Math 73/103: Fall 2020 Lecture 19

Dana P. Williams

Dartmouth College

Monday, October 26, 2020

- We should be recording!
- Questions?

Proposition

Suppose that $f \in \mathcal{L}^1(\mathbf{R}, \mathcal{L}, m)$. Then given $\epsilon > 0$ there is a continuous function $g : \mathbf{R} \to \mathbf{C}$ such that g vanishes off a closed bounded interval and such that $\|g - f\|_1 < \epsilon$.

Remark

A continuous function $g : \mathbf{R} \to \mathbf{C}$ is said to have compact support if there is a $n \in \mathbf{N}$ such that g(x) = 0 if $x \notin [-n, n]$. The collection $C_c(\mathbf{R})$ of continuous compactly supported functions on \mathbf{R} is a (vector space) subspace of $C(\mathbf{R})$. The map $f \mapsto [f]$ is an injection of $C_c(\mathbf{R})$ onto a subspace of $L^1(\mathbf{R})$ which we normally identify with $C_c(\mathbf{R})$. Another way to state the above proposition is that $C_c(\mathbf{R})$ is dense in $L^1(\mathbf{R})$. Since $\|\cdot\|_1$ is really a norm on $C_c(\mathbf{R})$, we can view $L^1(\mathbf{R})$ as the completion of $C_c(\mathbf{R})$ with respect to the metric $\rho(f, g) = \|f - g\|_1$.

Proof.

On Friday, we proved that given $\delta > 0$ there is a step function $s = \sum_{k=1}^{n} \alpha_k \mathbb{1}_{I_k}$ such that $||f - s||_1 < \delta$ where I_k is a bounded open interval. Since there are only finitely many I_k , there is a n such that $I_k \subset [-n, n]$ for all k. Therefore it will suffice to show that if $(a, b) \subset [-n, n]$ then there is a continuous function g vanishing off [-n, n] approximating $\mathbb{1}_{(a, b)}$. But this is routine:

Here $\|g - \mathbb{1}_{(a,b)}\|_1 = \delta$.

Theorem (Lusin's Theorem)

Suppose that $f : [a, b] \to \mathbf{C}$ is Lebesgue measurable. Given $\epsilon > 0$ there is a closed subset $K \subset [a, b]$ such that $m([a, b] \setminus K) < \epsilon$ and $f|_K$ is continuous.

Proof.

Fix $\epsilon > 0$. Let $A_n = \{x \in [a, b] : |f(x)| \le n\}$. Then $\bigcup A_n = [a, b]$. Since $A_n \subset A_{n+1}$, $\lim_n m(A_n) = m([a, b]) = b - a$ and there is a n such that $m([a, b] \setminus A_n) < \frac{\epsilon}{3}$. Let

$$h(x) = egin{cases} f(x) & ext{if } |f(x)| \leq n ext{, and} \ 0 & ext{otherwise.} \end{cases}$$

Since *h* is bounded, $h \in \mathcal{L}^1([a, b])$. Since C([a, b]) is dense in $L^1([a, b])$ there is a sequence $(g_n) \subset C([a, b])$ such that $g_n \to h$ in $L^1([a, b])$.

Then there is a subsequence (g_{n_k}) such that $g_{n_k} \to h$ almost everywhere. By Egoroff's Theorem, there is a set E such that $m([a, b] \setminus E) < \frac{\epsilon}{3}$ and such that $g_{n_k} \to h$ uniformly on E. Thus $h|_E$ is continuous. Check that $m([a, b] \setminus (E \cap A_n)) < \frac{2\epsilon}{3}$. Using HW#37, there is a closed set $K \subset E \cap A_n$ such that $m((E \cap A_n) \setminus K) < \frac{\epsilon}{3}$. Now you can confirm that $m([a, b] \setminus K) < \epsilon$ as required and $h|_K$ is continuous.

Outside the Lines

Remark

If $K \subset [a, b]$ is closed and $h : K \to \mathbf{R}$ is continuous, then in another course we might have time to prove that there is a continuous function $g : [a, b] \to \mathbf{R}$ that extends h; that is, g(x) = h(x) for all $x \in K$. This is called the Tietze Extension Theorem. Assuming this, we can re-cast Lusin's Theorem as follows.

Corollary

Suppose that $f : [a, b] \to \mathbf{C}$ is Lebesgue measurable and that $\epsilon > 0$. Then there is a continuous function $g : [a, b] \to \mathbf{C}$ such that $m(\{x \in [a, b] : g(x) \neq f(x)\}) < \epsilon$.

Proof.

By our version of Lusin's Theorem, there is a closed set $K \subset [a, b]$ such that $f|_{\mathcal{K}}$ is continuous and $m([a, b] \setminus K) < \epsilon$. By Tietze, we can let g be an extension of $h = f|_{\mathcal{K}}$ to all of [a, b].

- Definitely time for a break.
- Questions?
- Start recording again.

Complex Measures

Definition

A complex measure on a measurable space (X, \mathcal{M}) is a function $\nu : \mathcal{M} \to \mathbf{C}$ such that $\nu(\emptyset) = 0$ and

$$\nu\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \nu(E_n) \tag{\dagger}$$

whenever each $E_n \in \mathcal{M}$ and $E_n \cap E_m = \emptyset$ if $n \neq m$. If $\nu(\mathcal{M}) \subset (-\infty, \infty)$, then we call ν a real-valued measure.

Remark

Royden & Fitzpatrick use the term "signed measure" in place of a "real-valued measure". Even for real-valued measures, the values $\pm \infty$ are not allowed. Since the left-hand side of (†) is invariant under re-arrangement, the right-hand side is as well. This forces the convergence of the series on the right-hand side to be absolute.

Example

Let μ_k for k = 1, 2, 3, 4 be finite measures on (X, \mathcal{M}) . Then

$$\nu(E) = \mu_1(E) - \mu_2(E) + i(\mu_3(E) - \mu_4(E))$$

is a complex measure on (X, \mathcal{M}) . In my mind, it will be a little disappointing to work quite hard to show that all examples arise in this way. Nevertheless, this discovery will prove very useful.

Agreements and Conventions

Remark

- Since a complex measure is clearly the sum of two real-valued measures, we will concentrate almost exclusively on real-valued measures.
- ② Royden & Fitzpatrick, Rudin, and Folland all allow real-valued measures to take either the value ∞ or the value -∞ (but not both). There are good reasons for this, but we will settle for the simpler path.
- When we refer to simply a "measure" we always mean a good old fashioned set function taking values in [0,∞]. If we feel the need to be pedantic, then we might say "positive measure".
- It is an unfortunate result of this terminology that a real-valued measure or a complex measure that also happens to be a positive measure must be a finite measure.

Definition

Let ν be a real-valued measure on (X, \mathcal{M}) . Then we say $P \in \mathcal{M}$ is positive if $\nu(E) \ge 0$ for all measureable subsets $E \subset P$. Similarly, we say that $N \in \mathcal{M}$ is negative if $\nu(E) \le 0$ for all measurable subsets $E \subset N$. A set N is a null set if it is both positive and negative.

Remark

Notice first that $\nu(E) = 0$ does not imply that N is a null set! If these definitions seem overly fussy, consider $([-1,1], \mathcal{L}([-1,1]))$ and $\nu(E) = m(E \cap [-1,0]) - m(E \cap [0,1])$ where m is Lebesgue measure. Then $\nu([-1,1]) = 0$, but it does not seem proper to dismiss [-1,1] as a "null set".

Lemma

Every measurable subset of a positive set is positive as is the countable union of positive sets.

Proof.

The assertion about subsets is clear. Suppose $P = \bigcup P_n$ with each P_n positive. We can assume the P_n are pairwise disjoint. (Why?) Then if $E \subset P$,

$$u(E) =
u\left(\bigcup E \cap P_n\right) = \sum_n
u(E \cap P_n) \ge 0.$$

Do Positive Sets Even Exist?

Proposition

Suppose that ν is a real-valued measure on (X, \mathcal{M}) and that $\nu(E) > 0$. Then E contains a positive set P with $\nu(P) > 0$.

Proof.

If *E* is positive, we're done. Otherwise let n_1 be the smallest positive integer such that there is a $E_1 \subset E$ with

$$\nu(E_1) \leq -\frac{1}{n_1}$$

We proceed inductively. Suppose we have picked disjoint subsets $E_1, E_2, \ldots, E_{k-1}$. If $E \setminus \bigcup_{j=1}^{k-1} E_j$ is not positive, then we can let n_k be the smallest positive integer such that there is an $E_k \subset E \setminus \bigcup_{i=1}^{k-1} E_j$ with

$$\nu(E_k)\leq -\frac{1}{n_k}.$$

Note that E_1, \ldots, E_k are pairwise disjoint.

I claim that if $E \setminus \bigcup_{j=1}^{k-1} E_j$ is positive, then we are done:

$$0 < \nu(E) = \nu\left(E \setminus \bigcup_{j=1}^{k-1} E_j\right) + \nu\left(\bigcup_{j=1}^{k-1} E_j\right)$$
$$= \nu\left(E \setminus \bigcup_{j=1}^{k-1} E_j\right) + \sum_{j=1}^{k-1} \nu(E_j) \le \nu\left(E \setminus \bigcup_{j=1}^{k-1} E_j\right).$$

If this process does not terminate with a positive set, then let

$$A=E\setminus \bigcup_{j=1}^{\infty}E_j.$$

Just as on the last slide,

$$0 < \nu(E) = \nu(A) + \sum_{j=1}^{\infty} \nu(E_j) \leq \nu(A)$$

and $\nu(A) > 0$. Thus it will suffice to see that A is positive. Notice that

$$\sum_{j=1}^{\infty}\nu(E_j)=\nu\Bigl(\bigcup_{j=1}^{\infty}E_j\Bigr)\in(-\infty,0].$$

This means

$$-\infty < \sum_{j=1}^{\infty} \nu(E_j) \leq -\sum_{j=1}^{\infty} \frac{1}{n_j}.$$

Proof

Proof Continued.

Therefore $\sum \frac{1}{n_j} < \infty$ and $n_j \to \infty$. Fix $\epsilon > 0$. Then there is a k such that $\frac{1}{n_k - 1} < \epsilon$. Then

$$A \subset E \setminus \bigcup_{j=1}^{k-1} E_j$$

can contain no measurable subset F such that

$$\nu(F) \leq -\frac{1}{n_k-1} > -\epsilon.$$

Thus for all $F \subset A$, $\nu(F) > -\epsilon$. Since ϵ was arbitrary, we shown that A is positive.

- Definitely time for a break.
- Questions?
- Start recording again.

Theorem (Hahn Decomposition)

Let ν be a real-valued measure on (X, \mathcal{M}) . Then there is a partition $X = P \cup N$ such that P is postive and N is negative. If $P' \cup N'$ is another such decomposition, then $P\Delta P'$ and $N\Delta N'$ are null sets.

Proof.

Let \mathscr{P} be the collection of all positive sets in X. Note that $\emptyset \in \mathscr{P}$. Let

$$\lambda = \sup\{ \nu(A) : A \in \mathscr{P} \} \in [0,\infty].$$

Let $A_n \in \mathscr{P}$ be such that $\nu(A_n) \to \lambda$. Let $P = \bigcup_{n=1}^{\infty} A_n$. Then $P \in \mathscr{P}$ and $\nu(P) \leq \lambda$. But $P \setminus A_n \in \mathscr{P}$ and

$$\nu(P) = \nu(A_n) + \nu(P \setminus A_n) \ge \nu(A_n).$$

Therefore $\nu(P) = \lambda$ and $\lambda < \infty$.

Let $N = X \setminus P$. Suppose that $E \subset N$ is such that $\nu(E) > 0$. Then there is a positive set $A \subset E \subset N$ such that $\nu(A) > 0$. But then $P \cup A \in \mathscr{P}$ and $\nu(P \cup A) > \lambda$. This is a contradiction, so we conclude that $\nu(E) \leq 0$ for all measurable $E \subset N$. That is, N is negative.

Uniqueness up to null sets is left for homework.

Definition

The partition $\{P, N\}$ in the previous result is called a Hahn Decomposition for ν .

Remark

Note that a Hahn decomposition for ν is unique up to null sets.

Definition

Two (positive) measures are mutually singular—written $\mu_1 \perp \mu_2$ —if there is a partition $X = A \cup B$ such that $\mu_1(B) = 0 = \mu_2(A)$.

Theorem (Jordan Decomposition)

Let ν be a real-valued measure on (X, \mathcal{M}) . Then there is a unique pair of mutually singular finite measures ν^+ and ν^- on (X, \mathcal{M}) such that $\nu = \nu^+ - \nu^-$. We call this a Jordan decomposition for ν .

Proof.

Let $\{P, N\}$ be a Hahn decomposition for ν . Then we can set $\nu^+(E) = \nu(E \cap P)$ and $\nu^-(E) = -\nu(E \cap N)$. The rest is straightforward.

• That is enough for now.