Math 73/103: Fall 2020 Lecture 19

Dana P. Williams
Dartmouth College

Monday, October 26, 2020

Getting Started

- We should be recording!
- Questions?

Continuous Functions in $\mathcal{L}^{1}(\mathbf{R})$

Proposition

Suppose that $f \in \mathcal{L}^{1}(\mathbf{R}, \mathcal{L}, m)$. Then given $\epsilon>0$ there is a continuous function $g: \mathbf{R} \rightarrow \mathbf{C}$ such that g vanishes off a closed bounded interval and such that $\|g-f\|_{1}<\epsilon$.

Remark

A continuous function $g: \mathbf{R} \rightarrow \mathbf{C}$ is said to have compact support if there is a $n \in \mathbf{N}$ such that $g(x)=0$ if $x \notin[-n, n]$. The collection $C_{c}(\mathbf{R})$ of continuous compactly supported functions on \mathbf{R} is a (vector space) subspace of $C(\mathbf{R})$. The map $f \mapsto[f]$ is an injection of $C_{c}(\mathbf{R})$ onto a subspace of $L^{1}(\mathbf{R})$ which we normally identify with $C_{c}(\mathbf{R})$. Another way to state the above proposition is that $C_{c}(\mathbf{R})$ is dense in $L^{1}(\mathbf{R})$. Since $\|\cdot\|_{1}$ is really a norm on $C_{c}(\mathbf{R})$, we can view $L^{1}(\mathbf{R})$ as the completion of $C_{c}(\mathbf{R})$ with respect to the metric $\rho(f, g)=\|f-g\|_{1}$.

Proof

Proof.

On Friday, we proved that given $\delta>0$ there is a step function $s=\sum_{k=1}^{n} \alpha_{k} \mathbb{1}_{l_{k}}$ such that $\|f-s\|_{1}<\delta$ where I_{k} is a bounded open interval. Since there are only finitely many I_{k}, there is a n such that $I_{k} \subset[-n, n]$ for all k. Therefore it will suffice to show that if $(a, b) \subset[-n, n]$ then there is a continuous function g vanishing off $[-n, n]$ approximating $\mathbb{1}_{(a, b)}$. But this is routine:

Here $\left\|g-\mathbb{1}_{(a, b)}\right\|_{1}=\delta$.

Lusin's Theorem

Theorem (Lusin's Theorem)

Suppose that $f:[a, b] \rightarrow \mathbf{C}$ is Lebesgue measurable. Given $\epsilon>0$ there is a closed subset $K \subset[a, b]$ such that $m([a, b] \backslash K)<\epsilon$ and $\left.f\right|_{K}$ is continuous.

Proof.

Fix $\epsilon>0$. Let $A_{n}=\{x \in[a, b]:|f(x)| \leq n\}$. Then $\bigcup A_{n}=[a, b]$. Since $A_{n} \subset A_{n+1}, \lim _{n} m\left(A_{n}\right)=m([a, b])=b-a$ and there is a n such that $m\left([a, b] \backslash A_{n}\right)<\frac{\epsilon}{3}$. Let

$$
h(x)= \begin{cases}f(x) & \text { if }|f(x)| \leq n, \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

Since h is bounded, $h \in \mathcal{L}^{1}([a, b])$. Since $C([a, b])$ is dense in $L^{1}([a, b])$ there is a sequence $\left(g_{n}\right) \subset C([a, b])$ such that $g_{n} \rightarrow h$ in $L^{1}([a, b])$.

Proof

Proof Continued.

Then there is a subsequence $\left(g_{n_{k}}\right)$ such that $g_{n_{k}} \rightarrow h$ almost everywhere. By Egoroff's Theorem, there is a set E such that $m([a, b] \backslash E)<\frac{\epsilon}{3}$ and such that $g_{n_{k}} \rightarrow h$ uniformly on E. Thus $\left.h\right|_{E}$ is continuous. Check that $m\left([a, b] \backslash\left(E \cap A_{n}\right)\right)<\frac{2 \epsilon}{3}$. Using HW\#37, there is a closed set $K \subset E \cap A_{n}$ such that $m\left(\left(E \cap A_{n}\right) \backslash K\right)<\frac{\epsilon}{3}$. Now you can confirm that $m([a, b] \backslash K)<\epsilon$ as required and $\left.h\right|_{K}$ is continuous.

Outside the Lines

Remark

If $K \subset[a, b]$ is closed and $h: K \rightarrow \mathbf{R}$ is continuous, then in another course we might have time to prove that there is a continuous function $g:[a, b] \rightarrow \mathbf{R}$ that extends h; that is, $g(x)=h(x)$ for all $x \in K$. This is called the Tietze Extension Theorem. Assuming this, we can re-cast Lusin's Theorem as follows.

Corollary

Suppose that $f:[a, b] \rightarrow \mathbf{C}$ is Lebesgue measurable and that $\epsilon>0$. Then there is a continuous function $g:[a, b] \rightarrow \mathbf{C}$ such that $m(\{x \in[a, b]: g(x) \neq f(x)\})<\epsilon$.

Proof.

By our version of Lusin's Theorem, there is a closed set $K \subset[a, b]$ such that $\left.f\right|_{K}$ is continuous and $m([a, b] \backslash K)<\epsilon$. By Tietze, we can let g be an extension of $h=\left.f\right|_{K}$ to all of $[a, b]$.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Complex Measures

Definition

A complex measure on a measurable space (X, \mathcal{M}) is a function $\nu: \mathcal{M} \rightarrow \mathbf{C}$ such that $\nu(\emptyset)=0$ and

$$
\nu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} \nu\left(E_{n}\right)
$$

whenever each $E_{n} \in \mathcal{M}$ and $E_{n} \cap E_{m}=\emptyset$ if $n \neq m$. If $\nu(\mathcal{M}) \subset(-\infty, \infty)$, then we call ν a real-valued measure.

Remark

Royden \& Fitzpatrick use the term "signed measure" in place of a "real-valued measure". Even for real-valued measures, the values $\pm \infty$ are not allowed. Since the left-hand side of (\dagger) is invariant under re-arrangement, the right-hand side is as well. This forces the convergence of the series on the right-hand side to be absolute.

Examples

Example

Let μ_{k} for $k=1,2,3,4$ be finite measures on (X, \mathcal{M}). Then

$$
\nu(E)=\mu_{1}(E)-\mu_{2}(E)+i\left(\mu_{3}(E)-\mu_{4}(E)\right)
$$

is a complex measure on (X, \mathcal{M}). In my mind, it will be a little disappointing to work quite hard to show that all examples arise in this way. Nevertheless, this discovery will prove very useful.

Agreements and Conventions

Remark

(1) Since a complex measure is clearly the sum of two real-valued measures, we will concentrate almost exclusively on real-valued measures.
(2) Royden \& Fitzpatrick, Rudin, and Folland all allow real-valued measures to take either the value ∞ or the value $-\infty$ (but not both). There are good reasons for this, but we will settle for the simpler path.
(3) When we refer to simply a "measure" we always mean a good old fashioned set function taking values in $[0, \infty]$. If we feel the need to be pedantic, then we might say "positive measure".
(9) It is an unfortunate result of this terminology that a real-valued measure or a complex measure that also happens to be a positive measure must be a finite measure.

Our Intuition Needs to be Upgraded

Definition

Let ν be a real-valued measure on (X, \mathcal{M}). Then we say $P \in \mathcal{M}$ is positive if $\nu(E) \geq 0$ for all measureable subsets $E \subset P$. Similarly, we say that $N \in \mathcal{M}$ is negative if $\nu(E) \leq 0$ for all measurable subsets $E \subset N$. A set N is a null set if it is both positive and negative.

Remark

Notice first that $\nu(E)=0$ does not imply that N is a null set! If these definitions seem overly fussy, consider $([-1,1], \mathcal{L}([-1,1]))$ and $\nu(E)=m(E \cap[-1,0])-m(E \cap[0,1])$ where m is Lebesgue measure. Then $\nu([-1,1])=0$, but it does not seem proper to dismiss $[-1,1]$ as a "null set".

Positive Sets

Lemma

Every measurable subset of a positive set is positive as is the countable union of positive sets.

Proof.

The assertion about subsets is clear. Suppose $P=\bigcup P_{n}$ with each P_{n} positive. We can assume the P_{n} are pairwise disjoint. (Why?) Then if $E \subset P$,

$$
\nu(E)=\nu\left(\bigcup E \cap P_{n}\right)=\sum_{n} \nu\left(E \cap P_{n}\right) \geq 0
$$

Do Positive Sets Even Exist?

Proposition

Suppose that ν is a real-valued measure on (X, \mathcal{M}) and that $\nu(E)>0$. Then E contains a positive set P with $\nu(P)>0$.

Proof.

If E is positive, we're done. Otherwise let n_{1} be the smallest positive integer such that there is a $E_{1} \subset E$ with

$$
\nu\left(E_{1}\right) \leq-\frac{1}{n_{1}}
$$

We proceed inductively. Suppose we have picked disjoint subsets $E_{1}, E_{2}, \ldots, E_{k-1}$. If $E \backslash \bigcup_{j=1}^{k-1} E_{j}$ is not positive, then we can let n_{k} be the smallest positive integer such that there is an $E_{k} \subset E \backslash \bigcup_{j=1}^{k-1} E_{j}$ with

$$
\nu\left(E_{k}\right) \leq-\frac{1}{n_{k}} .
$$

Note that E_{1}, \ldots, E_{k} are pairwise disjoint.

Proof

Proof Continued.

I claim that if $E \backslash \bigcup_{j=1}^{k-1} E_{j}$ is positive, then we are done:

$$
\begin{aligned}
0<\nu(E) & =\nu\left(E \backslash \bigcup_{j=1}^{k-1} E_{j}\right)+\nu\left(\bigcup_{j=1}^{k-1} E_{j}\right) \\
& =\nu\left(E \backslash \bigcup_{j=1}^{k-1} E_{j}\right)+\sum_{j=1}^{k-1} \nu\left(E_{j}\right) \leq \nu\left(E \backslash \bigcup_{j=1}^{k-1} E_{j}\right) .
\end{aligned}
$$

If this process does not terminate with a positive set, then let

$$
A=E \backslash \bigcup_{j=1}^{\infty} E_{j}
$$

Proof

Proof Continued.

Just as on the last slide,

$$
0<\nu(E)=\nu(A)+\sum_{j=1}^{\infty} \nu\left(E_{j}\right) \leq \nu(A)
$$

and $\nu(A)>0$. Thus it will suffice to see that A is positive. Notice that

$$
\sum_{j=1}^{\infty} \nu\left(E_{j}\right)=\nu\left(\bigcup_{j=1}^{\infty} E_{j}\right) \in(-\infty, 0]
$$

This means

$$
-\infty<\sum_{j=1}^{\infty} \nu\left(E_{j}\right) \leq-\sum_{j=1}^{\infty} \frac{1}{n_{j}}
$$

Proof

Proof Continued.

Therefore $\sum \frac{1}{n_{j}}<\infty$ and $n_{j} \rightarrow \infty$. Fix $\epsilon>0$. Then there is a k such that $\frac{1}{n_{k}-1}<\epsilon$. Then

$$
A \subset E \backslash \bigcup_{j=1}^{k-1} E_{j}
$$

can contain no measurable subset F such that

$$
\nu(F) \leq-\frac{1}{n_{k}-1}>-\epsilon
$$

Thus for all $F \subset A, \nu(F)>-\epsilon$. Since ϵ was arbitrary, we shown that A is positive.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Decompositions

Theorem (Hahn Decomposition)

Let ν be a real-valued measure on (X, \mathcal{M}). Then there is a partition $X=P \cup N$ such that P is postive and N is negative. If $P^{\prime} \cup N^{\prime}$ is another such decomposition, then $P \Delta P^{\prime}$ and $N \Delta N^{\prime}$ are null sets.

Proof.

Let \mathscr{P} be the collection of all positive sets in X. Note that $\emptyset \in \mathscr{P}$. Let

$$
\lambda=\sup \{\nu(A): A \in \mathscr{P}\} \in[0, \infty] .
$$

Let $A_{n} \in \mathscr{P}$ be such that $\nu\left(A_{n}\right) \rightarrow \lambda$. Let $P=\bigcup_{n=1}^{\infty} A_{n}$. Then $P \in \mathscr{P}$ and $\nu(P) \leq \lambda$. But $P \backslash A_{n} \in \mathscr{P}$ and

$$
\nu(P)=\nu\left(A_{n}\right)+\nu\left(P \backslash A_{n}\right) \geq \nu\left(A_{n}\right)
$$

Therefore $\nu(P)=\lambda$ and $\lambda<\infty$.

Proof

Proof Continued.

Let $N=X \backslash P$. Suppose that $E \subset N$ is such that $\nu(E)>0$. Then there is a positive set $A \subset E \subset N$ such that $\nu(A)>0$. But then $P \cup A \in \mathscr{P}$ and $\nu(P \cup A)>\lambda$. This is a contradiction, so we conclude that $\nu(E) \leq 0$ for all measurable $E \subset N$. That is, N is negative.

Uniqueness up to null sets is left for homework.

Hahn Decomposition

Definition

The partition $\{P, N\}$ in the previous result is called a Hahn Decomposition for ν.

Remark

Note that a Hahn decomposition for ν is unique up to null sets.

Definition

Two (positive) measures are mutually singular-written $\mu_{1} \perp \mu_{2}$-if there is a partition $X=A \cup B$ such that $\mu_{1}(B)=0=\mu_{2}(A)$.

Jordan Decomposition

Theorem (Jordan Decomposition)

Let ν be a real-valued measure on (X, \mathcal{M}). Then there is a unique pair of mutually singular finite measures ν^{+}and ν^{-}on (X, M) such that $\nu=\nu^{+}-\nu^{-}$. We call this a Jordan decomposition for ν.

Proof.

Let $\{P, N\}$ be a Hahn decomposition for ν. Then we can set $\nu^{+}(E)=\nu(E \cap P)$ and $\nu^{-}(E)=-\nu(E \cap N)$. The rest is straightforward.

That's Enough for Today

- That is enough for now.

