lecture 18



L1(X ) is a Banach Space

Theorem

If (X ,M, µ) is a measure space, then L1(X ,M, µ) is a Banach
space.

Remark

Recall that elements of L1(X ) are actually almost everywhere
equivalance classes [f ] for f ∈ L1(X ).

Nevertheless, we almost always ignore this and work with
bona fide function in L1(X ).

For example, in the proof, we will take { fn }∞n=1 ⊂ L1(X ) such
that

∑∞
n=1 ‖fn‖1 <∞ and show that partial sums sn converge

“in L1(X )” to some s ∈ L1(X ).

This will suffice since ‖sn − s‖1 → 0 implies
‖[sn]− [s]‖1 = ‖[sn − s]‖1 → 0 as required.
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Proof

Proof.

Suppose that
∑∞

n=1 ‖fn‖1 <∞ for fn ∈ L1(X ) as in the remark on
the previous slide. Let

g(x) =
∞∑
n=1

|fn(x)| ∈ [0,∞].

Then ∫
X
g(x) dµ(x) =

∞∑
n=1

∫
X
|fn(x)| dµ(x) =

∞∑
n=1

‖fn‖1 <∞.

This means N = { x : g(x) =∞} must have measure zero.
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Proof

Proof Continued.

Since C is complete, there is a s(x) ∈ C such that

s(x) =
∞∑
n=1

fn(x) if x /∈ N.

We can extend s to all of X by setting s(x) = 0 if x ∈ N. Now let

sn =
n∑

k=1

1X\N · fk .

Then each sn is measurable and sn → s pointwise. Moreover
|sn(x)| ≤ g(x) for all x . Hence the LDCT implies that∫

X

|sn − s| dµ = ‖sn − s‖1 = 0.

This means that
∑∞

k=1 fk = s in L1(X ) as required.
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Convergence in L1

Example

Let fn : [0, 1]→ [0, 1] be given by

fn(x) = 1
[ j

2k
, j+1

2k
]

where n = 2k + j with 0 ≤ j < 2k .

f1
1

1

f2
1

1

f3
1

1

f4
1

1

f5
1

1

Since
∫ 1
0 f2k+j dm = 2−k , fn → 0 in L1([0, 1]). But fn 6→ 0 almost

everywhere. In fact, (fn(x)) does not converge for any x ∈ [0, 1].
But the subsequence (f2k )→ 0 for almost all x!
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Convergence in Measure

Definition

Let (X ,M, µ) be a measure space. Then a sequence (fn) of
measurable functions from X to C converges in measure to a
measurable function f : X → C if for all ε > 0 we have

lim
n
µ
(
{ x : |fn(x)− f (x)| ≥ ε }

)
= 0.

Proposition

Suppose that fn → f in L1(X ,M, µ). Then fn → f in measure.

Proof.

Let En(ε) = { x : |fn(x)− f (x)| ≥ ε }. Then ‖fn − f ‖1 ≥ εµ(En(ε)).
Since ‖fn − f ‖1 → 0, for each ε > 0 we must have µ(En(ε))→ 0.
This suffices.
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Why Do We Care

Theorem

Suppose fn → f in measure. Then there is a subsequence (fnk )
such that fnk → f almost everywhere.

Proof.

For each k, choose nk such that n ≥ nk implies

µ
(
{ x : |fn(x)− f (x)| ≥ 2−k }

)
< 2−k .

Let Ek = Enk (2−k) := { x : |fnk (x)− f (x)| ≥ 2−k }. Let
Gk =

⋃
m≥k Em. Then by our choice of nk ,

µ(Gk) ≤
∑

m≥k µ(Ek) ≤
∑

m≥k 2−k = 2−k+1. Suppose x /∈ Gk .
Then if m ≥ k , we have x /∈ Em so that |fnm(x)− f (x)| < 2−m.
This shows that fnm(x)→ f (x) if x /∈ Gk .
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Proof

Proof Continued.

Now let

A =
∞⋂
k=1

Gk .

Note that if x /∈ A, then x /∈ Gk for some k and fnm(x)→ f (x).
But µ(A) ≤ µ(Gk) ≤ 2−k+1 for all k . Therefore µ(A) = 0.

Corollary

Suppose that fn → f in L1(X , µ). Then there is a subsequence
(fnk ) such that fnk → f almost everywhere.

Proof.

We know that fn → f in measure.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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LDCT

Remark

The conclusion of the LDCT—namely that∫
X |fn − f | dµ→ 0—can now be more elegantly stated as
‖fn − f ‖1 → 0 or equivalently that fn → f in L1(X ). We can
sharpen the LDCT a bit as follows.

Theorem (LDCT revisited)

Suppose that fn → f in measure and that there is a g ∈ L1(X )
such that for each n, |fn(x)| ≤ g(x) for almost all x. Then fn → f
in L1(X ).
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Proof

Remark

For the proof, we need to observe that if fn → f in measure, then
any subsequence (fnk ) also converges to f in measure. I leave you
to verify this.

Proof.

Suppose that the conclusion of the theorem fails. Then there is a
ε0 > 0 and a subsequence (fnk ) such that

‖fnk − f ‖1 ≥ ε0 for all k . (†)

Since fnk → f in measure, there is a subsubsequence (fnkj ) such

that fnkj → f almost everywhere. But then our old LDCT (almost

everywhere version) implies that ‖fnkj − f ‖1 → 0. This contradicts

(†).
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Littlewood’s Three Principles

Remark

Littlewood was a prominent analyst at Cambridge in the early part of the
20th century. In his 1944 “Lectures on the Theory of Functions” he
opined that the Lebesgue theory was not so mysterious because

“[t]here are three principles, roughly expressible in the follow-
ing terms: Every [Lebesgue measurable] set is nearly a finite sum
of intervals; every [Lebesgue measurable] function . . . is nearly
continuous; every [pointwise] convergent sequence of [measur-
able] functions is nearly uniformly convergent.”

Theorem (Littewood’s First Principle)

If E ⊂ R has finite Lebesgue measure, then for all ε > 0 there is a finite
disjoint union of intervals F such that m(E∆F ) < ε where E∆F is the
symmetric difference (E \ F ) ∪ (F \ E ).

This is HW#38 based on HW#37.
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Egoroff’s Theorem

Remark

As an illustration of Littlewood’s third principal—that every
pointwise convergent sequence is nearly uniformly convergeent—we
have Egoroff’s Theorem. This seems to be named after a Russian
mathematician “Egorov” but I have always seen it spelled
“Egoroff”.

Theorem (Egoroff’s Theorem)

Suppose that (X ,M, µ) is a measure space with µ(X ) <∞. (We
say that (X ,M, µ) is a finite measure space.) Suppose that
fn : X → C is measurable for all n ∈ N and that fn → f pointwise
almost everywhere. Assuming that f itself is measurable, then for
all ε > 0 there is set E ∈M such that µ(E ) < ε and such that
fn → f uniformly on X \ E.
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Proof

Proof.

We may as well assume that fn(x)→ f (x) for all x ∈ X . For each
n, k ∈ N, let

En(k) =
∞⋃

m=n

{ x : |fm(x)− f (x)| ≥ 1

k
}.

Notice that if x /∈ En(k), then

|fm(x)− f (x)| < 1

k
for all m ≥ n.

Furthermore, En+1(k) ⊂ En(k) and
⋂∞

n=1 En(k) = ∅. Since
µ(X ) <∞, we have lim

n
µ
(
En(k)

)
= 0.
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Proof

Proof Continued.

Fix ε > 0. Let nk be such that µ
(
Enk (k)

)
< ε

2k
. Let

E =
⋃∞

k=1 Enk (k). Then µ(E ) < ε. Furthermore, if x /∈ E , then

|fn(x)− f (x)| < 1

k
for all n > nk .

Therefore fn → f uniformly on X \ E .
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More About L1(X )

Remark

To see an example of Littlewood’s second principle, we will prove a
version of Lusin’s Theorem.

Theorem (Lusin’s Theorem)

Suppose that f : [a, b]→ C is Lebesgue measurable. Given ε > 0
there is a closed subset K ⊂ [a, b] such that m

(
[a, b] \ K

)
< ε and

f |K is continuous.

Remark

Note that Lusin’s Theorem does not say that f need be continuous
anywhere! Consider f = 1Q∩[a,b]. Then f is not continuous at a
single point, but f |[a,b]\Q is constant and therefore continuous.
Before we prove Lusin’s Theorem, we need a bit more information
about L1(X ).
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Simple Functions Again

Proposition

Let (X ,M, µ) be a measure space. Then the collection of
integrable simple functions in L1(X ,M, µ) is dense.

Proof.

Let f be an element of L1(X ). Given ε > 0, it suffices to find a
simple function s ∈ L1(X ) such that ‖s − f ‖1 < ε. Suppose
f : X → [0,∞). Then there are MNNSFs (sn) such that sn ↗ f .
In particular, each sn ≤ f and belongs to L1(X ). (In fact, each sn
is a finite linear combinations of characteristic functions of sets of
finite measure.) By the MCT (or the LDCT), ‖sn − f ‖1 → 0.

In general, f = u+ − u− + i(v+ − v−) with { u±, v± } ⊂ L1(X ).
Hence each of { u±, v± } ⊂ L1(X ) can be approximated with
MNNSFs. Since the collection of integrable simple functions is a
subspace of L1(X ), the result follows.
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Step Functions

Definition

A function s : R→ C is called a step function if it can expressed as
a finite linear combination of characteristic functions of intervals.
That is,

s =
n∑

k=1

αn1Ik

where each Ik ⊂ R is an interval.

Example

Let P = { a = t0 < · · · < tn = b } be a partition of [a, b]. Then

s =
n∑

k=1

αk1[tk−1,tk )

is a step function.
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Step Functions are Dense

Proposition

The collection of step functions in L1(R,m) is dense.

Proof.

Since simple functions are always dense, it suffices to show that we can
approximate an integrable simple function s. If we write

s =
n∑

k=1

αk1Ek
,

in standard form, then, since s ∈ L1(R), we must have m(Ek) <∞ for
each k. Hence is suffices to show that we can approximate 1E with
m(E ) <∞. But given ε > 0, we can find a disjoint union of (open)
intervals F such that m(E∆F ) < ε. But then 1F is a step function and

‖1F − 1E‖1 = m(F∆E ) < ε.
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That’s Enough for Today

That is enough for now.
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