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Getting Started

We should be recording!

Questions?
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Continuous Functions in L1(R)

Proposition

Suppose that f ∈ L1(R,L,m). Then given ε > 0 there is a
continuous function g : R→ C such that g vanishes off a closed
bounded interval and such that ‖g − f ‖1 < ε.

Remark

A continuous function g : R→ C is said to have compact support
if there is a n ∈ N such that g(x) = 0 if x /∈ [−n, n]. The
collection Cc(R) of continuous compactly supported functions on
R is a (vector space) subspace of C (R). The map f 7→ [f ] is an
injection of Cc(R) onto a subspace of L1(R) which we normally
identify with Cc(R). Another way to state the above proposition is
that Cc(R) is dense in L1(R). Since ‖ · ‖1 is really a norm on
Cc(R), we can view L1(R) as the completion of Cc(R) with respect
to the metric ρ(f , g) = ‖f − g‖1.
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Proof

Proof.

On Friday, we proved that given δ > 0 there is a step function
s =

∑n
k=1 αk1Ik such that ‖f − s‖1 < δ where Ik is a bounded

open interval. Since there are only finitely many Ik , there is a n
such that Ik ⊂ [−n, n] for all k . Therefore it will suffice to show
that if (a, b) ⊂ [−n, n] then there is a continuous function g
vanishing off [−n, n] approximating 1(a,b). But this is routine:

a

a+ δ b − δ

b

Here ‖g − 1(a,b)‖1 = δ.
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Lusin’s Theorem

Theorem (Lusin’s Theorem)

Suppose that f : [a, b]→ C is Lebesgue measurable. Given ε > 0
there is a closed subset K ⊂ [a, b] such that m

(
[a, b] \ K

)
< ε and

f |K is continuous.

Proof.

Fix ε > 0. Let An = { x ∈ [a, b] : |f (x)| ≤ n }. Then
⋃
An = [a, b].

Since An ⊂ An+1, limn m(An) = m([a, b]) = b − a and there is a n
such that m([a, b] \ An) < ε

3 . Let

h(x) =

{
f (x) if |f (x)| ≤ n, and

0 otherwise.

Since h is bounded, h ∈ L1([a, b]). Since C ([a, b]) is dense in
L1([a, b]) there is a sequence (gn) ⊂ C ([a, b]) such that gn → h in
L1([a, b]).
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Proof

Proof Continued.

Then there is a subsequence (gnk ) such that gnk → h almost
everywhere. By Egoroff’s Theorem, there is a set E such that
m([a, b] \ E ) < ε

3 and such that gnk → h uniformly on E . Thus h|E
is continuous. Check that m([a, b] \ (E ∩ An)) < 2ε

3 . Using
HW#37, there is a closed set K ⊂ E ∩ An such that
m((E ∩ An) \ K ) < ε

3 . Now you can confirm that m([a, b] \ K ) < ε
as required and h|K is continuous.
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Outside the Lines

Remark

If K ⊂ [a, b] is closed and h : K → R is continuous, then in another
course we might have time to prove that there is a continuous
function g : [a, b]→ R that extends h; that is, g(x) = h(x) for all
x ∈ K. This is called the Tietze Extension Theorem. Assuming
this, we can re-cast Lusin’s Theorem as follows.

Corollary

Suppose that f : [a, b]→ C is Lebesgue measurable and that
ε > 0. Then there is a continuous function g : [a, b]→ C such
that m

(
{ x ∈ [a, b] : g(x) 6= f (x) }

)
< ε.

Proof.

By our version of Lusin’s Theorem, there is a closed set K ⊂ [a, b]
such that f |K is continuous and m([a, b] \ K ) < ε . By Tietze, we
can let g be an extension of h = f |K to all of [a, b].
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Complex Measures

Definition

A complex measure on a measurable space (X ,M) is a function
ν :M→ C such that ν(∅) = 0 and

ν
( ∞⋃
n=1

En

)
=
∞∑
n=1

ν(En) (†)

whenever each En ∈M and En ∩ Em = ∅ if n 6= m. If
ν(M) ⊂ (−∞,∞), then we call ν a real-valued measure.

Remark

Royden & Fitzpatrick use the term “signed measure” in place of a
“real-valued measure”. Even for real-valued measures, the values
±∞ are not allowed. Since the left-hand side of (†) is invariant
under re-arrangement, the right-hand side is as well. This forces
the convergence of the series on the right-hand side to be absolute.
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Examples

Example

Let µk for k = 1, 2, 3, 4 be finite measures on (X ,M). Then

ν(E ) = µ1(E )− µ2(E ) + i
(
µ3(E )− µ4(E )

)
is a complex measure on (X ,M). In my mind, it will be a little
disappointing to work quite hard to show that all examples arise in
this way. Nevertheless, this discovery will prove very useful.
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Agreements and Conventions

Remark

1 Since a complex measure is clearly the sum of two real-valued
measures, we will concentrate almost exclusively on
real-valued measures.

2 Royden & Fitzpatrick, Rudin, and Folland all allow real-valued
measures to take either the value ∞ or the value −∞ (but
not both). There are good reasons for this, but we will settle
for the simpler path.

3 When we refer to simply a “measure” we always mean a good
old fashioned set function taking values in [0,∞]. If we feel
the need to be pedantic, then we might say “positive
measure”.

4 It is an unfortunate result of this terminology that a
real-valued measure or a complex measure that also happens
to be a positive measure must be a finite measure.
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Our Intuition Needs to be Upgraded

Definition

Let ν be a real-valued measure on (X ,M). Then we say P ∈M is
positive if ν(E ) ≥ 0 for all measureable subsets E ⊂ P. Similarly,
we say that N ∈M is negative if ν(E ) ≤ 0 for all measurable
subsets E ⊂ N. A set N is a null set if it is both positive and
negative.

Remark

Notice first that ν(E ) = 0 does not imply that N is a null set! If
these definitions seem overly fussy, consider ([−1, 1],L([−1, 1]))
and ν(E ) = m(E ∩ [−1, 0])−m(E ∩ [0, 1]) where m is Lebesgue
measure. Then ν([−1, 1]) = 0, but it does not seem proper to
dismiss [−1, 1] as a “null set”.
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Positive Sets

Lemma

Every measurable subset of a positive set is positive as is the
countable union of positive sets.

Proof.

The assertion about subsets is clear. Suppose P =
⋃
Pn with each

Pn positive. We can assume the Pn are pairwise disjoint. (Why?)
Then if E ⊂ P,

ν(E ) = ν
(⋃

E ∩ Pn

)
=
∑
n

ν(E ∩ Pn) ≥ 0.
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Do Positive Sets Even Exist?

Proposition

Suppose that ν is a real-valued measure on (X ,M) and that ν(E ) > 0.
Then E contains a positive set P with ν(P) > 0.

Proof.

If E is positive, we’re done. Otherwise let n1 be the smallest positive
integer such that there is a E1 ⊂ E with

ν(E1) ≤ − 1

n1
.

We proceed inductively. Suppose we have picked disjoint subsets
E1,E2, . . . ,Ek−1. If E \

⋃k−1
j=1 Ej is not positive, then we can let nk be the

smallest positive integer such that there is an Ek ⊂ E \
⋃k−1

j=1 Ej with

ν(Ek) ≤ − 1

nk
.

Note that E1, . . . ,Ek are pairwise disjoint.
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Proof

Proof Continued.

I claim that if E \
⋃k−1

j=1 Ej is positive, then we are done:

0 < ν(E ) = ν
(
E \

k−1⋃
j=1

Ej

)
+ ν
(k−1⋃
j=1

Ej

)

= ν
(
E \

k−1⋃
j=1

Ej

)
+

k−1∑
j=1

ν(Ej) ≤ ν
(
E \

k−1⋃
j=1

Ej

)
.

If this process does not terminate with a positive set, then let

A = E \
∞⋃
j=1

Ej .
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Proof

Proof Continued.

Just as on the last slide,

0 < ν(E ) = ν(A) +
∞∑
j=1

ν(Ej) ≤ ν(A)

and ν(A) > 0. Thus it will suffice to see that A is positive. Notice
that

∞∑
j=1

ν(Ej) = ν
( ∞⋃
j=1

Ej

)
∈ (−∞, 0].

This means

−∞ <

∞∑
j=1

ν(Ej) ≤ −
∞∑
j=1

1

nj
.
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Proof

Proof Continued.

Therefore
∑ 1

nj
<∞ and nj →∞. Fix ε > 0. Then there is a k

such that 1
nk−1 < ε. Then

A ⊂ E \
k−1⋃
j=1

Ej

can contain no measurable subset F such that

ν(F ) ≤ − 1

nk − 1
> −ε.

Thus for all F ⊂ A, ν(F ) > −ε. Since ε was arbitrary, we shown
that A is positive.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Decompositions

Theorem (Hahn Decomposition)

Let ν be a real-valued measure on (X ,M). Then there is a
partition X = P ∪ N such that P is postive and N is negative. If
P ′ ∪ N ′ is another such decomposition, then P∆P ′ and N∆N ′ are
null sets.

Proof.

Let P be the collection of all positive sets in X . Note that ∅ ∈P.
Let

λ = sup{ ν(A) : A ∈P } ∈ [0,∞].

Let An ∈P be such that ν(An)→ λ. Let P =
⋃∞

n=1 An. Then
P ∈P and ν(P) ≤ λ. But P \ An ∈P and

ν(P) = ν(An) + ν(P \ An) ≥ ν(An).

Therefore ν(P) = λ and λ <∞.
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Proof

Proof Continued.

Let N = X \ P. Suppose that E ⊂ N is such that ν(E ) > 0. Then
there is a positive set A ⊂ E ⊂ N such that ν(A) > 0. But then
P ∪ A ∈P and ν(P ∪ A) > λ. This is a contradiction, so we
conclude that ν(E ) ≤ 0 for all measurable E ⊂ N. That is, N is
negative.

Uniqueness up to null sets is left for homework.
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Hahn Decomposition

Definition

The partition {P,N } in the previous result is called a Hahn
Decomposition for ν.

Remark

Note that a Hahn decomposition for ν is unique up to null sets.

Definition

Two (positive) measures are mutually singular—written
µ1 ⊥ µ2—if there is a partition X = A ∪ B such that
µ1(B) = 0 = µ2(A).
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Jordan Decomposition

Theorem (Jordan Decomposition)

Let ν be a real-valued measure on (X ,M). Then there is a unique
pair of mutually singular finite measures ν+ and ν− on (X ,M)
such that ν = ν+− ν−. We call this a Jordan decomposition for ν.

Proof.

Let {P,N } be a Hahn decomposition for ν. Then we can set
ν+(E ) = ν(E ∩ P) and ν−(E ) = −ν(E ∩ N). The rest is
straightforward.
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That’s Enough for Today

That is enough for now.
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